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PAPER

Design and Evaluation of a Configurable Query Processing
Hardware for Data Streams

Yasin OGE†a), Student Member, Masato YOSHIMI†b), Takefumi MIYOSHI††c), Hideyuki KAWASHIMA†††d),
Hidetsugu IRIE††††e), Members, and Tsutomu YOSHINAGA†f), Senior Member

SUMMARY In this paper, we propose Configurable Query Process-
ing Hardware (CQPH), an FPGA-based accelerator for continuous query
processing over data streams. CQPH is a highly optimized and minimal-
overhead execution engine designed to deliver real-time response for high-
volume data streams. Unlike most of the other FPGA-based approaches,
CQPH provides on-the-fly configurability for multiple queries with its own
dynamic configuration mechanism. With a dedicated query compiler, SQL-
like queries can be easily configured into CQPH at run time. CQPH
supports continuous queries including selection, group-by operation and
sliding-window aggregation with a large number of overlapping sliding
windows. As a proof of concept, a prototype of CQPH is implemented
on an FPGA platform for a case study. Evaluation results indicate that a
given query can be configured within just a few microseconds, and the pro-
totype implementation of CQPH can process over 150 million tuples per
second with a latency of less than a microsecond. Results also indicate that
CQPH provides linear scalability to increase its flexibility (i.e., on-the-fly
configurability) without sacrificing performance (i.e., maximum allowable
clock speed).
key words: FPGA, query processing, data stream, sliding-window aggre-
gation, configurable hardware architecture

1. Introduction

An important and growing class of applications requires
the ability to process online data streams on the fly in or-
der to identify emerging trends in a timely manner. Data
Stream Management Systems (DSMSs) [1] deal with po-
tentially infinite streams of data that should be processed
for real-time applications, executing SQL-like continuous
queries [2] over data streams. It is essential for DSMSs that
incoming data be processed in real time, or at least near real-
time, depending on the applications’ requirements. In par-
ticular, low-latency and high-throughput processing are key
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requirements for systems that process unbounded and high-
rate data streams. In order to meet the requirements, there
is currently a great deal of interest in the potential of using
field-programmable gate arrays (FPGAs) as custom acceler-
ators for continuous query processing over data streams [3]–
[9].
Motivating Issue. One of the key challenges for DSMSs
is an efficient support for sliding-window queries [10] over
unbounded streams. A common limitation from which
most FPGA-based approaches suffer is that the existing ap-
proaches impose significant overhead on run-time query
registration/modification. It is mentioned in an earlier
work [11] that while supporting query modification at run
time is almost trivial for software-based techniques, they are
highly uncommon for custom hardware-based approaches
such as FPGAs. Moreover, as stated in another work [12],
given the dynamic environment of data streams, queries can
join and leave a streaming system at any time. It is there-
fore imperative for a query processing accelerator to support
on-the-fly configurability for easy adaptation to the dynamic
environment. To address the problem, Najafi et al. propose
Flexible Query Processor (FQP) [11] for sliding-window
join queries. To the best of our knowledge, however, sliding-
window aggregate queries—an important class of sliding-
window queries—are not discussed in their work [11].
Our Contribution. This paper presents Configurable
Query Processing Hardware (CQPH), a highly optimized
and minimal-overhead query processing engine, especially
designed for sliding-window aggregate queries. CQPH is
an FPGA-based query processor that contains a collection
of configurable hardware modules, each of which supports
(i) filtering, (ii) grouping, and (iii) aggregation. CQPH is
highly optimized for performance with a fully pipelined im-
plementation to exploit the increasing degree of parallelism
that modern FPGAs support. In addition, the proposed
design imposes minimal overhead on query configuration.
More specifically, CQPH can support registration of new
queries as well as modification of existing queries, without
a time-consuming compilation process which is a common
drawback of the previous approaches.

This paper is an extended version of the authors’ previ-
ous work [13]. The main contributions of the present paper
are summarized as follows.

• Three configurable hardware modules are designed to
execute sliding-window aggregate queries:

Copyright c© 2015 The Institute of Electronics, Information and Communication Engineers
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1. selection module with efficient support for multi-
ple selection conditions,

2. group-by module based on a scalable systolic ar-
chitecture, and

3. window-aggregation module supporting a large
number of overlapping sliding windows.

• Two-phase configuration approach is adopted to pro-
vide on-the-fly configurability for given queries:

1. a fully automated integration of the hardware
modules to implement CQPH on FPGA, and

2. run-time query configuration with a dedicated
query compiler implemented for CQPH.

• The proposed approach is evaluated in terms of

1. latency, throughput, and configuration time;
2. resource utilization and maximum clock fre-

quency with a case study; and
3. performance measurement of a prototype system

implemented on a Xilinx FPGA platform.

The proposed approach overcomes the limitations of the
previous work [4], [5], [13]–[15], by offering a great de-
gree of flexibility for on-the-fly query configuration. To the
best of our knowledge, this is the first paper that presents an
FPGA-based query processor that can support run-time con-
figuration of sliding-window aggregate queries with a large
number of overlapping sliding windows.

The rest of the paper is organized as follows. Section 2
briefly reviews related work. Section 3 provides design con-
cepts of the proposed approach. Section 4 describes the ar-
chitecture of CQPH. Section 5 evaluates the proposed de-
sign with some experimental results. Finally, Sect. 6 con-
cludes the paper with a summary.

2. Background and Related Work

2.1 Continuous Query Processing on FPGAs

Sadoghi et al. propose an event-processing platform called
fpga-ToPSS [7], and demonstrate high-frequency and low-
latency algorithmic trading solutions [8]. These projects
mainly focus on queries with selection operator. Alterna-
tively, another work [9] concentrates on the execution of SPJ
(Select-Project-Join) queries with multi-query optimization.
Other works [6], [16]–[18] focus on the acceleration of win-
dow join operators. Mueller et al. propose Glacier [4], [5], a
query-to-hardware compiler for continuous queries. Glacier
can compile a query that includes selection, group-by oper-
ation, and sliding-window aggregation. Finally, our previ-
ous work [14], [15] presents custom-designed hardware for
sliding-window aggregate queries. The above works require
full circuit compilation to implement dedicated hardware for
different kinds of query workloads. As a result, static com-
pilation process imposes significant overhead on dynamic
workload changes.

Fig. 1 Q1: “Find the maximum bid-price for the past 4 minutes and up-
date the result every 1 minute.”

2.2 Dynamic Re-Configuration of FPGAs

Most of the previous FPGA-based approaches suffer from
a common limitation, namely, lack of flexibility to adapt
to dynamic workload changes. One possible solution is
to exploit partial reconfiguration technology of FPGAs
along with prebuilt libraries of custom-designed compo-
nents. For example, Dennl et al. [19], [20] propose par-
tial reconfiguration-based approach to accelerate a subset of
SQL queries for traditional database systems.

Another promising solution is the approach adopted
in skeleton automata [21], [22] or Flexible Query Proces-
sor (FQP) [11]. The main idea is to implement a generic
template circuit along with a number of configuration
registers/memories. The major advantage of both works is
that they can offer run-time configurability without long run-
ning static compilation or the partial reconfiguration. CQPH
shares similar motivation with skeleton automata and FQP;
however, target workloads are quite different. The main fo-
cus of this paper differs from these works as we are primarily
concerned with sliding-window aggregate queries which are
not in the scope of the earlier work [11], [21], [22].

2.3 Sliding-Window Aggregate Queries

Figure 1 shows an example of a sliding-window aggregate
query [23]. Query Q1 introduces three parameters: RANGE,
SLIDE, and WATTR. RANGE indicates the size of the
windows; SLIDE indicates the step by which the windows
move; WATTR indicates the windowing attribute—the at-
tribute over which RANGE and SLIDE are specified [24].
Given the specification above, a bid stream is divided into
overlapping 4-minute windows starting every minute.

One of the common approaches for DSMSs to unblock
aggregate operators is to use special annotations, called
punctuations [25]. For example, an “end-of-window” punc-
tuation can be embedded into the bid stream for Query Q1

to unblock MAX aggregate operator at the end of each win-
dow. The formal definition and details of the punctuation
can be found in Tucker’s work [25].

3. Hardware Design Concept

3.1 Two-Step Aggregation: PLQ and WLQ

In this paper, we adopt a two-step aggregation method us-
ing panes [23]. Each sliding window is divided into non-
overlapping sub-windows called panes (we refer Fig. 1 and
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Fig. 2 of the authors’ previous work [13] for illustration).
In addition, a given aggregate query is decomposed into
two sub-queries: pane-level sub-query (PLQ) and window-
level sub-query (WLQ). For example, PLQ and WLQ of
Query Q1 are shown in Fig. 2 and Fig. 3, respectively. For
each pane, Query Q2 calculates an intermediate result (i.e.,
p-max) of the original query. After that Query Q3 accepts
p-max values as its input and produces a final result (i.e.,
w-max) for each window.

Fig. 2 Q2: “Find the maximum bid-price as p-max for the past 1 minute
and update the result every 1 minute.”

Fig. 3 Q3: “Find the maximum p-max value for the past 4 minutes and
update the result every 1 minute.”

Fig. 4 Comparison of the simple replication-based approach [15] (labeled “baseline”) and the pane-
based approach [13] (labeled “pane”). Each design is implemented on a XC6VLX240T FPGA for the
same window parameters (reprinted from the authors’ previous work [13]).

Fig. 5 Two-phase configuration: static configuration of FPGA (a) and dynamic configuration of
CQPH (b).

In CQPH, the pane-based approach is utilized to obtain
significant benefits in terms of performance (i.e., maximum
allowable clock frequency), area (i.e., hardware resource
utilization), and scalability. In particular, the proposed de-
sign does not suffer from the scalability problems observed
in Glacier [5] and our previous work [14], [15] (see Fig. 4 (a)
and Fig. 4 (b)). We can refer to the previous work [13] for
further details.

3.2 Two-Phase Configuration Approach

In this paper, we adopt two-phase configuration approach to
support on-the-fly configuration of continuous queries, in-
stead of implementing a static query processing hardware
that is fully tailored for a specific query. The basic idea of
the two-phase configuration approach is illustrated in Fig. 5.
The proposed approach is based on static and dynamic con-
figuration mechanisms.
Static Configuration of FPGA. CQPH is designed as a
parameterized HDL model; therefore, static configuration
parameters should be provided to generate an application-
specific CQPH instance (see Table 1). The implementation
of CQPH follows a normal FPGA design flow as shown in
Fig. 5 (a). Given a set of static configuration parameters,
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Table 1 List of statically configured parameters

Stream schema (Tuple Width, # of Attributes)
Pane Buffer Size (Data Width, # of Entries)
# of Selection Predicate Modules (Sect. 4.1)
# of Boolean Expression Trees (Sect. 4.1)
# of Group-by Manager Modules (Sect. 4.2)
# of Aggregation Pipelines (Sect. 4.3)
# of Pipeline Stages of Union (Sect. 4.4)

Fig. 6 Black-box view of a configurable hardware module.

VHDL description of CQPH is fed to a standard FPGA tool
chain (e.g., synthesis, place-and-route) to generate the ac-
tual low-level representation of the FPGA-specific circuit.
It should be noted that users are required to go through the
static configuration process only once to implement CQPH
prior to run-time execution of continuous queries.
Dynamic Configuration of CQPH. In order to support
run-time configuration of continuous queries, we have im-
plemented a dedicated parser/compiler, CQPH-compiler,
which can compile continuous queries into query configu-
ration data for CQPH. In the proposed design, query con-
figuration data are divided into a set of configuration tu-
ples which are then streamed into CQPH. Figure 5 (b) illus-
trates the compilation process of continuous queries to cre-
ate query configuration data for CQPH. Note that the compi-
lation process of CQPH does not require a time-consuming
synthesis process of FPGA. As a result, CQPH can provide
a significant degree of flexibility for run-time query config-
uration.

CQPH template design consists of a number of config-
urable hardware modules. Figure 6 illustrates a black-box
view of a configurable hardware module and its wiring in-
terface. Each hardware module has its own bit flag field and
data field as connection interfaces. It should be noted that
each hardware module adheres the same wiring interface to
connect another module. For example, datum on the data
field is considered as a part of the query configuration data
(i.e., a configuration tuple) when a configuration flag of the
bit flag field is asserted (i.e., set to logic “1”).

Each configuration tuple consists of two main parts:
(i) configuration data field, and (ii) target ID field. As its
name suggests, configuration data field contains query con-
figuration data for a specific hardware module. Target ID

Fig. 7 Q4: Template of selection-based filtering.

Fig. 8 Q5: Template of window-based aggregation.

field contains a unique identifier assigned to each config-
urable hardware module. With the proposed approach, users
can easily update or modify configuration registers of each
hardware module to change the behavior of a programmable
hardware block at run time.

3.3 Supported Capabilities of CQPH

The current prototype of CQPH can be configured to execute
continuous queries that follow certain patterns. In particu-
lar, CQPH supports queries from simple filtering to window-
based aggregation (see Fig. 7 and Fig. 8). In Query Q4 and
Q5, any expression between ’<’ and ’>’ can be configured
at run time (i.e., dynamically configurable via configuration
registers). This is a significant difference between CQPH
and a static FPGA-based query processor. In fact, CQPH
enables users to add, modify or remove continuous queries
at negligible cost compared to Glacier [5] and our previous
work [14], [15].

4. CQPH Architecture

In this section, we present the details of CQPH architec-
ture. An overview of the CQPH architecture is illustrated
in Fig. 9. In the proposed design, we adopt push-based pro-
cessing model with a fully pipelined implementation of the
configurable hardware modules. Arrows in Fig. 9 represent
the direction of data flow between each module, and there is
no loopback connections between any two modules. CQPH
architecture designed this way remains fully pipelined and
operates in a strict streaming fashion at wire-speed rate.
This guarantees wire-speed performance and CQPH can ac-
cept one input tuple per clock cycle independent of the query
workload.

4.1 Selection Operator

Shared selection module (see the bottom of Fig. 9) deter-
mines whether or not an incoming tuple satisfies a given set
of selection predicates. A selection predicate, or simply a
predicate, specifies a condition that is either true or false
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Fig. 9 Overview of the data flow of CQPH Architecture.

Fig. 10 Boolean expressions supported by CQPH.

about an input tuple. In SQL-like queries, a selection pred-
icate is typically given as a Boolean expression in WHERE
clauses. The current prototype of CQPH only accepts predi-
cates on fixed-length attributes; however, it can still support
different kinds of selection conditions, ranging from a single
predicate to complex Boolean expressions (see Fig. 10).

In the proposed design, the shared selection module
consists of two types of configurable hardware modules:
(i) selection predicate module and (ii) binary reducer mod-
ule. These hardware modules do not have to be allocated to
queries statically. Rather, one can assign an arbitrary num-
ber of selection predicates for a specific query at run time.
In other words, the same circuit can be utilized for either
many queries each of which is assigned to a single predi-
cate or fewer queries with complex Boolean expressions. In
either case, the total number of the selection predicate mod-
ules limits the number of Boolean expressions that can be
processed simultaneously. For example, Fig. 11 illustrates
a simplified block diagram of the shared selection module,
which is assigned to Query Q6 ∼Q8 (see Fig. 12).

With the proposed design, each Boolean expression

Fig. 11 A simplified block diagram of the shared selection module in-
stantiated with the following parameters:
(i) # of selection predicate modules = 4 (Stage 1)
(ii) # of Boolean expression trees = 3 (Stage 2)

Fig. 12 Q6 ∼Q8: “Given an input stream S:<A, B, C>, select all tuples
that satisfy predicates of each query.”

tree (i.e., Stage 2 of Fig. 11) can be configured to evaluate
a selection condition, by sharing the results of the selection
predicate modules (i.e., Stage 1 of Fig. 11). For this purpose,
CQPH-compiler keeps track of information about the con-
ditions that are already assigned to each module. When a
new query is registered, CQPH-compiler compares the new
Boolean expression with currently registered ones and de-
cides whether it is possible to share any of selection predi-
cates. In contrast, when a registered query is removed, cor-
responding modules are cleared unless these modules are
shared by the other queries.

Recall from Fig. 6 that the wiring interface of each
module consists of a bit flag field and data field. The valid
flags of Boolean expression trees are integrated into the bit
flag field of the shared selection module. It should also be
mentioned that the shared selection module simply forwards
data field to the next module. Therefore, for example, when
valid flag 0 and 2 are asserted (i.e., set to logic “1”) and
valid flag 1 is negated (i.e., set to logic “0”), datum on the
data field is considered as a valid tuple for Query Q6 and Q8,
but not for Q7.

4.2 Group-by Operator

In the proposed design, we regard the group-by operation as
a tuple-routing problem. As shown in Fig. 9, each Group-
by Manager (GM) module accepts a new tuple from West
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Fig. 13 Pseudo code of the routing logic for queries with a GROUP-BY
clause.

Fig. 14 Simplified version of the routing logic for queries without a
GROUP-BY clause.

port and forwards it to either (i) East port or (ii) both of the
two output ports (i.e., North and East ports). In fact, there
are two kinds of routing logic inside a GM module: one
for queries with a GROUP-BY clause (see Fig. 13) and the
other for queries without a GROUP-BY clause (see Fig. 14).
Since the latter is a simplified version of the former, we fo-
cus on the former case in the following example.

Figure 15 illustrates the basic idea of how input tuples
are processed by GM modules. Each GM module includes
a Query ID (qid) register which can be configured at the
dynamic-configuration phase. The example in Fig. 15 as-
sumes that GMn−1 and GMn have already been configured
for qid = 0. Similarly, GMn+1 has been configured for
qid = 1. These IDs are related to the valid flags of each
tuple, which means that qid 0 and qid 1 are related to valid
flag 0 and valid flag 1, respectively.

According to the given routing logic, input tuples
are processed based on the valid flag fields and grouping-
attribute value. For instance, at the time t = t0, GMn−1 re-
ceives a new tuple which belongs to Group X. Notice that

Fig. 15 A simple example for the group-by operation.

valid flag 0 is asserted and this means that the input tuple is
valid for qid 0. Since GMn−1 is not yet assigned to any group
(i.e., Grp=Null), Group X is registered to GMn−1 at the next
clock cycle (i.e., t = t0 + 1). At the same time, the input
tuple is forwarded to both North (aggregation pipeline) and
East (next GM module) ports. It is also important to note
that valid flag 0 is negated to indicate that the corresponding
tuple has already been processed for qid 0.

Note that after the time t = t0, GMn−1 takes responsibil-
ity for tuples with Group X and the other tuples are simply
bypassed to GMn. For example, when t = t0 + 1, GMn−1 re-
ceives a new tuple with Group Y, which is simply bypassed
to GMn at the next clock cycle (i.e., t = t0 + 2). In contrast,
when t = t0 + 2, GMn−1 receives a new tuple with Group X.
In this case, the input tuple (with Group X) is forwarded to
both North and East ports with valid flag 0 negated as shown
in Fig. 15.

For those queries with a GROUP-BY clause, each ag-
gregation pipeline receives tuples from one group only. In
addition, incoming tuples are always processed on a first-
come-first-served basis, by aggregation pipelines indepen-
dently of each other. It should be also mentioned that, for
those queries without a GROUP-BY clause, GM modules
use the simplified version of the routing logic (i.e., Fig. 14).
In this case, input tuples are routed based only on valid flag
fields; therefore, an aggregation pipeline can receive differ-
ent kinds of tuples.

In the current implementation of CQPH-compiler, the
compiler requires the maximum number of groups that
should be handled by CQPH. In practice, the total number
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Fig. 16 A simplified block diagram of the aggregation module that in-
cludes four sub-modules (i.e., aggregate circuits): COUNT, SUM, MIN,
and MAX.

of GM modules provisioned in the CQPH limits the num-
ber of groups (or queries) that can be processed simultane-
ously. Note that CQPH can support the same order of groups
as Glacier [5] (e.g., less than a hundred). If the number of
groups exceeds the limit of CQPH at run time, these groups
can be obtained from East port of the last GM module (see
the dashed arrow of GMN in Fig. 9). By using a similar ap-
proach as in Ibex [26], these groups could be bypassed to a
host system for further processing (though the processing of
bypassed tuples is out of scope of this paper).

4.3 Window-Aggregation Operator

Window-aggregation operators are implemented based on
our previous work [13]. In particular, the current version
of CQPH can support the following aggregate functions:
COUNT, SUM, MIN, and MAX. For the AVERAGE func-
tion, the division (i.e., SUM/COUNT) can be performed by
software after CQPH computes COUNT and SUM values
for each window. Note that these aggregate functions can be
decomposed into pane-level and window-level sub-queries
(i.e., PLQ and WLQ) [13]. As shown in Fig. 9, a pair of
PLQ and WLQ is implemented in a pipelined fashion with
a pane buffer. As described in Sect. 4.2, each aggregation
pipeline can be mapped to a group or query at run time. With
the proposed design, the multi-pipeline architecture allows
users to execute multiple continuous queries concurrently.

It is important to note that each aggregation module
processes incoming tuples immediately after arrival, rather
than batching them up until a pane or window closes. In
particular, PLQ and WLQ modules do not store all of the
incoming tuples. Instead, CQPH adopts a similar approach
as in Glacier [5] and the input tuples are directly forwarded
to aggregation circuits inside PLQ or WLQ module (see
Fig. 16). In fact, this approach has the advantage that each
aggregation circuit needs to provide storage just for the
amount of state it requires (i.e., a fixed amount of state),
rather than maintaining the entire pane or window [5]. In
other words, each aggregate circuit incrementally computes
its own aggregate value and only stores the current (i.e., par-
tial) result of the aggregation.

Each aggregation module requires two control signals:
enable input stream (eis) and end of stream (eos) as shown in

Fig. 17 Generation of eis and eos signals for PLQ.

Fig. 16. Note that these signals can be generated with a sim-
ple counter for count-based windows whereas time-based
windows require additional logic to generate the control sig-
nals. For example, Fig. 17 describes how eis and eos sig-
nals can be generated for a time-based window (e.g., PLQ).
Whenever eis is asserted, data field should be considered as
a valid tuple and the aggregation module accepts the input
tuple. Once the input stream reaches the end of the current
pane, eos is asserted and the aggregate value is emitted to
the upstream data path. Interested readers can refer to the
authors’ previous work [13] for more details.

4.4 Union Operator

From a data flow point of view, a union operator accumu-
lates several source streams into a single output stream [5].
CQPH adopts a similar approach as that of Glacier [5] to
implement a union operator. In CQPH, the union module
is implemented in a pipelined fashion, and the number of
pipeline stages (NS) can be given as a static configuration
parameter. A typical value of NS is one or two, depending
on the size of the union module. Note that there is a trade-off
between latency and the maximum clock frequency. A large
value of NS imposes a latency cost (i.e., two clock cycles per
stage); however, this can increase the operating frequency
by reducing the critical path delay of the union module.

5. Evaluation

5.1 Latency and Throughput Characteristics

Latency. Latency directly corresponds to the observable re-
sponse time. Table 2 summarizes latencies of each opera-
tion in CQPH. NG and NS represent the number of Group-
by Manager modules and the number of pipeline stages of
Union module, respectively. Latency is measured in terms
of the number of the clock cycles elapsed in the circuit. In
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Table 2 Latency and issue rate of each operation

Latency Issue Rate

Lower Upper
Selection 2 2 1
Group-by 1 NG 1
Window Aggregation 6 6 1
Union 2NS + 2 2NS + 2 1

Overall Operations 2NS + 11 NG + 2NS + 10 1

Table 3 Dynamic configuration time for a given query

Lower Upper

Selection Predicate 0 NSP = 2n, n ∈ Z+
Binary Reducer 1 NSP − 1
Group-by Manager 1 NG

Pane-level Sub-query 2 2NG

Window-level Sub-query 2 2NG

Total Configuration Time 6 2NSP + 5NG − 1

Table 2, the lower bound indicates the minimum latency
whereas the upper bound corresponds to the maximum la-
tency. For instance, assuming NS = 1, CQPH can produce
the first output tuple of each window in just 13 clock cycles.
In other words, the proposed design can respond with a la-
tency of only 130 nanoseconds when clocked at 100 MHz.
Throughput. Issue rate is defined as the number of tuples
that can be processed per clock cycle. As shown in Table 2,
issue rate of each operation is 1 tuple/cycle, which means
that each operator can accept a new tuple every clock cycle.
Note that CQPH operates in a strict streaming fashion inde-
pendent of the query workload, and the maximum through-
put of the circuit is directly dependent on its clock rate. For
example, the proposed design can process up to 100 million
tuples per second when clocked at 100 MHz.

5.2 Dynamic Configuration Time

Table 3 shows dynamic configuration time of CQPH in
terms of the number of clock cycles. NG and NSP represent
the number of Group-by Manager modules and the num-
ber of Selection Predicate modules, respectively. The lower
bound of Table 3 corresponds to a simple sliding-window
aggregate query that has neither WHERE nor GROUP-BY
clause. The upper bound represents a more generic form
with WHERE and GROUP-BY clause (see Query Q5). In
either case, the proposed design can offer run-time config-
urability at negligible cost (e.g., the order of microseconds)
compared to query-tailored circuits [5], [14], [15] (e.g., sev-
eral minutes or even up to several hours).

5.3 Case Study

This case study considers the same financial trading appli-
cation as the previous work [5], [13]. We assume an input
stream with the following schema: <Symbol, Price, Vol-
ume, Time>. In this application, over a million tuples can
arrive per second, and at the same time, latency is critical

Table 4 Static configuration parameters

Stream schema 128 bits, 4 attributes
Pane Buffer Size 64 bits, 2048 entries
# of Selection Predicate Modules NSP ∈ {2, 4, 8, 16, 32, 64}
# of Boolean Expr. Trees NG ∈ {2, 4, 8, 16, 32, 64}
# of Group-by Manager Modules NG

# of Aggregation Pipelines NG

# of Pipeline Stages of Union NS =

{
1 if NG ≤ 8
2 otherwise

and measured in units of microseconds [5]. It is therefore
crucial for CQPH to meet these performance requirements.
For the above application, we have implemented CQPH on
a Kintex-7 XC7K325T FPGA (50,950 slices, 407,600 reg-
isters, 203,800 LUTs, 445 BRAMs) [27]. The configuration
parameters are given in Table 4. Xilinx ISE 14.4 is used dur-
ing the implementation process (e.g., synthesis and place-
and-route). CQPH is synthesized with a timing constraint of
6.37 ns for each configuration, which yields the target clock
frequency of 156 MHz.

Note that when sufficient I/O bandwidth is available,
the theoretical peak performance of CQPH can be calculated
as follows (see Eq. (1)).

Tpeak = d × f (1)

where:

Tpeak = theoretical peak throughput
d = data width of input tuple
f = operating clock frequency

For example, data width is 128 bits in the case study (see
Table 4) and if we assume a clock rate of 156 MHz, the peak
performance is equivalent to nearly 20 Gbps (i.e., 128 bits ×
156 MHz = 19,968 Mbps).

5.3.1 Hardware Resource Utilization and Performance

Hardware Resource Utilization. The resource consump-
tion is shown in Fig. 18. Each graph represents the resource
consumption in terms of percentages of the total available
resources on the target FPGA. These graphs indicate trade-
offs between area (i.e., resource utilization) and flexibility.
For example, all four graphs (i.e., Registers, LUTs, Slices,
BRAMs) of Fig. 18 (a), 18 (b), and 18 (c) linearly increases
with increasing NG. These graphs suggest that CQPH pro-
vides linear scalability in terms of the hardware resource
utilization. Furthermore, each graph of Fig. 18 (d), 18 (e),
and 18 (f) indicates a relatively small increase with respect
to NSP. This means that we can pre-allocate a large number
of selection predicate modules to support complex Boolean
expressions.
Performance. Each implementation meets the timing con-
straint of 6.37 ns and achieves the target clock frequency
of 156 MHz. For each configuration, we have obtained
almost similar results (i.e., above 156 MHz) from post-
place & route static timing report, which is provided by
Xilinx’s Timing Analyzer tool. Since the issue rate is



OGE et al.: DESIGN AND EVALUATION OF A CONFIGURABLE QUERY PROCESSING HARDWARE FOR DATA STREAMS
2215

Fig. 18 Overall resource consumption of FPGA to implement CQPH for different configuration pa-
rameters.

equal to 1 tuple/cycle, CQPH can process up to 156 mil-
lion tuples/second. As for latency, CQPH can respond in
the order of microseconds with a cycle time of 6.37 ns.
These data lead us to the conclusion that the proposed de-
sign can accomplish both high-throughput (over 150 million
tuples/second) and low-latency (in the order of microsec-
onds) requirements of the application.

It is also important to emphasize that the maximum
clock frequency remains unaffected by the increasing num-
ber of NSP or NG. The fact that CQPH can still sustain a
given clock rate is a good indication for the scalability. In
other words, by increasing NSP or NG, we can easily increase
the flexibility and the workload capacity of CQPH. For ex-
ample, if we use a larger FPGA and increase NG value, the
maximum number of groups can be increased for GROUP-
BY aggregate queries. Moreover, the number of aggregation
pipelines (i.e., NG) determines the upper limit on the num-
ber of parallel queries that can be executed by CQPH at one
time. For instance, if we assume simple aggregate queries
(without a GROUP-BY clause) and increase NG from 64 to
128, CQPH can simultaneously execute up to 128 parallel
queries without sacrificing the performance (i.e., through-
put).

5.3.2 Experimental Measurement

A key aspect of using an FPGA for data stream process-
ing is its flexibility that enables us to insert custom logic
into an existing data path [5]. For example, CQPH can be
tightly integrated with the physical network interface [28]
inside an FPGA. Our experiments are based on a KC705

Fig. 19 Q9: Template of a benchmark query.

Table 5 Query parameters

<AGGREGATE> : count(*), max(Price), min(Price),
sum(Price), max(Volume),
min(Volume), sum(Volume)

<SYMBOL LIST> : subset of symbols
e.g., ’GOOG’, ’AAPL’, ’YHOO’, etc.

<WIN RANGE> : 60, 300, 600, 1800
<WIN SLIDE> : 1, 5, 10, 30

board [27], which includes a Gigabit Ethernet interface and
a 1 GB DDR3 SDRAM. The experimental system consists
of a KC705 board and a host pc, which are directly con-
nected by a dedicated Ethernet cable. In this experiment,
we use random query sets each of which consists of 1, 2,
4, 8, 16, 32, or 64 queries. Each query is based on a tem-
plate query given in Fig. 19. From Table 5, a single value
is selected for each of <AGGREGATE>, <WIN RANGE>, and
<WIN SLIDE>. As for <SYMBOL LIST>, we choose 1, 4, or
16 different symbols at random, respectively.
Experiment 1. We have measured the effective through-
put of CQPH (NSP = 64 and NG = 64) on the KC705
FPGA board. Results of the experiments show that sliding-
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window aggregate queries on the CQPH achieves an effec-
tive throughput up to around 760 Mbps for each query set.
This is the upper bound of the available bandwidth that the
network interface [28] can handle without packet loss. It
should be emphasized that this is equivalent to nearly 6 mil-
lion tuples per second, which means that the proposed setup
can process significantly high tuple rates at wire-speed with
zero packet loss.
Experiment 2. Since the Gigabit Ethernet is not sufficient
to saturate CQPH, we use the DDR3 memory as a data
source to emulate a 10 Gigabit Ethernet speed. In this setup,
we have implemented a dedicated AXI master interface for
CQPH, and a Xilinx AXI Interconnect core IP is used to
connect the CQPH and the DDR3 memory. It should be
mentioned that bus width of the AXI interconnect and data
width of the AXI master interface are both set to 128 bits.
In addition, we set 100 MHz of clock frequency for all hard-
ware components including (i) the AXI interconnect, (ii) the
AXI master interface of the CQPH, and (iii) the CQPH it-
self to achieve over 10 Gbps throughput; namely, the theo-
retical peak throughput of this setup is 128 bits × 100 MHz
= 12,800 Mbps (recall from Eq. (1)).

By design, CQPH can accept one input tuple per clock
cycle; therefore, in order to achieve the theoretical peak per-
formance, it is important to provide the CQPH with a new
tuple every clock cycle. In practice, however, the AXI in-
terconnect and the AXI master interface become a critical
bottleneck due to the AXI protocol overhead. In fact, when
input tuples are transferred from the DDR3 memory via the
AXI interconnect, the CQPH can achieve over 10,400 Mbps
effective throughput for each query set in our experiments.
This corresponds to the memory access speed of the eval-
uation setup; thus, in effect, the CQPH is limited by the
memory read speed of the AXI master interface. Neverthe-
less, these results suggest that the CQPH can still support
even faster 10 Gigabit Ethernet at line rate when clocked at
100 MHz.

6. Conclusions

In this paper, we have presented Configurable Query
Processing Hardware (CQPH), a highly optimized and
minimal-overhead query processing engine for data streams.
Evaluation results indicate that CQPH can deliver real-time
response (in the order of microseconds) for high-volume
data streams (over 150 million tuples per second). It is also
indicated that CQPH provides linear scalability in terms of
area with a constant clock rate. Finally, our experiments
demonstrate wire-speed performance by directly manipulat-
ing the network packets. One direction for future work is to
utilize the off-chip memory resources and integrate CQPH
into a DSMS. Another direction is to implement CQPH on
multiple FPGAs to achieve further scalability.
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