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PAPER

Development and Evaluation of Near Real-Time Automated System
for Measuring Consumption of Seasonings

Kazuaki NAKAMURA†a), Takuya FUNATOMI††, Atsushi HASHIMOTO†††, Mayumi UEDA††††, Members,
and Michihiko MINOH†††, Fellow

SUMMARY The amount of seasonings used during food preparation
is quite important information for modern people to enable them to cook
delicious dishes as well as to take care for their health. In this paper, we
propose a near real-time automated system for measuring and recording the
amount of seasonings used during food preparation. Our proposed system
is equipped with two devices: electronic scales and a camera. Seasoning
bottles are basically placed on the electronic scales in the proposed system,
and the scales continually measure the total weight of the bottles placed
on them. When a chef uses a certain seasoning, he/she first picks up the
bottle containing it from the scales, then adds the seasoning to a dish, and
then returns the bottle to the scales. In this process, the chef’s picking and
returning actions are monitored by the camera. The consumed amount of
each seasoning is calculated as the difference in weight between before and
after it is used. We evaluated the performance of the proposed system with
experiments in 301 trials in actual food preparation performed by seven
participants. The results revealed that our system successfully measured
the consumption of seasonings in 60.1% of all the trials.
key words: seasonings, consumption measurement, real-time system,
cooking support, successive computation

1. Introduction

Nowadays people are increasingly focusing on their own
health and so tend to cook meals by themselves. Various
systems to support their cooking and eating activities have
been widely studied that have aimed at such people. Exam-
ples have included recipe recommendation systems [1]–[4],
real-time cooking support systems [5]–[8], and food calorie
estimation systems [9]–[12]. In contrast to these systems,
we have particularly focused on the use of seasonings. Sea-
sonings are one of the most important factors in cooking
because their amounts directly influence the taste of cooked
meals as well as the intake of salt, sugar, and fat, which
have significant effects on health status. We propose an au-
tomated system for numerically measuring the amount of
seasonings consumed during food preparation in this paper.
The proposed system runs in near real-time, so it can record
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not only the consumption of seasonings but also the time
when each seasoning was used.

Our proposed system is beneficial for non-professional
chefs such as homemakers in several ways. First, the system
can provide chefs with an easy way of checking the usage
of seasonings in close to real-time by continually monitor-
ing and updating their measured consumption. This is quite
helpful in avoiding excessive intake of seasonings.

Second, consumption data on seasonings obtained with
the proposed system make it easier for a chef to recreate the
taste of meals cooked by him/herself as well as by other
chefs. In general, chefs recreate the taste of meals by the
following two steps: (i) record the amount of seasonings
used during food preparation for some meal and (ii) cook
the meal using the same amount of seasonings recorded in
step (i). However, recreating taste is not so easy for non-
professional chefs, especially homemakers, because manu-
ally performing step (i) in daily food preparation is very an-
noying, so that most homemakers do not always record the
accurate amount of seasonings they consumed. Although
there are several commercially available devices useful for
step (ii) such as digital spoon scale, they are not enough
helpful for step (i) because chefs have to read the output
value of such devices and record it in a notebook by hand.
The proposed system release chefs from such burden of step
(i) by automatically recording the used amount of season-
ings as numerical data. Moreover, since the proposed sys-
tem can record the time when each seasoning was used, it
can provide helpful information for step (ii) by being com-
bined with an existing cooking support system. For in-
stance, it can show the order of addition of seasonings to
chefs with proper timing based on the progress of cooking
recognized by the cooking support system.

Third, the recorded consumption data can be used for
analysis. It is a non-trivial problem for non-professional
chefs as to the amount of seasonings that should be put
into dishes from the aspect of palatability. Automated sta-
tistical analysis over massive amounts of consumption data
including both positive ones (consumption data on well-
cooked meals) and negative ones (consumption data on
failed meals) would be very useful to solve this problem.
Indeed, there have recently been a number of digital cook-
ing recipes on the Internet. However, since most of these
digital recipes have user-generated content, their description
of the amount of seasonings has often been unclear and/or
inaccurate. For instance, we can hardly understand the ac-
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curacy of the amount from a description like “a moderate
amount of salt”. Moreover, most digital recipes on the In-
ternet involve positive data because few chefs would want
to disclose recipes for meals in which they failed. Digital
recipes on the Internet are not sufficiently suitable for statis-
tical analyses for these reasons.

The proposed system is also beneficial for professional
dietitians. Dietitians often check the amount of food intake
by their patients to assess their dietary habits. However,
the amount of food intake alone is insufficient to assess di-
etary habits because these are deeply related not only to the
amount of food intake but also to those of seasonings, which
can be automatically measured and recorded with the pro-
posed system.

The main contribution of this paper can be summarized
as follows. First, we developed a system particularly focus-
ing on the use of seasonings that has attracted less attention
from previous work despite its importance. Second, our sys-
tem can fully-automatically recognize the kinds of season-
ings consumed at each time during food preparation. This is
discussed in Sect. 5.

The remainder of this paper is organized as follows.
First, some environmental assumptions are introduced in
Sect. 2. Section 3 theoretically discusses a method of mea-
suring the consumption of seasonings in detail based on
these assumptions. Section 4 explains how we implemented
and experimentally evaluated an actual measuring system.
Some related work is then reviewed in Sect. 5. Section 6
concludes this paper with a description of future work.

2. Environmental Assumptions

The consumption of seasonings can be calculated as the dif-
ference in weight between before and after they are used.
We therefore aim to measure the weight of each seasoning
at each time during food preparation. Note that there is no
need to distinguish the weight of a bottle from that of its
contents because the weight of the bottle is constant.

Suppose that there is only one seasoning bottle in a
kitchen (see Fig. 1 (a)). The weight of the seasoning can eas-
ily be measured with electronic scales. This is also the case
with two or more seasoning bottles if we can separately use
electronic scales for each seasoning (see Fig. 1 (b)). How-

Fig. 1 Num. of scales used for measuring weight of seasonings. Although it is easier to measure
weight of each seasoning with system like (b) than that with (c), it has some deficiencies. We therefore
adopt system like (c).

ever, a system like that in Fig. 1 (b) has several disadvan-
tages in reality. First, it is too costly. Second, it lacks exten-
sibility because we have to add one more set of electronic
scales to the system when we want to use a new kind of
seasoning. Third, it fails to measure the weight of season-
ings when a chef picks up a seasoning bottle from one set of
electronic scales and returns it to another set of scales. One
possible solution for avoiding the disadvantage is attaching
small load sensors to the bottom of each seasoning bottle.
However, this solution also has a problem of cost. More-
over, problems of portability and measurement precision are
raised in this case as described below. Load sensors attached
to seasoning bottles should have a wireless communication
device and enough capacity of a battery. They would not be
light and small even if the sensors themselves are enough
light and small. As for measurement precision, most of the
existing small load sensors do not have enough precision.
One of the state-of-the-art small load sensors [13] only has
a precision of about 1g. However, the amount of several
seasonings used in food preparation is often less than 1g
(e.g. a touch of pepper/salt). These disadvantages of small
load sensors may be solved in the future, but currently, us-
ing small load sensors is not a realistic solution. For these
reasons, we aim at developing a system that can measure
the weight of two or more seasonings with only one set of
electronic scales (see Fig. 1 (c)).

There are three kinds of chef’s actions in the use of
seasonings: Picking up a seasoning bottle from electronic
scales, adding seasoning to a dish, and returning the bottle
to the scales. We refer to these three actions as picking up,
adding, and returning actions. We assume that these three
actions would always be performed in this order when a chef
uses a seasoning, except for when two or more adding ac-
tions are performed between a picking up and a returning
action. More specifically, we assume that a sequence of
picking up action Ps, adding action As, and returning ac-
tion Rs for seasoning s would always match the regular ex-
pression of (Ps (As)∗ Rs)∗. This is a realistic assumption
because all seasoning bottles are kept together in one place
in most homes; we just have to place the electronic scales in
that place.

Under the above assumptions, the consumption of sea-
sonings is calculated after chef’s returning action, and there
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is a certain time lag between the returning action and the
corresponding adding action. We use the term “near real-
time” to refer to this time lag in this paper.

3. Measurement of Consumption by Successively Solv-
ing Weight Equations

3.1 Notations

We will first introduce some notation used in this paper be-
fore discussing the method of measuring the weight of sea-
sonings.

Let n denote the number of seasoning bottles in a
kitchen, and let si denote the kind of i-th seasoning bottle
for each i ∈ {1, · · · , n}. For example, s1 denotes sugar, s2

denotes salt, and s3 denotes vinegar if there are only these
three kinds of seasonings in a kitchen. S = {si | i = 1, · · · , n}
denotes the whole set of seasonings in a kitchen, and its
subset S(t) ⊆ S denotes a set of seasonings placed on the
electronic scales at (discrete) time t, where the t represents
the lapse time since the chef started to prepare food. For
all s ∈ S(t), let w(s; t) be the weight of seasoning s and its
bottle at time t, and let W(t) be the summation of w(s; t), i.e.,

W(t) =
∑

s∈S(t)

w(s; t) (1)

for all t ≥ 0. We will refer to the above Formula (1) as the
total weight equation in the remainder of this paper.

Moreover, let Ŵ(t) = W(t) + ε(t) denote the estimate
of W(t) measured with the electronic scales, where ε(t) is an
error term. We will discuss this in Sect. 3.3.

3.2 Fundamental Formulation

As assumed in Sect. 2, a chef’s adding action always fol-
lows his/her picking up action, and is always followed by
his/her returning action. Hence, a change in W(t) caused by
each picking up action and returning action makes it possi-
ble to measure the weight of seasonings consumed with the
corresponding adding action.

Suppose that only one seasoning bottle si is picked up
from the electronic scales and no bottles are returned to the
scales in time interval [u, u+1]. In this case,

S(u+1) ∪ {si} = S(u) (2)

is trivially satisfied and the remaining weight of any season-
ing s ∈ S(u+1) remains unchanged during interval [u, u+1]
since the bottle for such seasoning s has not been moved.
This can be formulated as

∀s ∈ S(u+1), w(s; u+1) = w(s; u) . (3)

Simultaneously solving Formulas (1) and (3), the remaining
weight of si at time u can be calculated as the difference
between W(u) and W(u+1) because of

W(u) −W(u+1) =
∑

s∈S(u)

w(s; u) −
∑

s∈S(u+1)

w(s; u+1)

= w(si; u) +
∑

s∈S(u+1)

{w(s; u) − w(s; u+1)}

= w(si; u) . (4)

Next, suppose that the same seasoning bottle, si, is returned
to the electronic scales and no other bottles are moved in
time interval [v, v+1], where v > u+1. In this case,

S(v+1) = S(v) ∪ {si} (5)

is trivially satisfied and the remaining weight of any season-
ing s ∈ S(v) remains unchanged during interval [v, v+1],
which can be formulated as

∀s ∈ S(v), w(s; v+1) = w(s; v) . (6)

Simultaneously solving Formulas (1) and (6), the remaining
weight of si at time v+1 can be calculated as the difference
between W(v) and W(v+1) just like the case with Formula
(4), i.e.,

W(v) −W(v+1) = −w(si; v+1) . (7)

We will refer to the equations representing weight con-
stancy between two successive periods like those in Formu-
las (3) and (6) as weight transition equations in the remain-
der of this paper. The remaining weight of each seasoning
can be calculated at each time by simultaneously solving the
total weight equations and weight transition equations, like
those in Formulas (4) and (7). This is the fundamental prin-
ciple of the proposed system. Using Formulas (4) and (7),
the consumption of seasoning si can be calculated as

w(si; u)−w(si; v+1)=W(u)−W(u+1) +W(v)−W(v+1) .

(8)

Two sub-tasks should be done to calculate the remain-
ing weight of each seasoning at each time based on the
above principle:

• Reliably measure W(t) on the electronic scales
• Calculate S(t) by monitoring each seasoning bottle

We will discuss a method of achieving each of these two
sub-tasks in Sects. 3.3 and 3.4.

3.3 Reliable Measurement of W(t)

W(t) can basically be measured as Ŵ(t) on the electronic
scales at each time t, but the measured value, Ŵ(t), is not
always equal to W(t) because of error term ε(t). Concretely
speaking, |ε(t)| becomes more than zero when a chef per-
forms picking up/returning actions.

During a chef’s picking up/returning actions, the elec-
tronic scales are not only forced by the seasoning bottles
but also by the chef’s hand. This force makes ε(t) > 0, i.e.,
Ŵ(t) >W(t). Moreover, W(t) changes instantaneously at a
certain instant, whereas Ŵ(t) follows W(t) with some de-
lay. This makes ε(t)<0 in the case of returning actions and
ε(t) > 0 in the case of picking up actions. Some examples
of these errors have been given in Figs. 2 and 3. We can-
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Fig. 2 Error between W(t) and Ŵ(t) caused by chef’s picking up action.
ε(t) = Ŵ(t)−W(t) becomes more than zero due to force of chef’s hand and
delay in Ŵ(t) behind W(t).

Fig. 3 Error between W(t) and Ŵ(t) caused by chef’s returning action.
ε(t) = Ŵ(t)−W(t) first becomes more than zero due to force of chef’s hand,
and then becomes less than zero due to delay in Ŵ(t) behind W(t).

not obtain reliable estimates of W(t) during a chef’s picking
up/returning actions due to errors.

As seen in Figs. 2 and 3, the value of Ŵ(t) is usually
stable, but it starts to change slowly when a chef performs a
picking up/returning action, and a short time later, the value
stabilizes again. We refer to this kind of weight change as a
Weight Change due to Chef’s Actions (WeCCA) event. Note
that two or more picking up/returning actions can be in-
cluded in a single WeCCA event as shown in Fig. 4. Let τk

denote the time a k-th WeCCA event ends. The value of ε(t)
at t = τk, i.e., ε(τk), is expected to be zero. In other words,
Ŵ(τk) is expected to be reliable. Hence, we only use a set
of values {Ŵ(τk) | k = 1, 2, · · ·} for measuring the weight
of each seasoning and ignore all other Ŵ(t) in our proposed
system. This enables the system to obtain a reliable estimate
of W(t). Note that this approach does not allow the system

Fig. 4 WeCCA event sometimes includes two or more picking
up/returning actions. Value of Ŵ(t) first decreases due to chef’s picking
up action, but a few seconds later, it increases without stabilizing in this
figure. This is because seasoning s that was picked up was returned to
electronic scales before value of Ŵ(t) stabilized. Here, WeCCA event in-
cludes not only picking up action Ps but also returning action Rs for same
seasoning s.

Algorithm 1 Finding time τk when k-th WeCCA event ends
Require: τk−1 ≥ 0 (k ≥ 1)

t = τk−1 + 1 ;
loop

if stable(Ŵ; t−1) = 0 and stable(Ŵ; t) = 1 then
τk ← t ;
return τk ;

end if
t ← t + 1 ;

end loop

to calculate w(s; t) for any t � τk. Therefore, we only cal-
culate w(s; τk) for each k ∈ {1, 2, · · ·} and interpolate w(s; t)
as

w(s; t) = w(s; τk) (τk ≤ t < τk+1) (9)

for each s ∈ S(τk). This is a reasonable interpolation be-
cause the remaining weight w(s; t) does not change with-
out a chef’s picking up/returning actions, as was assumed in
Sect. 2.

The time τk when each WeCCA event ends is recur-
sively found with Algorithm 1 based on the stability of Ŵ(t),
where τ0 is defined as 0 to simplify the formulation. The
indicator function, stable( f ; t), in Algorithm 1, which indi-
cates whether a discrete-time signal f (x) is stable at x = t or
not, is defined as

stable( f ; t) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1 if

t∑
x=t−δ
| f (x) − f (x−1)| ≤ d

0 otherwize

, (10)

where d and δ are some positive constants. This indicator
function regards signal f (x) as stable at x = t if and only if
a variation of f (x) during [t−δ, t] is equal to or less than a
certain threshold, d.
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3.4 Incremental Calculation of S(t)

3.4.1 Vision-Based Calculation

Since we only use Ŵ(τk) and ignore Ŵ(t) for all t � τk as
mentioned in the previous section, we do not have to calcu-
late S(t) at time t � τk; only {S(τk) | k = 1, 2, · · ·} should be
calculated. Each S(τk) can be incrementally calculated as

S(τk) = [S(τk−1) \ P(k)] ∪ R(k) , (11)

where P(k) represents a set of seasonings picked up from
the electronic scales in time interval [τk−1, τk] and R(k) rep-
resents a set of those returned to the electronic scales in the
same interval. We therefore describe a method of calculat-
ing P(k) and R(k) in this section.

Here, we will introduce an indicator function,
onScale(s; t), which indicates the presence or absence of
seasoning s on the electronic scales at time t to formulate
a method of calculating P(k) and R(k), i.e.,

onScale(s; t) =

{
1 if s is on the scales at time t
0 otherwise

. (12)

Two sets, P(k) and R(k), can be calculated using the above
onScale(s; t) as

P(k) = {s | onScale(s; t−1) = 1,

onScale(s; t) = 0, τk−1 ≤ t < τk} (13)

and

R(k) = {s | onScale(s; t−1) = 0,

onScale(s; t) = 1, τk−1 ≤ t < τk} , (14)

except for the case where returning action Rs for seasoning
s and picking up action Ps for the same s are both performed
in interval [τk−1, τk] in this order. In this exceptional case, the
remaining weight w(s; t) can never be reliably obtained for
all t ∈ [τk−1, τk], even in the interval after Rs is performed
and before Ps is performed. We therefore ignore Rs and
Ps in this case, regarding seasoning s as not being on the
electronic scales during [τk−1, τk]. The actual procedure for
calculating P(k) and R(k) is given in Algorithm 2.

The problem now boils down to how to compute
onScale(s; t) for each s and t. Unfortunately, Ŵ(t) obtained
from the electronic scales has insufficient information on
whether each seasoning s is on the scales or not at each time
t. We therefore add another device, a camera, to the pro-
posed system. The proposed system has a camera installed
above the electronic scales, which shoots the tops of season-
ing bottles on the scales at any time, as outlined in Fig. 5. On
the other hand, a marker is attached to the tops of individual
seasoning bottles so that different kinds of seasonings have
different markers. The markers can be observed on cam-
era images if and only if a corresponding bottle is placed
on the electronic scales. Detecting the markers from camera
images by utilizing vision techniques provides useful infor-
mation for the system to compute onScale(s; t).

Algorithm 2 Calculating set of picked up seasonings
P(k) and that of returned seasonings R(k) in time interval
[τk−1, τk]
Require: τk−1 ≥ 0, τk ≥ τk−1 (k ≥ 1)
P(k)← ∅ ;
R(k)← ∅ ;
t ← τk−1 + 1 ;
while t ≤ τk do

for i = 1 to n do
if onScale(si; t−1) = 1 and onScale(si; t) = 0 then

if si ∈ R(k) then
R(k)← R(k) \ {si} ;

else
P(k)← P(k) ∪ {si} ;

end if
else if onScale(si; t−1) = 0 and onScale(si; t) = 1 then
R(k)← R(k) ∪ {si} ;

end if
end for
t ← t + 1 ;

end while
return P(k), R(k) ;

Fig. 5 Camera-based monitoring of seasoning bottles with markers.
Each marker can be detected on camera images if and only if corresponding
bottle is placed on scales.

We introduce another indicator function, detected(s; t),
that indicates whether the marker of seasoning s is detected
on camera images or not at time t, i.e.,

detected(s; t) =

{
1 if m(s) is detected at time t
0 otherwise

, (15)

where m(s) is a marker attached to the bottle for s. The
computation of detected(s; t) can be achieved by applying
object detection and tracking techniques [14]–[17] to m(s),
and onScale(s; t) is naively computed as onScale(s; t) =
detected(s; t). However, since the detection and tracking of
m(s) may sometimes fail due to a variety of illumination
conditions and occluded markers, the above naive approach
cannot accurately compute onScale(s; t). To deal with such
failures, we integrate the results from marker detection of θ
continuous frames and compute onScale(s; t) as
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onScale(s; t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 if
t∑

x=t−θ+1
detected(s; x) = θ

0 if
t∑

x=t−θ+1
detected(s; x) = 0

onScale(s; t−1) otherwise

. (16)

Note that we assume onScale(s; 0) is given for each s
and compute onScale(s; t) = onScale(s; 0) in cases with
t < θ. This assumption is easily satisfied by recording
onScale(s; q) at the time q when each food preparation op-
portunity ends and using it as onScale(s; 0) for the next op-
portunity.

3.4.2 Error Correction with Weight Information

The method described in the previous section could miscal-
culate P(k) and R(k) when markers were falsely detected or
missed for more than θ time steps. Fortunately, some kinds
of miscalculations can be corrected by combining visual in-
formation provided by the camera and weight information
provided by the electronic scales, i.e., Ŵ(t).

Let tdetected(a) be the time when a picking up/returning
action a was detected. The difference between τk and
tdetected(a) is generally small for any a ∈ [P(k) ∪ R(k)] be-
cause picking up/returning actions are always accompanied
by a change in Ŵ(t), as shown in Figs. 2 and 3. Hence, a
large difference between τk and tdetected(a) informs the sys-
tem that action a was actually not performed even if the cor-
responding marker was falsely detected or missed. In this
case, we remove such action a from P(k) and R(k).

3.5 General Formulation

Based on the discussions in Sects. 3.3 and 3.4, total weight
equation (1) is now rewritten as

Ŵ(τk) =
∑

s∈S(τk)

w(s; τk) (17)

for all k ≥ 0. Similarly, weight transition equations (3) and
(6) are generalized as

∀s ∈ [S(τk−1) \ P(k)] , w(s; τk) = w(s; τk−1) (18)

for all k ≥ 1. Combining Formulas (17) and (18) with For-
mula (11), the relation expressed by Formulas (4) and (7)
are also generalized as

Ŵ(τk−1) − Ŵ(τk) =
∑

s∈S(τk−1)

w(s; τk−1) −
∑

s∈S(τk)

w(s; τk)

=
∑

s∈P(k)

w(s; τk−1) −
∑

s∈R(k)

w(s; τk) . (19)

These equations cannot always be solved separately since
they generally have two or more unknown variables, but
they can be simultaneously solved by being combined with
one another for different k. According to this notion, the pro-
posed system successively calculates the remaining weight

Algorithm 3 Successively calculating remaining weight
w(s; τk) of each seasoning s
Require: S(τ0) = {s|s ∈ S, onScale(s; τ0) = 1}

Measure Ŵ(τ0) using the electronic scales ;
Initialize a set of equations E as E ← ∅ ;
k ← 1 ;
loop

Detect τk by Algorithm 1 ;
Calculate P(k) and R(k) by Algorithm 2 ;
Calculate S(τk) based on Equation (11) ;
Measure Ŵ(τk) using the electronic scale ;
Create a total weight equation (17) for current k, referred to as ek ;
Create a set of weight transition equations (18), referred to as Ek ;
E ← E ∪ {ek} ∪ Ek ;
Simultaneously solve as many e ∈ E as possible.
for all e ∈ E do

if e was solved then
Remove e from E ;

else if e has become unsolvable then
Provide some instruction to the chef in order to solve e
(but do nothing in the current version of the proposed system) ;

end if
end for
k ← k + 1 ;

end loop

w(s; τk) of each seasoning s with Algorithm 3. As shown
in Algorithm 3, the system removes all the weight equa-
tions whose unknown variables have been totally solved in
each iteration. When a part of unknown variables have been
solved for a certain weight equation, the system contracts
the equation by combining its constant term with the solved
variables into a new single constant term. Moreover, the
system actually adds equation (19) into E instead of equa-
tions (17) and (18) in each iteration by pre-combining them.
These are useful for avoiding redundancy of variables and
equations in order to reduce the computational cost.

Let τpicked(s) be the time right before s was picked up
from the electronic scales, and let τreturned(s) be the time
right after s was returned to the electronic scales. Using
w
(
s; τpicked(s)

)
and w

(
s; τreturned(s)

)
calculated with Algo-

rithm 3, the consumption of each seasoning s can be mea-
sured as

w
(
s; τpicked(s)

)
− w
(
s; τreturned(s)

)
. (20)

3.6 Limitation

Algorithm 3 has a limitation in that it cannot measure several
w(s; τk) in a specific case. Suppose that two seasonings si

and s j were simultaneously returned to the electronic scales
in time interval [τk−1, τk] and then simultaneously picked up
from the scales in time interval [τk, τk+1]. In this case, the
following two equations are obtained according to Formula
(19):

Ŵ(τk) − Ŵ(τk−1) = w(si; τk) + w(s j; τk) and (21)

Ŵ(τk+1) − Ŵ(τk) = −w(si; τk) − w(s j; τk) . (22)

However, each of the two equations is linearly dependent
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on the other. Moreover, any additional equations contain-
ing w(si; τk) or w(s j; τk) cannot be obtained after time τk+1

because the picked up seasoning is generally added to a
dish before being returned, which brings about w(si; τl) �
w(si; τk) and w(s j; τl) � w(s j; τk) for any l > k. Hence,
in this case, w(si; τk) and w(s j; τk) have become unsolvable.
We refer to these kinds of unsolvable w(s; τk) as unsolvable
weights.

Consumption of seasoning s whose initial weight
w(s; τ0) has become unsolvable is obviously immeasurable
for the proposed system. The system cannot deal with this
problem alone. Fortunately, in such case, the system can
provide some direction to the chef and receive his/her coop-
eration because it runs in near real-time (or on-line). One
possible direction is to instruct the chef to return the season-
ing bottles to the scale one-by-one whose remaining weights
have become unsolvable. If the system works only off-line,
it cannot provide such instruction to the chef. This is an ad-
vantage of near real-time measurement. However, since the
problem of unsolvable weights would occur less frequently,
the current version of the proposed system does nothing to
solve the problem, which we intend to address in future
work.

4. Implementation and Evaluation

4.1 Implementation of System

We implemented an actual measuring system for the con-
sumption of seasonings based on the method proposed in
Sect. 3. There is an overview of the implemented system in
Fig. 6, which consists of a camera, electronic scales, and a
laptop PC.

• Camera
We used the Logitech HD Webcam C615 as the cam-
era. The implemented system captured a sequence of
images with a resolution of VGA (640 × 480 pixels)
and a frame rate of 15 fps by using this product. Fig-
ure 7 (a) is an example photograph of the captured im-

Fig. 6 Overview of implemented system consisting of camera, electronic
scales, and laptop PC.

ages. The black square patterns in Fig. 7 (a) are mark-
ers attached to the tops of seasoning bottles. Fig-
ure 7 (b) shows one of these markers in detail. This
kind of marker is proposed and widely used in AR-
ToolKit [18]. Machine-readable markers are generally
visually annoying to humans, but if marker patterns are
also readable by humans like characters, they are not
annoying. ARToolKit markers can be used in this way.
Therefore, we also used ARToolKit for detecting the
markers and computing detected(s; t) for each s and t.
Parameter θ in Formula (16) was roughly tuned as 20
time steps (∼1.3s) without using any sophisticated tun-
ing approaches.

• Electronic Scales
We used Amidia TX4202N produced by Shimadzu
Corp., which has a weighing capacity of 4,200g and a
resolution of 0.01g as the electronic scales. In fact, the
required resolution of electronic scales is different for
each seasoning. However, too finer resolution causes
no serious problems in automatic measurement, unlike
too coarser resolution. Hence, we selected the elec-
tronic scales that are not so expensive yet have finer
resolution. The selected product, Amidia TX4202N,
can measure Ŵ(t) about 9 times per second and send
them to a laptop PC with an RS-232C serial commu-
nication interface. In addition, the product also has the
capability of outputting a bit flag that indicates whether
the measured Ŵ(t) is stable or not for each t. We there-
fore determined the stability of Ŵ(t), i.e., stable(Ŵ; t),
based on this bit flag instead of Formula (10) in the im-
plemented system. Note that the bit flag was approxi-
mately emulated by Formula (10) with the parameters
of δ = 13 time steps (∼1.4s) and d = 0.06g in our ex-
periments.

• Laptop PC
We used a Vostro 3360 Laptop with Windows 7 pro-
duced by Dell Inc., which had a Intel Core i5-3337U
processor and 4 GB of RAM, as the laptop PC to pro-
cess camera images and sequences of weight data. The
camera was connected to this PC with a USB 2.0 inter-

Fig. 7 Example of marker pattern of ARToolKit and its appearance on
camera images. This marker is machine-readable but less annoying for
humans because of its character-based pattern. The character in (b) means
“vinegar” in Japanese.
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face and the electronic scales were connected to it with
an RS-232C serial interface.

Our system currently assumes S(τ0) = S(0) = ∅ to
simplify implementation.

4.2 Experimental Setting for Evaluation

We conducted an experiment to evaluate the performance of
the implemented system, in which seven participants (five
women and two men: 20–65 years old) who were familiar
with food preparation participated as chefs. We installed
the implemented system in the kitchen of each participant’s
home and instructed him/her to cook some meals by using
the system. The system particularly focused on sugar, salt,
vinegar, soy sauce, pepper, and oil in this experiment, and
measured the amount of these six kinds of seasonings used
when the participants prepared meals.

Each participant actually carried out 50–60 trials in

Table 1 Example of food preparation trials in which consumption of seasonings was successfully
measured. In this example, amount of seasonings consumed during chef’s adding action was always
measured right after corresponding returning action. This means implemented system measured con-
sumption of seasonings close to that in real-time.

k Chef’s action(s) Ŵ(τk) w(oil; τk) w(pepper; τk) w(salt; τk) Remarks
0 (start cooking) 0.00 - - -

return oil
1 return pepper 414.47 unknown (wa) unknown (wb) unknown (wc) wa + wb + wc = 414.47

return salt

2 pick up oil 155.50 - unknown (wb) unknown (wc)
wa = 414.47 − 155.50 = 258.97
wb + wc = 155.50

3 return oil 412.29
412.29 − 155.50

unknown (wb) unknown (wc) 2.18(g) of oil was consumed
= 256.79

4 pick up oil 155.51 - unknown (wb) unknown (wc)

5 return oil 410.33
410.33 − 155.51

unknown (wb) unknown (wc) 1.97(g) of oil was consumed
= 254.82

6 pick up salt 317.86 254.82 63.03 -
wc = 410.33 − 317.86 = 92.47
wb = 155.50 − 92.47 = 63.03

7
return salt

346.48 254.82 -
346.48 − (317.86 − 63.03)

0.82(g) of salt was consumed
pick up pepper = 91.65

8 return pepper 409.43 254.82
409.43 − 346.48

91.65 0.08(g) of pepper was consumed
= 62.95

Fig. 8 Output value of electronic scales in example case shown in Table 1.

preparing food for this experiment. The seven participants
carried out a total of 383 trials in food preparation. How-
ever, the assumption of S(τ0) = ∅ was not satisfied in 82
out of the total of 383 trials. This was especially noticeable
in the trials by participant 3. Therefore, we excluded these
82 trials from the collected data set and used the remaining
301 trials to evaluate the performance of the implemented
system.

4.3 Results and Discussion

Table 1 summarizes an example of trials in which the con-
sumption of seasonings was successfully measured. Fig-
ure 8 shows the output value of the electronic scales along
the time axis in the same example. This example demon-
strates that the implemented system could automatically
measure the consumption of seasonings, even if a chef per-
formed two or more actions simultaneously like the first and
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seventh steps in the example case.
There were also some failed cases, on the other hand,

in the experiment. Most of the failed cases can be divided
into three types:

A. Because of marker misrecognition, a set of picked up
seasonings P(k) and that of returned seasonings R(k)
were miscalculated, which made the total weight equa-
tions and weight transition equations incorrect.

B. Some unsolvable weights occurred.
C. Some w(s; τk) could not be solved during food prepa-

ration due to insufficient number of total weight equa-
tions and that of weight transition equations.

Type-C failures are different from type-B failures in that
unsolved w(s; τk) were theoretically solvable if some addi-
tional equations were obtained in the future.

Type-A failures virtually cause type-B and type-C fail-
ures even if they could occur in reality. Therefore, we first
evaluated how frequently type-A failures occurred, or how
accurately the implemented system could calculate P(k) and
R(k). Table 2 lists the results obtained from the evaluation,
which indicates that the implemented system accurately cal-
culated P(k) and R(k) in 79.4% of all the 301 trials. One or
more type-A failures occurred in the remaining 20.6% of the
trials because of marker misrecognition caused by illumina-
tion changes, shadows cast by other seasoning bottles, and
occluded markers.

ARToolKit first binarizes each captured image with a
fixed threshold to efficiently localize the positions of mark-
ers. Such binarization degrades the robustness of the marker
detection process to illumination changes and cast shadows
(see Fig. 9), and sometimes causes markers to be missed.
This problem was noticeable in trials by participants 1 and
6. The error correction technique described in Sect. 3.4.2
cannot work to solve this problem when they occurred with
a chef’s picking up/returning actions involving a change in
Ŵ(t). One solution for this problem is to adaptively change
the threshold of binarization for each pixel of each frame.
We cannot use the adaptive threshold in ARToolKit, but can
use in a more modern library for Augmented Reality named
ArUco [22]. We consider using this library as one of the
alternatives for ARToolKit in the future. Another solution
for robustly detecting markers is to employ state-of-the-art

Table 2 Rate (%) of successfully calculating P(k) and R(k). Nall denotes
total number of food preparation trials performed by each participant, NA

denotes number of trials in which one or more type-A failures occurred,
and NĀ (= Nall − NA) denotes number of trials in which no type-A failures
occurred.

Participant ID Nall NA NĀ NĀ/Nall

1 50 15 35 70.0%
2 42 9 33 78.6%
3 2 1 1 50.0%
4 54 7 47 87.0%
5 47 4 43 91.5%
6 53 8 45 84.9%
7 53 18 35 66.0%

Total 301 62 239 79.4%

methods of object detection. Another error factor, which
was marker occlusion by a chef’s hand, also caused mark-
ers to be missed. This problem was noticeable in trials by
participants 2 and 7, so that the numbers of successful tri-
als by these two participants were relatively small, as listed
in Table 2. Unfortunately, no occluded markers can be de-
tected with any detection technique. Some other informa-
tion is required to solve this problem. For instance, occluded
markers do not change their positions on the camera images
before and after occlusion because the corresponding sea-
soning bottles are not moved. In contrast, the bottles of ac-
tually used seasonings are moved by the chef’s hand, which
changes the positions of markers before and after they are
used. This kind of difference would provide helpful infor-
mation to solve the occlusion problem.

We next examined occurrence rates of failures by only
focusing on the 239 trials in which no type-A failures oc-
curred to evaluate how frequently type-B and type-C failures
occurred. Table 3 summarizes the results, in which the oc-
currence rate for type-B failures was 2/239 = 0.8% and that

Fig. 9 Example of cases of marker misrecognition. Due to illumina-
tion changes and cast shadows, some markers could not retain their square
shapes on binarized images. These kinds of markers can never be success-
fully detected with binarization-based techniques.

Table 3 Rate (%) of successfully measured consumption of seasonings.
NB and NC denote number of trials in which type-B and type-C failures
occurred. Nother denotes numbers of those in which other kinds of fail-
ures occurred and Nok denotes numbers of those in which consumption of
seasonings was successfully measured.

Participant ID NB NC Nother Nok Nok/NĀ Nok/Nall

1 0 0 1 34 97.1% 68.0%
2 0 17 0 16 48.5% 38.1%
3 0 0 0 1 100.0% 50.0%
4 1 31 0 15 31.9% 27.8%
5 0 2 0 41 95.3% 87.2%
6 0 0 0 45 100.0% 84.9%
7 1 4 1 29 82.9% 54.7%

Total 2 54 2 181 75.7% 60.1%
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for type-C failures was 54/239 = 22.6%. The consumption
of seasonings was successfully measured in 181 out of the
239 trials. This indicates that the implemented system could
successfully measure the consumption of seasonings with a
probability of 75% if P(k) and R(k) were accurately calcu-
lated. Type-B failures rarely occurred in this experiment.
This indicates that coping with unsolvable weights was not
a very urgent issue.

Table 3 also indicates that type-C failures frequently
occurred only in trials by participants 2 and 4. This is
because they returned all the six seasoning bottles to the
electronic scales simultaneously right after booting up the
implemented system, whereas the other participants only
returned the bottles necessary for cooking their intended
meals. If all six bottles are simultaneously returned to the
scale in the first step, the system has to start measurements
with six unknown variables and only one total weight equa-
tion. Because the number of unknown variables is much
more than that of equations in this case, it is not easy to ob-
tain a sufficient number of additional equations to solve all
unknown variables. Hence, type-C failures easily occurred
in this case.

If the initial weights of several seasonings are known,
type-C failures would occur less frequently. To confirm
this, we evaluated the relation between the success rate of
consumption measurements and the number of seasonings
whose initial weights were known, focusing only on the
trials by participants 2 and 4. More specifically, we vir-
tually gave the initial weights of l (out of all the six) sea-
sonings for each trial and simulated the proposed proce-
dure for the consumption measurements. Figure 10 plots
the results, which demonstrate that it is important to achieve
successful measurements to decrease the number of sea-
sonings whose initial weights are unknown. Although we
currently assumed S(τ0) = ∅ to simplify implementation,
just a minor modification enables the implemented system

Fig. 10 Relation between success rate (%) of consumption measure-
ments and number of seasonings whose initial weights are given. Perfor-
mance for l = 5 is exactly equal to that for l = 6 because we focused on
six seasonings in this experiment, and case of l = 6, i.e., case that initial
weight of seasonings is completely known, was not very common even in
trials by other participants. Therefore, we have only presented results for
l ≤ 4.

to record onScale(s; τq) and w(s; τq) at the time τq when
each food preparation opportunity ended and use them as
onScale(s; τ0) and w(s; τ0) for the next opportunity. This
should be quite helpful in decreasing the number of season-
ings whose initial weights are unknown.

Eventually, the implemented system successfully mea-
sured the consumption of seasonings in 181 out of all 301
trials and the success rate was 181/301 = 60.1% as listed
in Table 3. This rate is not so high, but it would be enough
useful for several applications, because some mismeasure-
ment cases can be corrected by making a small request to
chefs. For instance, in the case of “taste recreating” de-
scribed in Sect. 1, chefs have to do nothing for achieving
step (i), i.e., recording the consumption of seasonings, when
the automatic measurement is successfully done by the im-
plemented system. Moreover, even when the system failed
to measure the consumption of seasonings, it can still reduce
the burden of step (i) on chefs. That is, in the case of type-
C failures, all of the remaining unknown variables can be
solved with some additional weight equations if chefs man-
ually take down the seasoning bottles from the electronic
scales one-by-one after finishing cooking. This is much less
annoying for chefs than the case that they have to manually
measure the weight of all seasonings. The results shown in
Tables 2 and 3 demonstrate that almost half of the failure
cases are type-C. The occurrence rate of other types of fail-
ures is about 20%. Thus, about 60% of success rate would
be acceptable for supporting chefs to recreate the taste of
meals. However, it is still desirable to further improve the
performance. To this end, we will apply the following two
modifications in a future work.

• Use more sophisticated methods for marker detection
to accurately calculate P(k) and R(k)

• Record w(s; τq) at the time τq when each food prepara-
tion opportunity ends and use it as w(s; τ0) for the next
opportunity

4.4 Effect of the Number of Seasonings

In the above experiment, we only focused on the case of
using six kinds of seasonings. However, the number of sea-
sonings would have a critical effect on the performance of
the proposed system. To examine the effect, we conducted
another experiment.

In this experiment, we focused on the following nine
seasonings for defining a whole set of seasonings S: sugar,
salt, vinegar, soy sauce, pepper, potato starch, cooking
sake, oyster sauce, and olive oil. The measurement pro-
cess was started with the initial condition of nine unknown
variables and only one weight equation, i.e.,

∑
s∈S w(s; τ0) =

Ŵ(0), for each trial of food preparation. Seven participants
have participated in this experiment, who are different from
the participants in the first experiment, and the total num-
ber of the trials carried out by the seven participants was 36.
At most four kinds of seasonings were actually added into
a dish in each trial, so we simulated the case of using only
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Fig. 11 Relation between success rate (%) of consumption measure-
ments and number of seasonings. Success rate is almost constant when
number of seasonings n is more than 4, because participants only use at
most four kinds of seasonings per a trial.

n ∈ {8, 7, 6, 5, 4} kinds of seasonings as S, virtually ignoring
(9−n) seasonings that were actually not added.

In the result, type-A failures occurred in 7 trials out of
the 36 trials; the occurrence rate was 19.4%. This is close to
the result shown in Table 2, which indicates that the number
of seasonings has little effect on the accuracy of the marker
detection process. On the other hand, type-C failures oc-
curred in 5 trials out of the 36 trials; the occurrence rate
was 13.9%. This is slightly smaller than the result shown in
Table 3.

Occurrence of type-C failures strongly depends on
how many kinds of seasonings are simultaneously re-
turned/picked up in each WeCCA event, which varies with
individual chefs. In this experiment, many of the partici-
pants often return/pick up the seasoning bottles one-by-one.
As a result, the occurrence rate of type-C failures became
smaller in an average. The final success rate in this experi-
ment was 23/36 = 63.9%, which was little improved in the
cases of n = 8, 7, 6, and 5 as shown in Fig. 11. In the case
of n = 4, no type-C failures occurred in every trial and the
success rate was improved to 28/36 = 77.8%. This is be-
cause the participants did not use more than four kinds of
seasonings per a trial in this experiment. This is also true in
the first experiment. As shown in Fig. 10, the performance
in the case of l = 1 is little improved from that in the case of
l = 0. Because we used only six kinds of seasonings in the
first experiment, the cases of l = 0 and l = 1 in Fig. 10 cor-
respond to the cases of n = 6 and n = 5, respectively. These
facts indicate that the performance of the proposed system
degrades with the increasing number of seasonings actually
used by a chef rather than those placed on the scale.

5. Related Work

There are several weight sensor-based devices which can
help chefs to cook a dish. One example is digital spoon
scale, which is commercially available. Although this
device has the capability of automatically measuring the
amount of seasonings, it also has the following drawback:
digital spoon scale requires a chef to place it down on a level

surface and wait until the indicator of the scale becomes sta-
ble. This means that, in order to record the consumption
of seasonings, chefs have to place the spoon on a cooking
counter and wait for a few seconds every time they use a
seasoning. This can disturb the chefs’ cooking operations.
In contrast, the proposed system does not disturb chefs be-
cause it takes time to measure the consumption of a season-
ing after the chef returns its bottle to the electronic scale.
The value of the electronic scales will become stable while
chefs are doing the next operations. In this sense, the pro-
posed system is less annoying than digital spoon scale.

Cooking support systems equipped with weight sensors
have been also proposed in previous studies [7], [8]. These
systems basically focus on beginners in cooking and sup-
port them when they cooked dishes. More specifically, the
systems provide instructions to users in each step of cook-
ing, and the users cook dishes step by step by following the
systems’ instructions. Weight sensors incorporated in the
systems are utilized to reducing the burden on users. The
systems automatically check whether the correct quantity of
ingredients has already been placed in dishes or not so that
users do not have to manually measure the amounts. Since
the main purpose of using weight sensors is not measure-
ment itself, these kinds of systems do not have the capability
of recording and storing the amounts of ingredients that have
been used. This is also the case with smoon [19], which is a
spoon-like volume-based measuring device for powdered or
liquid ingredients proposed by Watanabe et al. In addition,
these cooking support systems also do not have the capa-
bility of recognizing the kinds of ingredients that have been
used because they assume that users have basically picked
up the ingredients indicated by the system in each step of
cooking.

Weight sensors are utilized for not only measuring
but also recording the calories in individual ingredients or
cooked food in several calorie estimation systems. For in-
stance, the system by Chen et al. [11] estimates the calories
in individual ingredients by looking up its per-gram calorie
count in a nutritional database and multiplying that by its
weight measured with a weight sensor. However, their sys-
tem does not have the capability of recognizing the kinds
of ingredients; users need to input the ingredients’ names
into the system through voice. Another calorie estimation
system proposed by Saeki et al. [9] also has this limitation.
Although there have been several studies proposing meth-
ods for recognizing the kinds of ingredients from food im-
ages for the purpose of estimating calories [20], [21], none
of them have been integrated with actual systems that have
been equipped with weight sensors. Unlike these existing
systems, our proposed system can fully-automatically rec-
ognize the kinds of seasonings consumed at each time dur-
ing food preparation by utilizing a camera and a technique
of marker detection.

6. Conclusion

We developed a near real-time system for automatically
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measuring the amount of seasonings consumed during food
preparation. The developed system is equipped with elec-
tronic scales and a camera. The electronic scales continu-
ally measure the total weight of seasoning bottles placed on
them. On the other hand, the camera monitors whether in-
dividual seasoning bottles are placed on the scale or not at
each time during food preparation. Since each seasoning is
picked up from the scales before being used, and is returned
to the scales after being used, the consumption of each sea-
soning is calculated as its difference in weight before and
after it is used. We evaluated the developed system through
experiments in 301 trials in actual food preparation carried
out by seven participants. The result indicated the devel-
oped system successfully measured the consumption of sea-
sonings in 181 trials out of 301 trials with a success rate of
60.1%. Most of the 120 failure trials could be divided into
two cases.

• A set of picked up seasonings P(k) and that of returned
seasonings R(k) were miscalculated, which resulted in
incorrect weight equations.

• All the seasoning bottles were simultaneously returned
to the scales at the beginning of food preparation,
which resulted in poor initial conditions, i.e., only one
weight equation with a number of unknown variables.

The first types of failures, i.e., miscalculation of P(k) and
R(k), could be avoided by using more sophisticated meth-
ods for marker detection. The second types of failures, i.e.,
poor initial conditions, could be avoided by recording a set
of seasonings placed on the scales as well as their remain-
ing weights when each food preparation opportunity ended.
We intend to make these two improvements to the devel-
oped system in future work. We also intend to address the
problem of unsolvable weights in the future.
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