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PAPER

Utilizing Attributed Graph Representation in Object Detection and
Tracking for Indoor Range Sensor Surveillance Cameras

Houari SABIRIN†a), Hiroshi SANKOH†, Members, and Sei NAITO†, Senior Member

SUMMARY The problem of identifying moving objects in a video
recording produced by a range sensor camera is due to the limited infor-
mation available for classifying different objects. On the other hand, the
infrared signal from a range sensor camera is more robust for extreme lu-
minance intensity when the monitored area has light conditions that are too
bright or too dark. This paper proposes a method of detection and track-
ing moving objects in image sequences captured by stationary range sensor
cameras. Here, the depth information is utilized to correctly identify each
of detected objects. Firstly, camera calibration and background subtraction
are performed to separate the background from the moving objects. Next,
a 2D projection mapping is performed to obtain the location and contour
of the objects in the 2D plane. Based on this information, graph matching
is performed based on features extracted from the 2D data, namely object
position, size and the behavior of the objects. By observing the changes
in the number of objects and the objects’ position relative to each other,
similarity matching is performed to track the objects in the temporal do-
main. Experimental results show that by using similarity matching, object
identification can be correctly achieved even during occlusion.
key words: 3D sensor, infrared camera, surveillance, automatic object
tracking

1. Introduction

Surveillance monitoring systems are intended to gather in-
formation on the behavior of moving objects in the moni-
tored area. For indoor surveillance of a shop, a video record-
ing from a surveillance camera can be used by the shop’s
manager to identify the movements of customers, shop as-
sistants, their interactions with each other, and to maintain
the security of the shop. On the other hand, customers might
feel uncomfortable with the presence of surveillance cam-
eras, due to the possibility of privacy infringement [1].

To achieve detection and tracking of human objects
without requiring detailed information (i.e., texture or pix-
els) of their faces, a range sensor camera can be used. A
range sensor camera may utilize an array of sensors that
measure the time a light signal takes between the monitored
area and the camera. As a result, the data acquired from
such a camera would be the value of the distance between
the captured scene (the moving objects and the background)
and the camera. This information, the depth data, is suffi-
cient to indicate the presence of moving objects.

In this paper, an automatic object detection and track-
ing method is proposed that uses the depth data acquired

Manuscript received March 26, 2015.
Manuscript revised August 7, 2015.
Manuscript publicized September 10, 2015.
†The authors are with KDDI R&D Laboratories, Inc.,

Fujimino-shi, 356–8502 Japan.
a) E-mail: ho-sabirin@kddilabs.jp

DOI: 10.1587/transinf.2015EDP7108

from range sensor cameras. Depth data obviously provides
less information from the captured scene compared to that
of a conventional color camera. Therefore, the main chal-
lenge of object detection and tracking based on depth data
is to use the limited information to match the tracking per-
formance achieved with color information. Color informa-
tion is commonly regarded as an important feature in object
detection and tracking, as shown by Joshi and Thakore [2].
Particularly when handling object occlusions, color infor-
mation can provide sufficient information to correctly iden-
tify the objects. While the proposed method may not be
able to achieve 100% accuracy compared to color-based ob-
ject detection, and tracking cannot be easily achieved, in the
proposed method the ultimate goal is to detect all moving
human objects and label them so that the detected objects
can be distinguished, even during occlusion.

The method proposed in this paper aims for indoor ob-
ject tracking for a medium to large coverage area. It con-
sists of data preparation and construction followed by auto-
matic object tracking. The depth information acquired from
a range sensor camera is measured in millimeters per pixel.
Each pixel can be presented as a gray-scale value after nor-
malization to provide a glance of how the scene visually ap-
pears. This preparation step is followed by projecting the
depth information onto the 2D plane for further processing.
The structure of the detected objects is then constructed by
extracting the features from the captured frame: width and
height of the projected data and its centroid. Finally, auto-
matic object tracking is performed upon the 2D-projected
data, using the extracted features to identify different ob-
jects. The proposed method utilizes attributed graphs that
are constructed in the spatio-temporal domain to represent
the moving objects. Object tracking is then performed by
observing the number of objects detected in the 2D plane as
well as the interactions between objects, such as a merge or
separation. Selection between similarity matching between
two consecutive frames, or between the current frame and
a selected reference, is performed based on the observation.
The tracking result is then shown as a 2D representation of
the objects, showing uniquely assigned identities and their
trajectory along the frames in the sequence.

This paper is structured as follows: related work is
first reviewed in Sect. 2; Section 3 provides the detail of the
proposed method; the experimental results are presented in
Sect. 4 and Sect. 5 concludes this paper.
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2. Related Work

Object detection and tracking using range sensor cameras
has existed for many years, especially targeting the area
where sufficient light conditions cannot be obtained. Range
sensor cameras are also commonly used in robotic-based ob-
ject detection to estimate the distance between the robot and
its environment [3], [4], which is not closely related to the
work presented in this paper.

It is not uncommon that depth information is utilized
as a supporting feature in color-based object detection and
tracking to produce better results in accuracy and to handle
complex occlusion which cannot be easily achieved by using
only color information. Depth information is used by Tran
and Harada [5] to handle occlusion by projecting an occlu-
sion region detected in a color frame into a depth estimation
frame. Liu et al. [6] use a combination of RGB informa-
tion and depth information to find the upper part of human
body, which is assumed to be less prone to occlusion. In the
proposed method by Jafari et al. [7] the depth information
is utilized via an RGB-D camera mounted on the person’s
head. Fu et al. [8] and Bondi et al. [9] use depth information
in a people counting system to estimate the position of head
and shoulders of the detected objects to accurately locate the
human objects to be counted.

Wang et al. [10] proposed a method based on a Support
Vector Machine (SVM) classifier to detect a moving object
from an infrared image. By training the component clas-
sifier via SVM, the moving object can be segmented from
the background. The depth stream from a Kinect sensor is
utilized by Tian et al. [13] to detect a moving human body
based on the head and shoulders. Here, SVM is also used to
isolate the head and shoulders of the human body for real-
time object tracking. A range sensor mounted on a moving
vehicle is used by Liu et al. [11] to track multiple objects
in a traffic scene. The Kalman Filter is used in this method
to track the detected object. Li and Gong [12] conducted
pedestrian detection and tracking over thermal infrared im-
agery. The histogram of intensity of the detected object from
the infrared image is then fed into a particle filter for robust
tracking. Similarly, Ikemura and Fujiyoshi [15] use a his-
togram from depth information to detect and track multiple
human objects, especially to find the relationship between
two local regions, to accurately detect different objects. A
Kinect is employed by Xia et al. [14] to produce a depth
stream to detect and track moving humans. Here, the 2D
contour model and 3D surface model of a human head is
used as the reference to determine the region of the object so
it can be segmented from the background and from other ob-
jects. Hansen et al. [16] utilized depth information by con-
structing clusters of moving objects. To track these moving
clusters, an EM algorithm is used to estimate the parame-
ters of those clusters. Multiple range sensors are used by Jia
and Radke [17] to produce depth information of objects in a
room. Object tracking is performed upon the depth informa-
tion of the moving objects by observing the weighted cen-

troid of each detected object. The people counting method
proposed by Hsieh et al. [18] provides a good guide to the
method proposed in this paper to handle merged objects in
depth data by first projecting the depth data onto the 2D
plane.

Projection of depth data onto the 2D plane has also
been used in depth-based object tracking in Zhou et al. [19].
Here, a Kinect mounted in a mobile robot is used to ob-
tain depth data. The method utilizes the depth in the form
of binary and depth data, called Ground Plane Projections
(GPPs). The method provides reliable object tracking re-
sults in relatively small areas of indoor observations, which
may not be sufficient for large room object tracking as pro-
posed in this paper.

While the results of object detection and tracking based
on depth information have been shown to be robust, the
methods lack unique labeling for the detected objects. The
information to determine the correct identity of the detected
objects seems to be neglected, thus cases such as object
overlapping are also not presented. The goal of the work
presented in this paper is closely related to the work by Late-
cki et al. [20], where the detected objects from an IR cam-
era with a large coverage area are uniquely identified using
identification numbers. Their method tracks the objects by
finding the similarity of the positions of the objects (repre-
sented by a bounding box) and their velocity from frame to
frame. In cases where the sizes of the detected objects are
small compared to the image size and there are no occlu-
sions among them, the accuracy of object tracking will be
relatively high. However, when many occlusions occur, for
example due to an indoor environment where the camera po-
sition is relatively closer to the objects, the method by Late-
cki et al. would not be sufficient. Therefore in the method
proposed in this paper, more information to identify moving
objects is utilized to handle complex movements and occlu-
sion problems.

3. Proposed Method

3.1 Data Preparation

The main issue in detecting and tracking an object from
depth data is the limitation of information that is available
to correctly and consistently identify the moving objects.
To achieve an accuracy similar to that of color-based ob-
ject tracking, a complex process involving manual operation
may be necessary. Therefore, some restrictions in depth-
based object tracking are usually applied as previously men-
tioned in Sect. 2.

Maintaining a less complex object detection and track-
ing process requires that the indoor range sensor in a room is
statically mounted at a high position close to the ceiling and
the positions of the furniture in the room are rarely altered.
To cover a large room that exceeds the coverage range of the
sensor, additional sensors would be mounted at the opposite
end of the room. Therefore, it is possible to obtain an initial
homographic projection of the scene captured by the sensor
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Fig. 1 (a) depth data with highlighted moving objects; (b) segmented
moving objects; (c) contours of objects in (b) as 2D projection with bound-
ing rectangle indicating the region of interest (ROI).

to determine the transformation matrix for 2D projection as
well as the initial background frame (i.e., the captured frame
in which only the empty room and the furniture are present).
In addition, background segmentation can be performed by
simple pixel subtraction between the current frame and the
initial background frame.

The values of the depth data acquired from a range sen-
sor camera are in the form of the distance of the captured
objects (background or moving objects) from the camera
in centimeters per pixel. To visualize the depth scene, the
depth data is normalized into gray-scale values (0-255) so
that the images of actual scene can be reconstructed. From
these images, the position of the detected moving objects
and their environment can be observed.

The depth data is then projected onto a 2D plane from
the normalized depth data by calculating the transforma-
tion matrix provided by the camera specification. In the
proposed method, the 2D plane is a processing plane onto
which the depth data acquired from more than one range
camera is projected, as illustrated by Fig. 4. The main ad-
vantage of the projection is to reduce the complexity of pro-
cessing object tracking with more than one sensor, as in the
experimental setup that will be described in Sect. 4. In some
cases, the projection may also reduce the number of over-
lapping pixels between objects (thus occlusions may also be
reduced). The resulting projected 2D data is a binary image
where nonzero pixels represent the projected moving object
and zero pixels represent the background. Throughout the
paper the projected data is defined as “2D data” and a group
of pixels that represents one object in the 2D data is denoted
as “contour.”

Figure 1 summarizes the processing steps for the depth
data. Firstly, the depth information of the room without any
moving objects is captured as the initial background frame.
As a result, any moving objects, as shown in the highlighted
depth in Fig. 1 (a), would produce dissimilarity of depth data
when background subtraction is performed. Next, the pix-
els of the data in this highlighted area is extracted as in
Fig. 1 (b) and then projected onto a 2D plane as in Fig. 1 (c).
Finally, a tightly encapsulating rectangle box that represents
the region of interest (ROI) for each object’s contours is con-
structed. At this point, the ROIs are initially labeled with an
integer value in the order of their relative position to the top-
left of the frame.

3.2 Graph-Based Automatic Object Tracking

Object data construction extracts the features of the moving
objects from the contours in the 2D data. These features
are then utilized in the automatic object detection and track-
ing. Basically, the width, height, and the centroid of each
contour can be extracted and a unique identity assigned to
these features as one set of object data. These features are
represented in graph structure as described as follows.

Let G f = (Vf , E f , Af ) be an attributed graph represen-
tation of the f -th frames in 2D data, where Vf is the vertex
set, E f is the edge set and Af is the set of attributes corre-
lated to vertices in set Vf . The vertex set represents detected
objects in frame f and is denoted as Vf =

{
v f

1 , v
f
2 , . . . , v

f
J

}

where J is the number of detected objects in the 2D data. Its
set attribute Af =

{
a f

1 , a
f
2 , . . . , a

f
J

}
contains sets of attributes

for each vertex element v f
j , j = 1, 2, . . . , J. Each attribute

element is defined as

a f
j =
{
wf

j , h
f
j ,p

f
j

}
(1)

which represents the width and height of the ROI of a con-

tour, and its centroid p f
j =
{
px, py

} f
j

in the x and y coordinate

of the segmented object in the frame. The centroid is calcu-
lated as (px) f

j = x f
j+wf

j /2 and (py) f
j = y f

j+h f
j /2 respectively.

The edge set is defined as the spatio-temporal relation
between the vertices in G f and G f−1, i.e., two graphs in two
consecutive frames. Their relationship is determined as

E =
{
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(
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1

)
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(
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)
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where K is the number of detected objects in frame f -1 and

d
(
a f

j , a
f−1
k

)
=
∥∥∥∥p f

j − p f−1
k

∥∥∥∥ (3)

is defined as similarity matching between the attributes of
the j-th and the k-th vertices in frame f and frame f -1, re-
spectively, with k = 1, 2, . . . ,K. The similarity matching is
then performed to find the smallest edge value.

By performing similarity matching from frame to
frame, it is possible to correctly identify different objects
with unique identities. However, in many cases overlap-
ping objects would still occur, especially for confined spaces
where the objects move very close to each other and create
occlusion. Therefore, correct identification of an object be-
fore and after occlusion is performed by matching the two
objects between the current frame and a selected reference
frame instead of the previous frame. In this paper, such
matching is called a conditional graph matching.

The case of occlusion is determined by observing the
position and size of the detected objects in 2D data as illus-
trated in Fig. 2. When two objects are moving towards each
other in frame f -1 and their contours are merged in frame f ,
the overlapping area of v f

1 with the area of v f−1
1 (area R) and

v f−1
2 (area S ) is observed. Assuming that the depth video
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has a frame rate of no less than 28fps, if each of those areas
are larger than 2/3 of the area of their corresponding ROI, an
occlusion is assumed to have occurred. In this case, frame f
would be determined as the first frame of an occlusion pe-
riod and selected as the reference frame for the conditional
graph matching. Otherwise, no occlusion is detected and
similarity matching based on Eq. (3) is performed.

When occlusion is detected, the attributes of the oc-
cluded objects and the timestamp (i.e., frame number) just
prior to the occlusion event are stored in an “occlusion list.”
Conversely, disocclusion is signaled when the merged ob-
jects are separated in a frame, and at this point the attribute
information will be removed from the occlusion list. Thus
that frame will be assigned as the last frame of the occlusion

Fig. 2 Illustration of a merge condition between two objects that deter-
mines an occlusion.

Fig. 3 Overall process of automatic object tracking.

period.
To handle occlusion, conditional graph matching is

performed. If the occlusion period occurs from frame fN

to frame fM , the similarity matching is calculated as

d
(
a fM

j , a
fN

k

)
=
∥∥∥∥p fM

j − p fN

k

∥∥∥∥ (4)

where frame fN is the reference as described by the occlu-
sion list. Since the values of object’s attributes as the result
of tracking are stored in memory, it is possible to recall the
identity of objects for conditional matching. Therefore, con-
ditional matching is also performed to check duplicate iden-
tities by assigning the reference frame in which the objects
are previously correctly identified. A correct identification
is determined when no duplicate identification is detected.
Based on the number of occlusions detected in a frame (i.e.,
merge conditions detected for more than two objects), con-
ditional graph matching is performed sequentially based on
the spatial position of the merged objects in the frame.

The overall process of automatic object tracking to
handle the behavior of contours in 2D data is as shown in
Fig. 3, including handling various occlusion problems. Ba-
sically the process checks for two states: the changes of the
number of objects in two consecutive frames and whether
any overlapped areas as illustrated in Fig. 2 exist. As cate-
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gorized by blocks B1 to B5 in Fig. 3, these main procedures
are performed based on the checked state in a frame:

• Block B1
In a normal and simple case with no changes in the
number of objects, block B1 will be performed where
similarity matching (3) is employed to track the object.
In some cases, however, it is possible that the identi-
ties of the objects are misassigned, which may cause
a duplicate identity or identity switch (e.g., object 1 is
assigned as object 2 and vice versa). In this case, con-
ditional matching (4) will be performed with the latest
frame in which the correct identification is stored as the
reference.
• Block B2

The procedures in block B2 will be conducted when-
ever the number of objects is decreasing. In this case,
an object that cannot be detected in the next frame will
be designated as a “left object” and its attributes will
be registered into a “left object list.” Depend on its lat-
est location, an object can be also designated as “leav-
ing the frame” (if its last position is near the frame’s
border) or it is just possibly overshadowed by another
object.
• Block B3

When occlusion conditions are met as aforementioned,
occlusion handling block B3 is performed. This block
will also check whether the occlusion has ended or any
duplicate identification is present. In both cases, a sim-
ilar operation to block B1 will be performed. However,
the reference of the conditional matching will be ad-
justed; the last frame before occlusion is assigned as
the reference. Furthermore, a duplicate objects check
will be performed as in block B1.
• Block B4

Technically, procedures in block B4 are similar to that
of block B1. However, when duplicate identities are not
found, B4 will check for leaving objects and perform
the procedures in block B2.
• Block B5

In the case when the number of objects is increasing
and no occlusion is occurring, block B5 will check for
returning objects by examining the left object list that
was updated in block B2. A returned object will be de-
termined by conditional matching between the current
frame and the frame in the left object list as the ref-
erence. On the other hand, if occlusion has occurred,
it will perform conditional matching and furthermore
check for duplicate objects as in block B3

While not all objects’ behavior can be accurately han-
dled, which is demonstrated in Sect. 4, the procedures in
blocks B1 to B5 ensure relatively reliable object detection
and tracking accuracy.

4. Experimental Results and Analysis

The proposed method is tested with test sequences that

Fig. 4 The setup of two range sensor cameras to cover the entire room
used in the experiments.

Table 1 Specification of the cameras used in the experiments

record the movements of several people in a room using two
range sensor cameras to cover the entire room, where each
camera covers half of the room as illustrated in Fig. 4. Each
camera is specified as described in Table 1. Both cameras
are located at a height of 2.7 meters and there is an inter-
section region located roughly in the center of the room, as
illustrated in Fig. 4. This intersection region provides guid-
ance for each camera whether an object is moving from one
side of the room to another. If an object is detected in the
intersection region, its contour will be detected as the same
object based on its relative position to the projected room
area.

It should be noted that automatic object tracking is not
performed independently for each camera. Instead, the 2D
projection from camera 1 and camera 2 are first combined
into one processing frame. Next, the graph construction
and automatic object tracking procedures as shown in Fig. 3
are performed over the combined area, with a resolution of
252 × 126 pixels.

The proposed method is applied in five test sequences,
each of which acquired data from the two range sensor cam-
eras; their frames have been synchronized with each other.
In overall, the test sequences contain a room furnished with
static objects where people are the only moving objects.
Each test sequence has interaction events between two or
more people with overlapping trajectories that cause occlu-
sions. The scenario of each test sequence is summarized in
Table 2.

Figure 5 shows the depth data acquired from camera
1 and camera 2 in the 184th frame of Test 2 sequence and
the 657th frame of Test 5 sequence, respectively. Note that
the highlighted area shown in Fig. 5 denotes the source of
the range sensor, not the identification of the detected ob-
jects, as at this step the tracking has not been performed.
The results of the proposed method in those frames are as
shown in Fig. 6. The circles represent the detected moving
object identified with different colors and numbers with the
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Fig. 5 Depiction of depth data for the objects detected from the 184th

frame of Test 2 (above) and the 657th frame of Test 5 (bottom) sequences.

Table 2 Use case scenario of the experiments

Fig. 6 Object tracking results from the depth data of Test 2 (left) and Test
5 (right) in Fig. 5.

embedded lines showing the path the objects had taken from
the past 50 frames.

In the event of occlusion, the contours of the merged
objects cannot be separated. However, the contour indi-
cates two or more occluded objects are indicated with a
dark-colored outer circle. Figure 7 shows the result of
object tracking from the 1706th, 1720th and 1734th frame
of the Test 5 sequence illustrating the tracking of the ob-
jects before, during and after occlusion. The corresponding
depth data for the same frames are shown in Fig. 8. Here,

Fig. 7 Occlusion event (left: before occlusion, center: during occlusion,
right: after occlusion) from Test 5 sequence.

Fig. 8 Depiction of depth data for the objects detected and tracked in
Fig. 7 before occlusion (top), during occlusion (middle), and after occlusion
(bottom) from Test 5 sequence.

when Object 1 and Object 0 are occluded, their contours are
merged with each other and indicated as one object (Ob-
ject 0) with a gray-colored outer circle.

Due to its closely related method and similar object
tracking results in uniquely identifying each of the detected
objects, the proposed method is compared with the centroid-
based object tracking algorithm for an infrared sequence
proposed by Latecki et al. [20]. The accuracy of the trajec-
tories of tracked objects and its comparison against the tra-
jectories observed by the ground truth is presented. Figure 9
shows the graphs of selected trajectories of objects from the
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Fig. 9 Trajectories of (a) Object 2 in Test 1 sequence, (b) Object 1 in Test
2 sequence, (c) Object 3 in Test 3 sequence, (d) Object 1 in Test 4 sequence,
and (e) Object 1 in Test 5 sequence, produced by the proposed method and
[20] compared against the ground truth.

five test sequences. The horizontal and vertical axes depict
the x and y coordinates of the frame respectively.

The performance of the proposed method is measured
by how similar are the positions of the detected objects com-
pared to the ground truth. Overall, the produced trajectories
from the proposed method and the centroid-based method
are relatively in line with the ground truth. The ground truth
is obtained by observing the position of the feet of the de-
tected objects. The position of the feet is approximated from
the bottom-center part of the ROI of the objects. The x and y
coordinates of the ground truth position are then compared
with the x and y coordinates of the detected objects using the
proposed method. Figure 9 shows the graphs depicting the
trajectories of a selected object in sequences Test 1 to Test
5. The horizontal and vertical axes of the graphs shown in
Fig. 9 are the x and y coordinates of the frames, respectively.

The calculation of the position of the objects in the
2D plane in the proposed method is affected by the size
of the contours of the objects. Since the position is calcu-
lated based on the centroid of the contours, the positions are
somewhat deviated from the ground truth. Nevertheless, as
can be seen in the graphs, the displacements of the objects
during the sequence are consistent with the trajectories of
the ground truth. Compared to the centroid-based method,
the proposed method has better trajectory accuracy, espe-
cially when the objects are involved in occlusion, as shown
in Fig. 9 (a), (b), (c) and (e). Here the trajectories produced
by the centroid-based method move away from the ground
truth. On the other hand, when an object is not involved in
occlusion, as in Fig. 9 (d), the trajectories tend to follow the
ground truth. The cases of occlusion for the selected objects
in Fig. 9 are indicated with dashed circles.

Table 3 Bhattacharyya distance of the produced trajectories compared
against the ground truth

Table 4 Identification accuracy

The overall trajectory accuracy is shown in Table 3.
The distribution of the positions for all objects in all se-
quences is calculated. Then the Bhattacharyya distance
from the positions of objects in the proposed method and
the centroid-based method are compared against the ground
truth according to the measurement evaluation proposed by
Coleman and Andrew [21]. Here, smaller distance values
denote a trajectory more similar with the ground truth and
bold values indicate better accuracy. As shown in Table 3,
the proposed method would produce more accurate trajecto-
ries compared to the centroid-based method.

The quantitative measurement of the tracking accu-
racy of the proposed method is computed by finding how
many frames in which the detected objects can be correctly
identified out of total frames in the sequence. Table 4
shows the tracking rate of the proposed attributed graph
method compared with the result of using the centroid-based
method [20]. Since the centroid-based method provides no
feature to handle occlusion between two or more objects,
its accuracy is relatively lower than the proposed method.
In the Test 4 sequence, Object 1 appeared in more frames
while involved in short duration occlusion than the other
objects. Thus the accuracy in Test 4 sequence for centroid-
based method is seen to be higher than the proposed method.

The robustness of occlusion handling in the proposed
method depends on how much area of overlapping pixels
exists among the occluded objects. While the 2D projec-
tion can reduce the overlapping pixels, there are many cases
where noise produced by interference in a sensor increase
the overlapping pixels among objects. The robustness of the
occlusion handling may suffer from such problems.

Some limitations are also present in the proposed
method, especially involving ambiguous object identity.
Ambiguity in the changes of the number of objects can be
produced by a complex situation. For example, when an oc-
clusion has just started and a new object appears at the same
time, then there is no change in the number of objects from
one frame to the next and the proposed method will assume
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Fig. 10 Snapshots of actual video (with manually annotated labels and
moving directions) and the corresponding automatic depth-based tracking
results show the situation of ambiguous identification of the returning ob-
ject after two objects leave the frame successively at the same position.

neither occlusion nor new object appearance has occurred.
In another case, consider when two objects are succes-

sively leaving the frame at almost the same position, as in
the example shown in Fig. 10 (a) and Fig. 10 (b). From the
actual video it can be easily seen that a person wearing a
dark colored shirt is leaving the frame followed by another
person wearing a white shirt. After several frames one of
the people returns to the scene at the position where both
people previously left as shown in Fig. 10 (c). While both
people can be easily tracked using depth information prior
to leaving the frame, when one of the people returns to the
frame, the features extracted from 2D data become unclear.
The position of both people when leaving the frame is al-
most the same as the position of the one person who returns
to the frame.

In such cases, the proposed method may fail to pro-
duce correct object identification. While object tracking us-
ing a conventional camera can rely on color information to
handle such cases, in depth-based object tracking, further
exploration of additional features is needed to differenti-
ate objects by utilizing the actual depth values in form of
depth histograms [12], [15] or in finding upper body struc-
ture [13], [14].

5. Conclusions and Future Work

This paper introduced a method that can automatically de-
tect moving objects and track the objects from depth data,
where each object is uniquely identified. Attributed graph
structure is employed to represent the features of the objects
extracted from projected depth data and utilize the attributes
to perform object tracking. The proposed method makes use

of the changes of number of objects and observes the inter-
action between objects to determine which graph similarity
matching is the most appropriate to identify objects. Exper-
imental results show that the performance of the proposed
method against a comparable method in depth-based object
tracking performs better during occlusion.

Future work includes the extension to the current
method to use actual depth values to handle more complex
occlusions as well as to handle the objects’ ambiguity by
using actual depth information. Additionally, the proposed
method currently can only handle up to four objects, which
should also be further improved.
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