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PAPER

An Integrative Modelling Language for Agent-Based Simulation of
Traffic

Alberto FERNÁNDEZ-ISABEL†a), Nonmember and Rubén FUENTES-FERNÁNDEZ†b), Member

SUMMARY Traffic is a key aspect of everyday life. Its study, as it hap-
pens with other complex phenomena, has found in simulation a basic tool.
However, the use of simulations faces important limitations. Building them
requires considering different aspects of traffic (e.g. urbanism, car features,
and individual drivers) with their specific theories, that must be integrated
to provide a coherent model. There is also a variety of simulation plat-
forms with different requirements. Many of these problems demand multi-
disciplinary teams, where the different backgrounds can hinder the com-
munication and validation of simulations. The Model-Driven Engineering
(MDE) of simulations has been proposed in other fields to address these
issues. Such approaches develop graphical Modelling Languages (MLs)
that researchers use to model their problems, and then semi-automatically
generate simulations from those models. Working in this way promotes
communication, platform independence, incremental development, and re-
utilisation. This paper presents the first steps for a MDE framework for
traffic simulations. It introduces a tailored extensible ML for domain ex-
perts. The ML is focused on human actions, so it adopts an Agent-Based
Modelling perspective. Regarding traffic aspects, it includes concepts com-
monly found in related literature following the Driver-Vehicle-Environment
model. The language is also suitable to accommodate additional theories
using its extension mechanisms. The approach is supported by an infras-
tructure developed using Eclipse MDE projects: the ML is specified with
Ecore, and a model editor and a code generator tools are provided. A case
study illustrates how to develop a simulation based on a driver’s behaviour
theory for a specific target platform using these elements.
key words: traffic simulation, road behaviour, agent-based modelling,
model-driven engineering, metamodel

1. Introduction

Road traffic has a great influence in modern societies. Its
study in real settings is difficult, given its scale, complex-
ity, and potential impact on the wellbeing of people. For
this reason, researchers resort frequently to simulations [1].
However, these also present limitations [2]. The literature
points out the difficulties with discussing and aligning sim-
ulation models at different levels of abstraction (e.g. so-
cial theory and code design), for people with heterogeneous
backgrounds, or implemented in different platforms. These
issues make it hard to guarantee that the resulting simulation
faithfully reflects the initial abstract model [3].

The use of model-driven approaches has been proposed
to overcome those limitations [2]. Model-Driven Engineer-
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ing (MDE) [4] organises development projects around mod-
els, which are compliant with well-defined Modelling Lan-
guages (MLs). For traffic simulation, this approach implies
developing MLs to specify simulations from different per-
spectives (e.g. driver’s behaviour, car functioning, and envi-
ronment) and at different levels of abstraction (e.g. those of
traffic experts and developers). From the definition of MLs,
developers provide graphical editors for their specifications
and tools to transform them. Transformations are used to
generate semi-automatically from models most of the other
required artefacts, e.g. code or documentation. In this way,
the process of developing simulations becomes iterative, by
refining abstract models to others more specific, until gener-
ating source code from them is possible.

The initial effort to develop this infrastructure is higher
than just manually developing a simulation. However, it
pays off with reutilisation across simulations and the ex-
plicit description of all the information used to develop
them [2]. MLs and transformations can be incrementally
defined, tested, and reused across different projects. For in-
stance, a ML for urban environments is applicable to differ-
ent cities. As these elements include all the information nec-
essary to specify the simulation and its refinement to code,
they facilitate the traceability of artefacts for analysis and
verification.

There have been some partial efforts regarding MDE
for traffic simulations. Several integrative models have tried
to provide the basis to build incrementally models of traf-
fic (e.g. [5], [6]). However, they usually detail through text
some aspects or rely on their simulation platforms to de-
scribe the semantics. These descriptions are not suitable for
defining a ML for MDE. Their translation to (semi-)formal
languages is not evident, and/or they mix domain and com-
putational issues. There are also works regarding develop-
ment processes, but are general discussions. They do not
consider the activities or infrastructure required (e.g. [7]),
or the specific features of traffic simulations (e.g. their scale
or how to deal with highly dynamic components) (e.g. [2]).

Our research is focused on the development of a com-
plete MDE approach for traffic simulations. It pursues be-
ing suitable for studies at both the micro (i.e. individual)
and macro (i.e. group) levels, considering different theories
and analysis focuses, and platform-independence. This pa-
per introduces the Traffic ML (TML), that is its core, and
more briefly the development guidelines and tools (a model
editor and a code generator).

The TML adopts Agent-Based Modelling (ABM) [8]
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and follows the Driver-Vehicle-Environment (DVE)
model [9]. Its agents are intentional entities that interact
among them and with the environment where they are sit-
uated. ABM has shown to be useful to deal simultaneously
with individual and group aspects for non-linear systems,
and facilitates the transition from abstract models to code.
The DVE model assumes that drivers use their vehicles to
establish relationships with the environment. The dynamic
interactions among elements influence their individual be-
haviours.

The conceptual framework, along with inheritance and
composition mechanisms, facilitates the specification of
other theories with the TML. These new models are used
as the basis to specify simulations with those theories.

A case study illustrates the use of the framework. It
specifies and integrates the theoretical Drivability Model
(DM) [10]. DM considers the influence of driver and envi-
ronment features on driving capabilities. The Simulation of
Urban MObility (SUMO) platform [11] is used as the target.
It has a model for vehicle control based on paths to follow.
The case study shows how the TML supports describing the
theoretical model, and this specification facilitates further
modifications (adding the platform model) and reduces the
coding effort to develop the simulation.

The rest of the paper is organised as follows. Sec-
tion 2 introduces the basic concepts of MDE and related
tools. Then, Sect. 3 discusses the TML, and Sect. 4 briefly
presents the development guidelines and tools. The case
study in Sect. 5 applies these elements to specify a simu-
lation and generate its code. It guides the comparison with
related work in Sect. 6. Finally, Sect. 7 discusses some con-
clusions and future work.

2. Model-Driven Engineering

MDE [4] is an approach for system development structured
around models, as opposed to traditional approaches that
can be considered as code-centric. Its processes are mainly
organised as an iterative and incremental specification of
models, where developers refine and add new information
to them at each step. Along this process, certain repetitive
changes are automated with transformations. For instance,
adding patterns or platform specific information to design
models. Work with other artefacts (e.g. code, tests, and doc-
umentation), follows a similar path, as developers usually
generate them from models using transformations and man-
ually adjusting.

This kind of development needs means to define for-
mally MLs in order to facilitate that tools process them and
their models. Metamodels are currently the main mech-
anism for this purpose when dealing with graph-oriented
languages, which are the most popular ones [12]. They
commonly specify the abstract syntax of MLs, though they
can also be used for their concrete syntax and seman-
tics. Metamodels are in turn defined using meta-modelling
languages [12], such as the Meta-Object Facility (MOF)
and Ecore. Ecore [13] is used in multiple Eclipse MDE

projects organised around the Eclipse Modelling Framework
(EMF) [13]. Moreover, it is almost aligned with Essential
MOF (EMOF), a subset of MOF [13]. Our work uses these
Eclipse projects, so the TML is specified using Ecore.

In an Ecore metamodel, an instance of EClass repre-
sents a set of similar entities (its instances at the model
level). It can group EAttribute and EReference elements.
EAttribute instances are used to associate properties of
EDataTypes (i.e. primitive types) to EClass instances. These
primitive types include, for instance, integer, float, Boolean,
char, and string. An EReference represents a binary and di-
rected relationship between two EClass instances. These
references can represent containment and non-containment
relationships. The EReferenceType of a given EReference
instance is determined by its target EClass. Two EClass in-
stances can also be linked by an extension relationship (i.e.
ESuperType), which represents inheritance. Ecore also in-
corporates the concept of EPackage to group elements of
the metamodel. For a diagram, there must be an instance of
EClass that contains all its elements.

Transformations are the other key component of MDE.
According to their input and output, they are classified as:
Model-to-Model (M2M), Model-to-Text (M2T), and Text-
to-Model (T2M). These transformations are implemented
in different ways, including the use of general-purpose pro-
gramming languages and transformation languages. In the
first case, the transformation becomes a module that uses
programming interfaces to manipulate its inputs and out-
puts. In the second case, the transformation is written in
a specific language for transformations and an engine ex-
ecutes it. The first approach allows reusing already avail-
able experience and tools from mainstream development ap-
proaches (e.g. object-oriented programming and XML pro-
cessing), and fine-tuning the execution of the transforma-
tion. The second approach facilitates understanding and
examining the mapping between inputs and outputs. Our
work adopts the first one, as it makes use of techniques from
object-oriented reflection-based programming.

3. Traffic Modelling Language

Road traffic is a complex phenomenon that involves large
numbers of interacting components with heterogeneous fea-
tures and structures. There are not general and agreed the-
ories for its different aspects, so researchers apply different
ones according to their own background and the goals of
each study. There are also multiple simulation platforms
with different modelling approaches. The analysis objec-
tives, theories, and infrastructure constitute here the mod-
elling setting of a problem.

A ML suitable to represent the previous information
should be designed having in mind to ease the problem com-
prehension and adaptation to new modelling settings. To
achieve these goals, the metamodel that specifies the TML is
organised to a large extent through inheritance and compo-
sition hierarchies and clustering of concepts. Its conceptual
framework is based on ABM [8] and the DVE model [9].
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Fig. 1 Main primitives of the traffic metamodel.

Figure 1 shows part of its specification with Ecore [13].
Inheritance hierarchies arrange concepts using gener-

alisation relationships. They support the incremental defini-
tion of concepts, and facilitate the modification of the meta-
model. All concepts inherit from the GeneralElement meta-
class (not shown in the figure). It introduces the EInherits
reference to represent inheritance between concept instances
in models. In the same way, the GeneralRelationship meta-
class supports the introduction of arbitrary directed relation-
ships with attributes between concepts, and its specialisation
using the RInherits reference.

Some concepts (e.g. vehicle or environment) may have
complex structures. In order to represent them, the meta-
model decouples container concepts from their components
using a composition pattern. The container meta-classes are
the roots of composition hierarchies of component meta-
classes. These components can be structured in turn in com-
ponents of the same hierarchy. An example of this pat-
tern is the decomposition of the meta-class Vehicle in the
meta-class VComponent (see Fig. 1). This organisation sup-
ports at the model level arbitrary whole-part relationships.
In them, the child components of a given one represent fea-
tures/parts depending on its root component.

Clusters are specific parts of the metamodel. They
group components that share features, e.g. similar seman-
tics, purpose, or container. There are three (see Fig. 1): fea-
tures and internal state, environment, and interactions and
decisions. They highlight the commonalities of their ele-
ments, and clarify their relationships with other clusters.

Besides clusters, an instance of the TrafficModel meta-
class must always gather all the components in a specifica-

tion (not shown in the figure). Ecore requires the existence
of a root element that groups all the others in a diagram.

The previous mechanisms account for the static de-
scription of simulations. However, some features and be-
haviours in traffic are inherently dynamic, e.g. the driver’s
workload or the choice of goals according to the situation.
Moreover, in the detailed specifications, experts need means
to describe how the mutual influences among components
through relationships affect them. The metamodel consid-
ers methods as placeholders for these indications about dy-
namic calculations. For example, they can have attached at
the model level code snippets to specify algorithms.

In order to provide guidance in modelling, the TML
also offers a conceptual framework. It helps to identify the
relevant elements in a problem. Following the DVE model,
the core concepts here are Persons (which are agents) in-
teracting with an Environment that includes Vehicles. Next
sub-sections discuss them in detail following the clusters.

3.1 Environment

Traffic occurs in an environment that sets certain physical
conditions (e.g. weather, lane width, or signals in a street).
The metamodel represents it with the Environment meta-
class and its components. A given model includes a unique
instance of Environment perceived by all participants.

People perceive and act on the environment in different
ways depending on the artefacts they use in the interaction.
The metamodel accounts for these differences including the
Vehicle meta-class and its components to represent means of
transport. Drivers and passengers relate to the external Envi-
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ronment through their instances of Vehicle, but only drivers
can use them to act on that environment. The driver and
passengers of a vehicle relate among them directly using the
instance of Environment. Pedestrians have a direct relation-
ship with the environment.

With this representation, all the elements in traffic ex-
ternal to people are represented as instances of compo-
nents of the environment (i.e. EComponent) or vehicles (i.e.
VComponent). Different subtypes of GeneralRelationship
with specific meanings can be introduced to indicate how
these components are related. For example, a navigation
system is modelled as an instance of VComponent, and a
relationship Perceives introduced to link the navigator and
the person who uses it. An inter-vehicle communication
network could be an instance of EComponent that links in-
stances of Vehicle, and where these vehicles produce / use
messages (also instances of EComponent) using communi-
cation devices (new instances of VComponent), all of them
linked by new types of relationships.

3.2 People Features and Internal State

This cluster characterises the state and features of a Person
using the Knowledge and Profile meta-classes. The first one
represents any kind of mental entity (but the objectives) that
people use when dealing with traffic. It includes factual (e.g.
speed limits, routes, or actual positions of vehicles), proce-
dural (e.g. how to perform a lane change or cross a street
with traffic lights), and moral and normative (e.g. drivers
should not exceed speed limits) knowledge. The second
one represents people features (e.g. gender, age, or fatigue).
Both of them can be decomposed into components.

The instances of the Knowledge meta-class can repre-
sent information pertaining only to an individual or global to
all participants. For example, laws about traffic are global,
but some participants in the simulation can ignore them.
The KIsGeneral attribute differentiates both uses. When a
Knowledge instance belongs to a Person instance, a Pos-
sesses reference instance must also link them.

3.3 Interactions and Decisions

The metamodel describes people (i.e. instances of Person)
in the environment (i.e. instances of Environment and Ve-
hicle). These Persons are agents that behave according to
a perceive-reason-act cycle [14]. Perception studies the en-
vironment (concepts in Sect. 3.1) to change the agent’s fea-
tures and mental state (concepts in Sect. 3.2). Reasoning
processes these features and state to generate additional in-
formation, and decide what should be done and with which
actions. Acting carries out actions that change the agent and
environment states. Agents repeat this cycle over time. The
components that implement the cycle are organised in two
groups: one to define what a person wants and is potentially
able to do; another to represent what s/he actually does.

The first group includes the Goal and Task meta-
classes. A Goal represents a state of the world the agent

wants to keep or achieve. A Task represents the actions the
agent is able to perform to try to change its own or the envi-
ronment state. Both meta-classes include specific attributes
to characterise them, goals with their satisfaction conditions
(i.e. Satisfaction) and tasks with the atomic actions that im-
plement them (i.e. Instructions). Goals are linked to those
tasks which execution is potentially able to satisfy them.

Both Goal and Task instances can be decomposed into
instances of their same meta-classes, as it occurs with other
components of the metamodel. However, the semantics are
different in this case. While previous decompose relation-
ships indicate a whole-part link, here they are related to sat-
isfaction. When a goal is decomposed into child goals, the
satisfaction of any of them implies the satisfaction of the
parent goal. In the case of tasks, the completed execution of
all child tasks implies finishing the parent task.

The second group has the components that model the
execution of the agent’s behaviour cycle. Evaluator in-
stances carry out the perceive and reason parts, and Actu-
ator instances execute the selected tasks. These instances
only work with those elements linked to their instance of
Person. For example, an instance of Person can be linked to
an instance of Vehicle with an instance of the EComponent
navigator. An instance of Evaluator for that agent is able to
navigate a Perceives relationship to get the route information
from the navigator, and assert it as an instance of KCompo-
nent in the mental state of the agent. In order to represent
the different processes of the cycle, Evaluator instances can
be composed of others using the EVDecomposes reference.
This facilitates making up evaluators through composition.

4. Development Guidelines and Tools

The MDE framework for traffic simulations includes guide-
lines to apply the TML using several support tools. Among
them, there are a graphical editor for models and a code gen-
erator. Both are implemented using EMF [13], the Graphi-
cal Editing Framework (GEF) [15], and the Graphical Mod-
elling Project (GMP)†. They use tailored XML files to store
information.

The editor allows specifying models compliant with the
metamodel. It is a plug-in generated using GMP from the
traffic metamodel (see Sect. 3). The tool provides a visual
interface with a canvas to describe models using the ele-
ments available from palettes. These palettes are populated
with the concepts and relationships from the metamodel.
Additional constraints are introduced using the Object Con-
straint Language (OCL) [16]. For instance, they avoid that
a component can have itself as a part, and force some com-
patibility rules for inheritance, e.g. a class cannot be a sub-
class of instances of Person and Vehicle simultaneously us-
ing EInherits instances.

The code generator is the tool to work with M2T trans-
formations. It is a tailored tool implemented in Java. Its
input is the traffic metamodel, a model compliant with it,

†http://eclipse.org/modeling/gmp/
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and the source code EMF generates for the metamodel meta-
classes. It also allows importing external files (e.g. libraries
to access the target simulation platform) and elements of
a finer grain (e.g. the code to specify algorithms). It out-
puts the code of the simulation. Its tasks are organised
around graphical wizards. Among the supported functional-
ities are: the selection of entities in models for code genera-
tion; the injection of code templates for them; a limited form
of model integration, by adding instances of already defined
relationship types to link models; and the generation of con-
figuration files for simulations. The tool also supports the
integration of tailored wizards. Code templates use a spe-
cific markup language to refer to the model elements (e.g.
entities, attributes, and relationships).

In order to guide developers in the implementation of
wizards and the specification of code templates, the gener-
ator includes samples. For instance, calculateValue meth-
ods (see Sect. 3) have a default implementation using fuzzy
logic [17]. This is a quite intuitive way to account for the
influences among concepts across relationships in models.
Anyway, users are expected to be able to reuse from other
projects most of the code needed for their models.

With these tools, the proposed development process in-
cludes the following activities:

1. Specify the theory model. This activity uses the model
editor to create a TML model of the theories to con-
sider. It may require adapting these theories to its con-
ceptual framework. The definition of concepts in the
TML guides this specification. The theory model pro-
vides the types to use in the simulation. This activity is
usually decomposed into three:

a. Specify the context. This activity provides the con-
text of agents’ behaviour. It uses the features and
internal state and environment clusters.

b. Specify acting. It defines the instances of ele-
ments from the interactions and decisions cluster
required to define the agents’ cycle.

c. Specify dynamics. The previous activities just
consider the static perspective of the simulation.
Hints on dynamics are provided in methods. If the
markup language for templates is used, the gener-
ator can directly interpret it when producing code.

2. Specify the simulation model. This activity refines the
theory model with specialisations for the simulation.
Its sub-activities are similar to those of activity 1.

3. Map the simulation model to code templates . The code
generator provides implementations for the elements of
the TML using the default EMF code, and these can be
used for the simulation model. When other implemen-
tations are required, experts need to link code templates
to the related model elements. These templates can be
reused from other projects or developed from scratch.

4. Generate instances. A configuration wizard of the gen-
erator reads the code for the simulation types. Then,
it allows the user graphically specifying instances of

those types, with their identification and initial attribute
values. This wizard is platform-dependent.

5. Code generation. The generator uses al the previous
information to generate the source code and configura-
tion files for the simulation as the final step.

A detailed example of the application of this process
with some variations can be found in [18]. It considers the
simulation of Intelligent Transportation Systems (ITSs).

The process and the functionalities of the tools effec-
tively support the MDE approach for traffic simulations.
They facilitate the examination and modification of the dif-
ferent artefacts (i.e. models, code templates, and mappings)
involved. They also improve reuse, even across projects, as
correspondences among artefacts are explicit and users can
modify them. Finally, they reduce the need of manual cod-
ing, as relevant parts of code are shared by multiple elements
or imported from other projects.

5. Case Study

The case study illustrates the use of the TML to specify a
simulation that integrates two works, and generate its code.
The first work is the DM [10], which is focused on the influ-
ence of the person and environment features on driving ca-
pabilities. Then, the simulation selects as its target platform
SUMO [11], which has a model for vehicle control based on
path following. Diagrams in this section are snapshots from
the developed model editor.

The DM [10] describes the dynamic changes happen-
ing in the capacity level of drivers, i.e. their drivability.
These changes depend on their own features and environ-
mental factors. Drivers’ features are classified into three
main groups: knowledge and skills, risk awareness, and in-
dividual resources. Under the category environmental fac-
tors appear aspects such as vehicle type/status, traffic haz-
ards, or weather conditions. The person’s workload dur-
ing the driving activity is also considered. All these fea-
tures change over time, frequently because of the influence
of other features. Their actual value also depends on their
initial value, except for the workload, which is completely
calculated from other features.

Figure 2 shows an excerpt of the specification of the
DM using the TML. Only the concepts relevant for the case
study appear. This will be the result of activity 1.

The first task to build the theory model of a work is
classifying its concepts into the main categories of the TML.
In the case of the DM, it is mainly related to activity 1a. If
this classification was not possible, the metamodel should
be reviewed to add the required concepts and relationships.

The DM classifies its concepts into categories similar
to those of the TML, though there are some exceptions. The
category knowledge and skills includes elements that are in-
stances of the Knowledge and Profile TML meta-classes.
For instance, generic, driving experience, and driver train-
ing are forms of the TML Knowledge; on the other side, self-
awareness is part of the TML Profile. In the category risk
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Fig. 2 Excerpt of the TML specification of the Drivability model.

awareness, all the concepts are part of the profile, except
the external support. It represents assistance systems (e.g.
a navigator or inter-vehicle communication device), that are
part of the vehicle or the environment. The concepts of the
category individual resources and the workload are also part
of the profile. For the category environmental factors, most
concepts are part of the TML Environment. Only the vehicle
type-status is a component of the TML Vehicle.

In order to keep as far as possible the original classi-
fication of DM concepts, the specification introduces four
root elements: the DKnowledge, DProfile, DVehicle, and
DEnvironment instances of the corresponding root types.
These group the remaining concepts.

Concepts from the DM category knowledge and skills
that are knowledge become instances of the TML KCompo-
nent. For the other person-related concepts that are part of
the TML Profile, the specification introduces new instances
of PComponent that represent their original categories, e.g.
Workload and Risk awareness. The actual DM concepts are
represented as instances of PComponent grouped under the
previous ones using composition relationships.

The category environmental factors is modelled with
the DEnvironment instance of the TML Environment. Its
concepts become EComponent instances linked to it with
the exception of the vehicle type-status.

The DVehicle groups two concepts from previous cat-
egories related to vehicles. The external support from risk-
awareness and the vehicle type-status from environmental
factors, which become VComponent instances.

The previous concepts must be linked using relations.
Inheritance and composition are part of the TML, but others
have to be introduced as instances of GeneralRelationship.

The DM considers several relationships of mutual in-
fluence between concepts. For instance, individual re-

sources and environmental factors affect the workload, and
knowledge to risk awareness. These influences are repre-
sented with the new Affects instances of GeneralRelation-
ship. They indicate that a source concept (i.e. Presents role)
has influence on the value or behaviour of a target concept
(i.e. IsRelated role). There is a different instance for each
pair of source and target concepts. As they represent types
of relationship, if there was only one instance of Affects, it
would indicate that every source concept can be related to
every target concept. This is not the intended semantics.

Some of the previous concepts could alternatively be
modelled as attributes of TML classes, for example, the ve-
hicle type-status or the workload. However, such alterna-
tive does not allow representing complex structures of parts
(which could be necessary for the first example) or relation-
ships with other concepts (which is required for the second).

The DM only accounts for factors that influence driv-
ing capabilities. It does not indicate how the actual decision-
making and acting is. This case study considers for that pur-
pose the control of vehicles in the SUMO platform. This in-
formation corresponds to activity 2, with those sub-activities
corresponding to activities 1b and 1c.

The behaviour of a SUMO vehicle is characterised in
terms of a path to follow and parameters that indicate how to
execute it. SUMO uses a map of edges with lanes that con-
nect junctions. The path (i.e. route) the vehicle follows is a
sequence of edges. Among the parameters affecting driving
appear the impatience (i.e. the willingness to progress even
if that hinders other vehicle movements) and the speedFac-
tor (i.e. the multiplier for speed limits that gives the maxi-
mum acceptable speed according to the driver). To model
these aspects, the simulation model (see Fig. 3) adds several
new elements to the previous theory model (see Fig. 2).

Both speedFactor and impatience are part of the
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Fig. 3 Excerpt of the TML specification for the SUMO platform.

driver’s profile, as they represent how somebody behaves
driving. Thus, they are modelled as instances of PCompo-
nent. The model has also to indicate that the drivability fea-
ture affects them. The related Affects instances of General-
Relationhip are also introduced (not shown in the figure).

In order to monitor the vehicle movement, several el-
ements from the metamodel (see Fig. 1) are needed. The
DVehicle instance puts in use the CurrentPlace attribute that
characterise its location in the environment. The Route
attribute of the driver’s Knowledge is used to specify the
SUMO path her/his vehicle follows.

The actual processing of the previous information is
modelled with instances of Evaluator and Actuator. The
Affects relationships are considered with an instance Modify
features of Evaluator that reads the Drivability and sets the
values of Speed factor and Impatience. Another evaluator
Check route checks the position of the DVehicle in the Route
to establish if an instance Arrive destination of Goal (not
shown in the figure) is fulfilled. If not, an instance Move of
Actuator reads the information from the Route, Impatience,
and Speed factor to generate the next movement.

When the specification is ready, the code generator al-
lows working with the source code. In this case, the code
generation needs to output the XML files that define the sim-
ulation in SUMO.

The first step is activity 3, which maps suitable code
templates to model elements. Most of concepts in the spec-
ification model uses a default template that corresponds to
a class that includes all their attributes and methods to get
and set them. Concepts that are target of Affects relation-
ships use a template similar to the previous one, but it adds
a calculate method for each attribute in the concept. Its im-
plementation uses a default fuzzy logic implementation [17]
provided in the metamodel. After code generation in activity
5, programmers need to adjust these fuzzy implementations
according to the expected thresholds. The DVehicle does
not need to update its position, as SUMO does it automat-

ically. The Modify features evaluator just needs a template
with the algorithm for the methods that calculate from the
Drivability input the Impatience and Speed factor outputs.
The Check route evaluator is empty, as the platform does its
test. Finally, the Move actuator needs a specific template
for the SUMO platform. The template provides the imple-
mentation of a method that generates an XML fragment for
the platform with the specification of the vehicle and its type
and route. In this case, the only possible task is moving until
arriving at the destination.

Here, activity 5 does not produce directly the simu-
lation code. The generator outputs code that is used to
generate the XML file that is the simulation specification
for SUMO. After running the generator, experts launch the
Move actuator for every driver type, and generate XML frag-
ments. The SUMO specification is the concatenation of
these fragments.

With this approach, researchers can follow a MDE pro-
cess to develop traffic simulations. They worked with mod-
els most of time. The TML could be extended to support the
Drivability and SUMO models. Only when using the code
generator researchers needed to consider code as templates.
Many templates can be reused for several concepts. In the
case study, only minor adjustments were needed for reused
templates. There were a few platform specific templates that
have to be implemented from scratch, in particular that for
the actuator. They could be reused for other simulations
with SUMO. The model editor provided basic functional-
ity to build the models. The code generator offered a richer
support, particularly to explore models and templates, and
make mappings. Template examples were also very helpful.

6. Related Work

The simulation of road traffic integrates multiple areas of re-
search. For this work, the most relevant ones are modelling
approaches, the study of people and environment features
and their mutual influences, and development processes.

Simulations can describe phenomena at different gran-
ularity levels. Microscopic models focus on the behaviour
of individual components, macroscopic ones on the dynam-
ics of the overall system (or groups in it), and mesoscopic
models combine features of the others. Every approach has
its own trade-offs [19]. Microscopic models support the de-
tailed analysis of individuals and their influence in the be-
haviour of the complete system, but strongly limit the size
of populations because of the required computational re-
sources. Macroscopic simulations can consider larger popu-
lations, but mostly disregard individuals. Mesoscopic mod-
els try to balance the features of the previous approaches,
but it is difficult to determine what is better to model at each
level. Traffic simulations present examples of all of them:
[20], which uses fluid dynamics to model traffic streams, is
a macroscopic model; [21] introduces a behavioural model
for vehicles, so it is microscopic; and [6] is a mesosocopic
example with microscopic components to control individual
vehicles and macroscopic elements for general traffic flows.
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In this classification, the TML is a microscopic model.
Its entities represent individual participants in traffic (e.g.
instances of Person and Vehicle). Nevertheless, ABM is
also suitable for mesoscopic models [19]. The design of the
metamodel can take advantage of existing approaches to in-
tegrate social aspects. In fact, Knowledge instances can al-
ready be attached to the overall model, providing means to
introduce information that affects groups of entities.

Regarding the internal modelling of individual partic-
ipants in traffic, there are not widely accepted approaches.
Models range from reactive (e.g. cellular automata in [22])
to deliberative (e.g. rules for manoeuvres in [21]). These
approaches can be combined in hierarchical architectures,
where there are several decision and/or acting abstraction
layers. An example of them is the Michon’s hierarchical
control model for drivers [23].

The proposed metamodel is suitable for both reactive
and deliberative agents. More deliberative individuals cor-
respond to agents that consider instances of the Knowledge
and Goal meta-classes. As these elements are optional, they
can be disregarded for reactive individuals. In both cases,
the way of making decisions and acting is encapsulated in
instances of the Evaluator and Actuator meta-classes. Their
adaptation to a given internal model will require specific in-
stances to accommodate the relevant information.

Currently, the metamodel supports the hierarchical
composition of most of its elements, but not the definition
of abstraction layers. Its concepts are organised in clusters,
and the composition pattern only represents whole-part re-
lationships among instances of the same meta-class.

Another issue is which features of traffic elements need
to be considered. Works like [10], [17], [20], [24] review
literature on the topic. Most of the proposed features can
be accommodated into the categories of the DVE [9] and
ABM [8] approaches that are the basis of the TML. More-
over, the metamodel is intentionally open in this aspect.
Meta-classes such as Knowledge, Goal, and Environment
are containers to classify other elements. They can be de-
tailed with additional constituents (i.e. through compose re-
lationships) or extended (i.e. inheritance). This supports in-
cluding new primitive features in models, as done in the case
study.

The development process adopted by most of the pre-
vious works, when it is considered, is based on manual cod-
ing. Sometimes, libraries and wizards support the process.
The advantages of adopting MDE approaches in this con-
text were already pointed out in the introduction [2]: explicit
representation of all the information involved, traceability of
artefacts, improved reusability, and higher involvement of
experts. Some works have already contributed in this line.

Existing works can provide artefacts for MDE devel-
opments. Models (e.g. [5], [6], [24]) contribute with con-
ceptual frameworks and parts of metamodels to define new
MLs. For instance, the case study incorporates concepts
from [10] at the model level, but they could be promoted
to the metamodel in a similar way if needed. Simulations
(e.g. [5], [6], [11]) help to understand the semantics of their

theoretical models. They can also be the source of code frag-
ments to reuse in code generation.

There are few examples of complete MDE approaches
in this field. Two of them are [7], [25]. The first one [7]
only offers a general discussion on the models considered at
different levels of abstraction. The second [25] applies the
Computer Automated Multi-Paradigm Modelling. It defines
a metamodel for traffic environments and vehicles (with-
out considering their components), specifies its semantics
with Petri Nets, and proposes using graph-rewriting rules for
transformations. The main drawback of these approaches is
the difficulties to extend them (e.g. adapting the metamodel
or integrating new tools), as they do not use formalisms and
standards widely adopted in the MDE community.

7. Conclusions

This paper has presented the TML that is the basis of a MDE
framework for traffic simulations. It also explained more
briefly the development guidelines and tools to use it. The
MDE approach facilitates the specification and exchange of
knowledge among experts, combining different theories and
simulation platforms, and reusing artefacts.

The TML is designed to provide a basis for integrating
different perspectives on traffic. It includes the key concepts
of traffic following the DVE model [9], and a general acting
model from ABM [8], [14]. Most of existing works can ac-
commodate their concepts into its categories. The organisa-
tion of its metamodel is based on clustering and inheritance
and composition hierarchies. It also allows specifying arbi-
trary interconnected structures among concepts. This design
supports introducing the concepts, relationships, and prop-
erties needed to deal with new modelling needs.

The use of the TML is based on a graphical model edi-
tor and a code generator. They are developed using Eclipse
projects [13], [15].

The case study illustrated the use of this infrastructure.
According to the initial goals, it has shown how the meta-
model can be used to integrate works on traffic [10], [11] and
produce compliant models. These models were the basis to
produce the simulation code. When introducing new types
of component, users only needed to map them to code tem-
plates, either reusing or developing these. After that, they
could automatically generate a new simulation. Most of this
effort can be reused for other simulations.

This work is ongoing research with several open is-
sues. Firstly, the TML needs to be tested with additional
theories about traffic to validate its primitives and structure.
For instance, the introduction of social norms or explicit in-
formation about time has not been checked. Secondly, the
current TML makes a limited used of OCL [16] constraints.
Some facilities could be added to manage them graphically
at the model level. This would allow, for instance, that ex-
perts limit the kinds of inheritance allowed in their mod-
els. It would be also interesting being able to inject real
data on traffic dynamics in simulations. This could add in-
formation on drivers’ usual manoeuvres in certain places,
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traffic jams, or traffic lights programming. Such functional-
ity requires incorporating the modelling of simulation in-
stances (i.e. instances of instances of the meta-classes in
the traffic metamodel), instead of managing them from the
code generator as now. Finally, more testing is required to
check whether this infrastructure is suitable to satisfy differ-
ent analysis needs, e.g. urban planning or norm changes.
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