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PAPER

Improvement of Artificial Auscultation on Hemodialysis Stenosis by
the Estimate of Stenosis Site and the Hierarchical Categorization of
Learning Data

Hatsuhiro KATO†a), Member, Masakazu KIRYU†, Nonmember, Yutaka SUZUKI††, Osamu SAKATA†, Members,
and Mizuya FUKASAWA†††, Nonmember

SUMMARY Many hemodialysis patients undergo plasitc surgery to
form the arterio-venous fistula (AVF) in their forearm to improve the vas-
cular access by shunting blood flows. The issue of AVF is the stenosis
caused by the disturbance of blood flows; therefore the auscultation system
to assist the stenosis diagnosis has been developed. Although the system
is intended to be used as a steady monitoring for stenosis assessment, its
efficiency was not always high because it cannot estimate where the steno-
sis locates. In this study, for extracting and estimating the stenosis sig-
nal, the shunt murmurs captured by many microphones were decomposed
by the principal component analysis (PCA). Furthermore, applying the hi-
erarchical categorization of the recursive subdivision self-organizing map
(rs-SOM), the modelling of the stenosis signal was proposed to realise the
effective stenosis assessment. The false-positive rate of the stenosis assess-
ment was significantly reduced by using the improved auscultation system.
key words: auscultation, hemodialysis, shunt murmur, stenosis, PCA, rs-
SOM

1. Introduction

For improving the vascular access, many of hemodialysis
patients undergo a plastic surgery to form the arterio-venous
fistula (AVF) by shunting the blood flow in the artery to the
vein in their forearm [1]. The issue with AVF lies in the
possibility of stenosis occurring in the vessels due to shear
stress [2]. Therefore, it is necessary not only to make a regu-
lar diagnoses regarding the states of vessels but to restore the
blood flow on an as-needed basis by percutaneous translu-
minal angioplasty (PTA) [3]. The success rate of PTA tends
to deteriorate when the stenosis level increases. Therefore,
the steady monitoring and the early detection of stenosis are
important.

It is well known that the unique beat sounds are moni-
tored from vessels with AVF as a result of the structure [4],
which is termed as shunt murmur and used to diagnose the
stenosis by the auscultation. The auscultation skill depends
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on experience; furthermore, the criterion is not always ap-
parent. Therefore, an assessment system to support the
stenosis diagnosis has been developed with various ways us-
ing the frequency analysis [5], the wavelet analysis [6], [7],
hidden Markov process [8] and non-steady analysis [9]. One
of the promising systems among all of those is the artificial
assessment system that uses the database composed by vari-
ous shunt murmurs [10], [11]. However, the efficiency of the
stenosis assessment was not always high because the system
can not effectively estimate where the stenosis is located.

In this study, for extracting stenosis signals and esti-
mating the stenosis site, shunt murmurs which were cap-
tured by many microphones along the vein at forearm
were decomposed with the principal component analysis
(PCA) [12] and categorized to construct model vectors with
self-organizing map (SOM) [14]. The PCA is a method to
develop the multi-components signal into the linear combi-
nation of the principal components according to the magni-
tude of their variances. The component with the smallest
variance can be regarded as the component that is less af-
fected by the common signal caused by the heartbeat and re-
flects the peculiar information due to the captured location.
The murmur vector was composed of the principal compo-
nents to express the peculiar information from the stenosis
site.

Recursive subdivision self-organized map (rs-SOM)
is the method to categorize hierarchically the learning
data [11]. This method allocates the model vector to each
subdivided category with interpolating the difference be-
tween the categories. In this study, using these model vec-
tors, new stenosis level was defined and used to improve the
efficiency of the stenosis assessment.

This paper is organized as follows. In Sect. 2, the com-
ponents of assessment system is described focusing on cap-
turing from multi-sites and the decomposing the stenosis
signals by PCA. The murmur vector is defined with spec-
tra of the principal components. The stenosis site can be
estimated using a distance defined by murmur vectors. In
Sect. 3, the empirical and SOM categories are defined using
the learning data being composed by typical shunt murmurs.
To define he SOM category, the hierachical categorization
realized by rs-SOM plays an important role. Futhermore,
the new assessment criterion is proposed using the stenosis
level, which leads to an improvement of the artificial auscul-
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tation. The efficiency of the stenosis assessment is evaluated
by the false-positive rate of the threshold criterion. The last
section is devoted to conclusions.

2. Characterization of Murmurs by PCA

2.1 Stenosis Signal Captured from Multiple Sites

As shown in Fig. 1 (a), from patients who needed to expand
the blood vessel with the surgery PTA, blood flow sounds
were captured with L(= 4) microphones aligned on the vein
from the wrist to the elbow in their forearm. The blood flow
sounds were capture before and after PTA, which were spec-
ified by the index σ(= bfr/aft) and numbered from the wrist
as �(= 1,2 . . . , L). The P pulses involved in heartbeats are
extracted and denoted as the time function x(p)

�,σ
(t) (p = 1,

2, . . . , P) with the time t, the pulse index p and the loca-
tion index �. Using the sampling frequency Fs and the total
data number per pulse Ntime, the time t can be discretized as
tn = n/Fs (n = 0, 1, 2, . . . ,Ntime − 1). The pulse data should
be loaded on block diagram shown in Fig. 1 (b). The pulses
are characterized and transformed into murmur vector as de-
fined in later section. The characterized data are subject to
the assessment process using the categories accumulated in
the data base [10], [11]. New procedures proposed in this
study are mainly associated with the blocks of the ‘murmur
vector’ and the ‘data base’.

The L-dimensional column vector x(p)
σ (t) can be com-

posed of the sound pressures x(p)
�,σ

(t) being allocated to the
�-th component. The correlation between the captured sites
is expressed by the fact that the end point of vector x(p)

σ (t)
is on the hyperplane with the normal vector e. Then, the
displacement from the hyperplane can be regarded as the
peculiar component due to the captured site. The magnitude
of the displacement can be evaluated by the variance defined
by vσ = e · Σσe. Here, Σσ is the covariance matrix [12] that
is defined by

Σσ =
1

PNtime

P∑
p=1

Ntime−1∑
n=0

x(p)
σ (tn)

{
x(p)
σ (tn)

}T
. (1)

The (�, �′)-component of Σσ is the average of the product
x(p)
�,σ

(tn)x(p)
�′,σ(tn) about all of Ntime times and P pulses.

The problem to find the normal vector eσ that gives the
local minimum of vσ is equivalent to the eigenvalue problem
that satisfies the relation

Σσeσ = vσeσ. (2)

Because the matrix Σσ is symmetrix, the eigen values sat-
isfy the orthogonal relation; e�,σ · e�′,σ = δ�,�′ where δ�,�′ is
Kroneker’s delta. When the eigenvalues and eigenvectors
are numbered as 1, 2, . . . , L (= �) in order of the magnitude
of eigenvalues, the quantity y(p)

�,σ
(t) = e�,σ · x(p)

σ (t) is termed
as the �-th principal component [12]. Using the orthogonal
relation of eigenvalues, the vector x(p)

σ (t) can be developed
in series as follows:

Fig. 1 System of stenosis assessment. (a) Data capturing from four sites.
(b) Block diagram of the assessment process.

Fig. 2 Shunt murmurs in time domain. Variation due to (a) capture sites,
x�,bfr(t), and (b) pricipal components, y�,bfr(t) (� = 1, 2, 3, 4).

x(p)
σ (t) =

L∑
�=1

y(p)
�,σ

(t)e�,σ. (3)

In Fig. 2, the change of the sound pressures which
were captured before the surgery PTA. The panel col-
umn of (a) shows the averages over the pulses x�,bfr(t) =
P−1∑P

p=1 x(p)
�,bfr(t) at each site �. The panel column of (b)

shows the average of the principal components y�,bfr(t) =
P−1∑P

p=1 y(p)
�,bfr(t). For each capturing, the serial pulses were

collected during 30 sec and the 21(= P) pulses of 0.5 sec
length were extracted. The length, 0.5 sec, was determined
to separate the serial pulses without any overlap. All pulses
are normalized such that the peak centre is located at the first
2/5 of pulse length and the sum of squares has to be unity.
We had examined the long pulses of 0.6 sec and 1.0 sec, but
the result was not affected substantially by the pulse length.
The number of microphones, L = 4, was determined so as to
be easy to set up at the clinical field. Further investigation on
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Fig. 3 Angiography of shunted vessels. The stenosis occurs at site 2.

the multi-channel sensor with many microphones was also
discussed in the another work [13]. Although the acoustic
apparatus has the sampling rate of 44,100 Hz, the sampling
rate was converted into Fs = 4,410 Hz because the stenosis
signal did not exceed the frequency 2,000 Hz. Therefore,
the total sampling number per pulse is Ntime = 2,205.

According to the data of time domain shown in
Fig. 2 (a), the behaviour of site 3 is different from others.
The small but finite trembling behaviour is also observed in
later half of the time domain at site 3 and site 2. There-
fore, the stenosis would be estimated to exist at the site 3 or
2. In fact, the stenosis was found at the site 2 by observ-
ing the vessels using the angiography as shown in Fig. 3.
The unique behaviour of site 3 can be regarded as due to
the turbulence of blood flow at site 2. A detailed consider-
ation on the turbulence in vessels with stenosis is reviewed
in Ref. [4].

2.2 Murmur Vector Composed of Principal Components

The property of the stenosis signal is investigated with point
of view how it is reflected in the spectrum distribution. Fig-
ure 4 shows the power spectral densities of the sound pres-
sures in Fig. 2. The sound pressures and their principal
components were expressed by x(p)

�,σ
(t) and y(p)

�,σ
(t), respec-

tively. These are transformed into the spectral densities
|X(p)
�,σ

( f )|2 and |Y (p)
�,σ

( f )|2 respectively with the maximum en-
tropy method (MEM). Here the degree of the autoregression
polynomial is NMEM = 128 and the number of frequencies
at which the spectrum intensities are obtained is set to be
NMEM + 1. The panels in column (a) and (b) show how
the spectrum distribution depends on the captured site and
the principal component, respectively. The solid and dashed
curves stand for the data being captured before and after the
surgery PTA, respectively. In the spectrum distribution at
site 2, the spectrum intensity before PTA becoms smaller
after PTA in the high frequency region. This distribution
at high frequencies corresponds the trembling behaviour of
site 2 in time domain that is shown in Fig. 2 (a). The change
of distribution is reflected in the 4th component as shown
in the column in Fig. 4 (b). Furthermore, the peaks near
200 Hz disappear after PTA in panels of column (a) except
the site 4. The frequency of this peak was termed as the
break frequency, which characterizes the stenosis [4]. The

Fig. 4 Change of spectrum before (solid curve) and after (dashed curve)
the surgery PTA. Variation due to (a) capture sites, ξ�,σ( f ), and (b) pricipal
components, η�,σ( f ) (� = 1, 2, 3, 4, σ = bfr/aft).

disappearance of the peaks is reflected in the change of the
3rd principal component as shown in the column (b). As
mentioned above, the peculiar property of the captured mur-
murs is mainly reflected in the 3rd and 4th components of
PCA.

The averages of the spectral densities by pulses are de-
fined as follows:

ξ�,σ( f ) =
1
P

P∑
p=1

log10 |X(p)
�,σ

( f )|2, (4)

η�,σ( f ) =
1
P

P∑
p=1

log10 |Y (p)
�,σ

( f )|2. (5)

Furthermore, the spectrum vector z�,σ is composed of the �-
th components η�,σ( f ) as follows: z�,σ = [η�,σ( f0) η�,σ( f1)
η�,σ( f2) . . . η�,σ( fNMEM )]T . For characterizing the stenosis
feature included in the shunt murmur, we defined the new
vector as mσ = [z3,σ z4,σ]T , which is hereafter termed as
murmur vector. Here the discretized frequency fq is set to
be fq = qFs/2NMEM (q = 0, 1, 2, . . . , NMEM) and the di-
mension of the vector is 2(NMEM + 1) (= 258). As already
mentioned, the sum of squares of the sound pressure in the
time domain was normalized to be unity.

2.3 The Estimate of Stenosis Site

In Fig. 2 (a), the dominant signal is the global oscillating
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Fig. 5 Correlation between the stenosis sites confirmed by angiography
and estimated by PCA.

motion that is caused by the heartbeat. In contrast, in the
wave form at site 3 (� = 3), the component involved in the
heartbeat is not significant. Therefore, the wave form can be
regarded to be under strong influence of stenosis at the site
2. Moreover, in the wave form shown in Fig. 2 (b), the form
of 4th (=L-th) component is mostly similar to the spectrum
at site 2. The L-th component has the minimum displace-
ment from the hyperplane determining the correlation and
reflects the most peculiar signal among the captured sites.
From the reasons listed above, the peculiar feature at site 2
can be regarded to be caused by the stenosis.

If we defined the distance between the spectral den-
sities, we can quantitatively discuss the above mentioned
estimate about the stenosis site. One natural distance be-
tween the spectral densities of bare murmur captured from
the forearm, ξ�,bfr( fq), and the L-th component derived by
PCA, ηL,bfr( fq), is the Euclidian distanc ||ξ�,bft−ηL,bft||, which
is defined as follows:

||ξ�,bft − ηL,bft|| =
{ NMEM∑

q=0

(
ξ�,bfr( fq) − ηL,bfr( fq)

)2}1/2
. (6)

Then, the stenosis site can be estimated to be at �-th site
that gives the minimum of ||ξ�,bfr − ηL,bfr||. Figure 5 shows
the three-dimensional histogram of the relation between the
estimated site and the actual site confirmed by the angiog-
raphy. The total number of data is 45 and the correlation
coefficient r is r = 0.293 with the propability error 0.086.
Although the correlation is not perfect, the significant esti-
mate of the stenosis site is possible.

3. Stenosis Assessment

3.1 The Hierarchical Categorization by rs-SOM

The shunt murmur includes various information such as the
heartbeat and the vessel situation. Among various shunt
murmurs, typical data were empirically gathered and clas-
sified into five categories: N A, B, C and I [10]. Using the
index α (= N, A, B, C, I) to indicate the category, the mur-
mur vector can be expressed as m(Emp,α)

σ,β (β = 1, 2, . . . ., Bα).
Here, Bα is the element number of the category with index

Fig. 6 Hierarchical categorization of learning data by rs-SOM.

α. A set of the element numbers of these empirical cate-
gories was given as follows: BN = 12, BA = 9, BB = 7, BC

= 6 and BI = 6. The empirical categories can be reproduced
by the artificial categorization of SOM [10]. In this study,
the interpolated model vectors are generated by using the
hierarchical categorization realized by rs-SOM and applied
to assessment the hemodialysis stenosis.

In Fig. 6, the characteristic map made by rs-SOM
is shown, which was generated with the learning data
composed of the above mentioned typical murmurs and
newly included thirteen data. The lerning data are com-
posed of murmur vectors before and after PTA as Mβ =

[maft,β mbfr,β]T (β = 1,2 , . . . , Nlrn). The reason to introduce
these composite vectors is to consider the vessel state with
and without stenosis signal. The system parameters for rs-
SOM [11] are as follows: The total number of learning data
is Nlrn = 53. The dimension of the composite model vec-
tor Mβ for learning data is 4(NMEM + 1)(= 516). The type
of distance between the data is Euclidian. The hexagon cell
number of initial and the second generation A(s) (s = 1, 2)
are A(1) = 13 and A(2) = 113. Update of the composite model
vectors in the map was repeated at least five and less than
two hundred until the rearrangement of the learning data did
not occur.

In Fig. 6, the hexagons with black and gray lines corre-
spond to the categories in the initial and the second gen-
eration, respectively. Each marker represents one of the
learning data and its shape indicates the empirical category
shown in the legend. The hexagon cell to which the marker
was mapped is the category of the murmur vector. For ex-
ample, the shunt murmurs symbolized by the circles and tri-
angles were distinguishable by the auscultation by ear; those
markers are separately mapped to the different hexagons of
gray lines. On the contrary, the shunt murmurs symbolized
by squares were difficult to be told what is the difference
but those were empirically apparent to be caused by steno-
sis [10]. Therefore, several squares coexist with other maker
at the same hexagon of gray lines. The categorisation by rs-
SOM realizes the reasonable and minute classification with-
out the assistance of experience.

Using the hierarchical categorization of the rs-SOM,
the categories and their composite model vectors can be
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generated by interpolating the differences of the learning
data expressed by the composite vecoter Mβ. Each black
hexagon at the initial generation can be regarded as the α-
th category, which is composed of composite model vectors
allocated to each of the gray hexagons being nested in the
black hexagon. The composite model vectors which were
allocated to gray hexagons can be expressed by dividing in
two as follows: [m(SOM,α)

aft,β m(SOM,α)
bfr,β ]T with the category in-

dex α for the black hexagon and the element index β (= 1, 2,
. . . ., Bα) for the gray hexagons. Therefore, each component
of the murmur vector, m(SOM,α)

σ,β (σ = bfr/aft), can be used
as a model of shunt murmurs which change before and after
PTA. The number of the category is A(1) = 13 and the num-
ber of murmur vectors Bα belonging to the α-th category is
any of {19, 12, 11, 7} which is determined by the location in
the characteristic map of SOM.

Many gray hexagons include no learning data in Fig. 6.
The composite model vectors representing these hexagons
are generated by interpolating the difference of learning data
belonging to neighbour cells. Even if any of singular data
is included in the learning data, the singularity tends to be
eased and a moderate model vector can be generated using
the information from the neighbour cells. These feature can
be realized by the hierarchical categorization of rs-SOM. In
the next section, the stenosis assessment is defined using
two types of model vectors, which are m(Emp,α)

σ,β belonging to

the empirical category and m(SOM,α)
σ,β belonging to the SOM

category.

3.2 Stenosis Level

For quantifying how the stenosis worsens, we shall define
the stenosis level. For the first step, to quantify the differ-
ence between a murmur vector m and the model vectors
belonging to the category α, the distance between these is
introduced as follows:

d(Γ,α)
σ (m) =

1
Bα

Bα∑
β=1

‖m −m(Γ,α)
σ,β ‖. (7)

Here m(Γ,α)
σ,β are components of the composite model vectors

of the category α (Γ = Emp/SOM, σ = bfr/aft, β = 1, 2, . . . ,
Bα), and ‖m − m(Γ,α)

σ,β ‖ means Euclidian distance. Further-
more, the distance from the state with or without stenosis
c(Emp/SOM)
σ (m) (σ = bfr/aft) can be measured as

c(Emp)
σ (m) = min

{
d(Emp,α)
σ (m)

∣∣∣∣ α = N, A, B,C, I
}

(8)

under using the empirical category or

c(SOM)
σ (m) = min

{
d(SOM,α)
σ (m)

∣∣∣∣ α = 1, 2, . . . , A(1)
}

(9)

under using the SOM category. Although the distance
c(Γ)

aft (m) itself can be used to measure the progress of steno-
sis, the relative distance S (Γ)(m) is defined as follows:

S (Γ)(m) =
c(Γ)

aft (m)

c(Γ)
aft (m) + c(Γ)

bfr (m)
. (10)

Fig. 7 Change of stenosis levels for each of patients before and after
PTA being denoted by • and ◦, respectively. The stenosis levels are derived
with (a) the SOM category, S (SOM)(mσ,n), and (b) the empirical category,
S (Emp)(mσ,n), (σ = bfr/aft, n = 1, 2, . . . , 78).

The value of quantity S (Γ)(m) is normalized to be in the in-
terval [0, 1]. Therefore, the misfit of distances between the
categories can be adjusted. The relative distance S (Γ)(m) is
termed as the stenosis level of the murmur vector m with the
category Γ(= Emp/SOM).

3.3 Stenosis Assessment and ROC Diagram

In Fig. 7, the change of stenosis levels is shown with the data
of 78 different from the learning data. The panels (a) and (b)
differ in the categories; these are the emprical (Γ = Emp) or
SOM (Γ = SOM). The horizontal and vertical axis are the
patient ID n and the stenosis levels S (Γ)(mσ,n), respectively.
Here, mσ,n is the murmur vector of each patient with the ID
number n (= 1, 2, . . . , 78) and the PTA index σ (= bfr/aft).
The • and ◦ stand for the data before and after the surgery
PTA, respectively. The levels of ◦ tend to be smaller than
those of •. The span of change from • to ◦ is certainly wider
in panel (a) than in pannel (b). This difference affects the
efficiency of the stenosis assessment.

Using the threshold criterion, we can assess whether
a patient has the stenosis. If the stenosis level S (Γ)(mσ,n)
exceeded a certain threshold S th, the stenosis is suspected
to exist. Two important rates under the assessment are
the miss rate Nmiss and the excess rate Nexc. The former
one Nmiss is the false-negative rate of patients satisfying
S (Γ)(mbfr,n) < S th. The later one Nexc is the faulse-positive
rate of patients satisfying S (Γ)(mafr,n) ≥ S th. If the system is
used to find patients who needs another accurate but harm-
ful investigation such as angiography, no patient suspected
to be positive must be missed. The efficiency of the assess-
ment under this usage, can be evaluated by the excess rate
Nexc when Nmiss = 0. This value is expressed as N∗exc.

In Fig. 8, the relation between the excess rate Nexc and
miss rate Nmiss are summarize in the receiver operating char-
acteristic (ROC) diagram [15] when the empirical (Γ = Emp)
and SOM (Γ = SOM) categoris are used to calculate the
stenosis level. The critical value N∗exc is the intercept of the
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Fig. 8 ROC diagram of the stenosis assessment with the threshold crite-
rion.

curves and the vertical axis. The value of N∗exc was improved
by an amount of 0.20 as the category is updated from em-
pirical (N∗exc = 0.80) to SOM (N∗exc = 0.60). Considering the
perfectness of finding stenosis, Nmiss = 0, the correctness
rate of the assessment reaches 0.7 (= 1−0.5Nmiss−0.5N∗exc),
which is sufficient in clinical fields. Further improvement
can be realized by the update of the database and/or the data
tracing of each individual patient.

4. Conclusion

Capturing the shunt murmurs from four sites in forearm and
applying PCA to extract the stenosis signal, we have de-
veloped an estimate method for the first time to find where
the stenosis is located. The significance of the estimate was
evaluated by the correlation coefficient of 0.293, which was
confirmed by angiography.

The excess positive rate N∗exc of the stenosis assessment
was improved by the amount of 0.20. This improvement
was realized using the new definition of stenosis level and
the hierarchical categorization of learning data realized by
rs-SOM.
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from stenotic tube flow: state of the art and perspectives for future
methodological development,” Med. Biol. Eng. Comput., vol.33,
no.5, pp.669–675, 1995.

[5] H.A. Mansy, S.J. Hoxie, N.H. Patel, and R.H. Sandler, “Comput-
erized analysis of auscultatory sounds associated with vascular pa-
tency of haemodialysis access,” Med. Biol. Eng. Comput., vol.43,
no.1, pp.56–62, 2005.

[6] T. Sato, K. Tsuji, N. Kawashima, T. Agishi, and H. Toma, “Evalua-
tion of blood access dysfunction based on a wavelet transform anal-
ysis of shunt murmurs,” Journal of Artificial Organs, vol.9, no.2,
pp.97–104, 2006.

[7] A. Murakami, K. Niizuma, Y. Motohashi, T. Sato, N. Kawashima,
T. Shibuya, E. Takagi, T. Motohashi, T. Hoshino, T. Agishi, and K.
Omi, “Noninvasive biofunctional diagnosis based on time-frequency
analysis of various biosounds,” IEICE Technical Report, US2009-
25, 2009.

[8] H. Waki, Y. Suzuki, O. Sakata, M. Fukasawa, and H. Kato, “Auscul-
tating diagnosis for hemodialysis shunt stenosis using a self-organiz-
ing map and hidden Markov model,” IEEJ Transactions on Electron-
ics, Information and Systems, vol.132, no.10, pp.1589–1594, 2012.

[9] M. Kiryu, H. Kato, Y. Suzuki, M. Fukasawa, and O. Sakata, “Clas-
sification of stenosis signals in shunt murmurs using nonsteady os-
cillation model,” IEICE Technical Report, MBE2014-34, 2014.

[10] Y. Suzuki, M. Fukasawa, T. Mori, O. Sakata, A. Hattori, and T.
Kato, “Elemental study on auscultating diagnosis support system of
hemodialysis shunt stenosis by ANN,” IEEJ Transactions on Elec-
tronics, Information and Systems, vol.130, no.3, pp.401–406, 2010.

[11] H. Kato, Y. Suzuki, M. Fukasawa, O. Sakata, and A. Hattori, “Pro-
posal of categorization and stenosis screening of shunt sounds by
recursive subdivision self-organizing map,” IEICE Trans. Inf. &
Syst. (Japanese Edition), vol.J95-D, no.1, pp.139–148, Jan. 2012.

[12] I.T. Jollife, Principal Component Analysis, second ed., Chap. 1 and
Chap. 2, Springer, New York 2002.

[13] S. Suzuki, O. Sakata, M. Fukasawa, and H. Kato, “Elemental de-
velopment of the shunt stenosis screening equipment using multi-
channel sensors,” Proc. 12th Information Science Technology Fo-
rum, Tottori, Japan, pp.413–414, Sept. 2013.

[14] T. Kohonen, Self-Organizing Maps, third ed., Springer, New York,
2001.

[15] P. Egan, Signal Ddetection Theory and ROC Analysis, Academic
Press, New York, 1975.

http://dx.doi.org/10.1038/ki.1997.432
http://dx.doi.org/10.1007/s00270-009-9574-y
http://dx.doi.org/10.1111/j.0894-0959.2004.17614.x
http://dx.doi.org/10.1007/bf02510784
http://dx.doi.org/10.1007/bf02345123
http://dx.doi.org/10.1007/s10047-005-0327-7
http://dx.doi.org/10.1541/ieejeiss.132.1589
http://dx.doi.org/10.1541/ieejeiss.130.401
http://dx.doi.org/10.1007/b98835
http://dx.doi.org/10.1007/978-3-642-56927-2

