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PAPER

Computationally Efficient Class-Prior Estimation under Class
Balance Change Using Energy Distance

Hideko KAWAKUBO†a), Marthinus Christoffel DU PLESSIS††b), Nonmembers,
and Masashi SUGIYAMA††c), Member

SUMMARY In many real-world classification problems, the class bal-
ance often changes between training and test datasets, due to sample selec-
tion bias or the non-stationarity of the environment. Naive classifier train-
ing under such changes of class balance systematically yields a biased so-
lution. It is known that such a systematic bias can be corrected by weighted
training according to the test class balance. However, the test class balance
is often unknown in practice. In this paper, we consider a semi-supervised
learning setup where labeled training samples and unlabeled test samples
are available and propose a class balance estimator based on the energy dis-
tance. Through experiments, we demonstrate that the proposed method is
computationally much more efficient than existing approaches, with com-
parable accuracy.
key words: class balance change, class-prior estimation, energy distance

1. Introduction

A fundamental assumption in supervised machine learning
is that training and test data follow the same probability dis-
tribution. However, in real-world data, this assumption does
not necessarily hold due to intrinsic sample selection bias
and non-stationarity of the environment [1], and naive train-
ing yields a biased solution [2]. In this paper, we consider
the situation called the class balance change in classifica-
tion [3], where only the class-prior probabilities change be-
tween the training and test phases. In principle, the bias
caused by the class balance change can be corrected by
weighted training according to the class ratio of the test data.
However, in practice, the test class balance is often unknown
and thus it needs to be estimated from data.

So far, semi-supervised class balance estimators from
labeled training samples and unlabeled test samples have
been developed, which are based on fitting a mixture of
class-wise training input distributions to the test input dis-
tribution. A seminal method [4] adopts the expectation-
maximization (EM) algorithm [5] to estimate the class ratio.
Another earlier paper [3] showed that the EM-based method
can be interpreted as indirectly fitting a mixture of class-
wise training input distributions to the test input distribu-
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tion under the Kullback-Leibler (KL) divergence [6], and the
EM-based method was improved by directly estimating the
KL divergence without density estimation [7], [8]. Further-
more, to overcome the high sensitivity of the KL divergence
to outliers [9], robust variants based on the Pearson diver-
gence [10] and the L2 distance were developed [3], [11].

Another line of research uses the maximum mean dis-
crepancy (MMD) [12] for the mixture model fitting, which
measures the distance between embeddings of probabil-
ity distributions in a reproducing kernel Hilbert space
(RKHS) [13]. A sophisticated implementation was pro-
posed recently that combines MMD with multiple kernel
learning (MKL) [14].

The divergence-based methods reviewed above [3],
[11] are equipped with cross-validation (CV), and therefore
all tuning parameters can be objectively optimized. Thanks
to this property, the divergence-based methods work very
well in practice, although CV is computationally rather ex-
pensive. On the other hand, choosing a kernel function in the
MMD-based method is not straightforward because chang-
ing the kernel function corresponds to changing the error
metric and thus CV cannot be employed. Using the me-
dian distance of samples as the Gaussian kernel width is a
popular heuristic in MMD [12], but this can cause signifi-
cant performance degradation in practice [15]. Using MKL
for MMD is potentially powerful, but this implementation
is computationally highly demanding and thus less practi-
cal [14].

In this paper, we propose a novel class balance esti-
mator based on energy distance [16]. Energy distance may
be interpreted as a special case of MMD with a particular
kernel function [17], and thus our contribution in this paper
can be regarded as providing a practical choice of the ker-
nel function to the MMD-based method. Since the proposed
method does not have any tuning parameter, it is extremely
simple and computationally highly efficient. Through ex-
periments, we demonstrate the practical usefulness of the
proposed method.

2. Problem Formulation

In this section, we formulate the problem of class-prior esti-
mation under semi-supervised leaning setup.

Suppose that we are given a set of training input-output
paired samples,

Copyright c© 2016 The Institute of Electronics, Information and Communication Engineers
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{(xi, yi) | xi ∈ Rd, yi ∈ {1, . . . , c}}ni=1,

where d denotes the dimensionality of input vector xi and
c denotes the number of classes. The training samples are
assumed to be independent and identically distributed to
a probability distribution with density p(x, y). Let ny be
the number of training samples in class y, which satisfies∑c

y=1 ny = n.
In addition to the training samples, suppose that we are

given a set of input-only test samples {x′i′ }n
′

i′=1 which are in-
dependent and identically distributed to another probability
distribution with density

p′(x) =
c∑

y=1

p′(x, y).

Note that test output samples {y′i′ }n
′

i′=1 for {x′i′ }n
′

i′=1 are not pro-
vided, i.e., we are considering the semi-supervised learning
setup [18].

We assume that the class-conditional input densities
are common between the training and test samples, but the
class-prior probabilities are different:

p(x|y) = p′(x|y) and p(y) � p′(y).

Note that, under this setup, the training and test joint den-
sities p(x, y) and p′(x, y) as well as the training and test
input densities p(x) and p′(x) are generally different. Our
goal is to estimate p′(y) from the labeled training samples
{(xi, yi)}ni=1 and the unlabeled test samples {x′i′ }n

′
i′=1.

The basic strategy to directly estimate p′(y), proposed
in [3], is to fit a mixture of class-wise training input densi-
ties,

pθ(x) =
c∑

y=1

θy p′(x|y) =
c∑

y=1

θy p(x|y),

to a test input density p′(x) under some divergence measure.
Here {θy}cy=1 are parameters that satisfy

∀y 0 ≤ θy ≤ 1 and
c∑

y=1

θy = 1,

which correspond to {p′(y)}cy=1. A naive approach to solv-
ing this fitting problem is the two-step procedure of first
estimating densities p(x|y) and p′(x) from training and test
samples and then approximately computing a divergence be-
tween pθ(x) and p′(x). However, since density estimation is
known to be a hard statistical inference problem [19], avoid-
ing density estimation in divergence estimation is more sen-
sible [20]. In the next section, we review existing class-prior
estimators that do not involve density estimation under var-
ious divergence measures.

3. Existing Class-Prior Estimators

In this section, we review existing class-prior estimators un-
der various divergences.

3.1 Kullback-Leibler Divergence

The Kullback-Leibler (KL) divergence [6] is one of the stan-
dard divergence measures in statistics and machine learning,
and the KL divergence from pθ to p′ is defined as follows:

KL(pθ‖p′) =
∫

pθ(x)log
pθ(x)
p′(x)

dx.

The idea of direct KL divergence estimation without density
estimation [7], [8] is to directly approximate the density ra-
tio function pθ(x)

p′(x) by a model rβ(x), parameterized with β, by

minimizing the generalized KL divergence from pθ to rβp′:

gKL(pθ‖rβp′) =
∫

pθ(x)log
pθ(x)

rβ(x)p′(x)
dx

− 1 +
∫

rβ(x) p′(x)dx.

As the density ratio model, let us employ the Gaussian ker-
nel model,

rβ(x) =
b∑

l=0

βlψl(x), (1)

where

ψ0(x) = 1 and ψl(x) = exp
(
−‖x − xl‖2

2σ2

)
. (2)

Then the regularized empirical optimization problem is
given by

max
β

[ c∑
y=1

θy

ny

∑
i:yi=y

log

( b∑
l=0

βlψl(xi)

)

− 1
n′

n′∑
i′=1

b∑
l=0

βlψl(x′i′ ) − λ
b∑

l=1

β2
l

]
,

where the second term corresponds to the normalization∫
rβ(x)p′(x)dx = 1, the third term is the quadratic regular-

izer and λ ≥ 0 is the regularization parameter. Note that tun-
ing parameters such as σ and λ can be optimized by cross-
validation.

With the solution β̂ of the above optimization problem,
the KL divergence KL(pθ‖p′) can be estimated as

K̂L(pθ‖p′) =
c∑

y=1

θy

ny

∑
i:yi=y

logrβ̂(xi).

The class-prior {θy}cy=1 that minimizes the above KL di-
vergence is typically chosen by searching from a set of can-
didate values [3].

3.2 Pearson Divergence

The Pearson (PE) divergence [10] is defined as
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PE(pθ‖p′) =
∫

p′(x)
( pθ(x)

p′(x)
− 1

)2

dx.

An advantage of the PE divergence over the KL divergence
is that it does not include the log function, which is highly
non-linear around zero, and thus estimation with the PE di-
vergence would be more robust against outliers.

Furthermore, the PE divergence can be directly esti-
mated without density estimation analytically [21]. More
specifically, the density ratio function pθ(x)

p′(x) is modeled in
the same way as Eq. (1), and the parameter β is learned to
minimize the squared error to the true density ratio:

min
β

∫
p′(x)

( pθ(x)
p′(x)

− rβ(x)
)2

dx.

With empirical approximation and �2 regularization, the so-
lution β̂ can be obtained analytically as

β̂ = min
β

[
β	Ĝβ − 2β	Ĥθ + λβ	Rβ

]
=

(
Ĝ + λR

)−1Ĥθ,

where λ ≥ 0 is the regularization parameter, R is the identity
matrix with the first element zero, Ĝ and Ĥ are defined as

Ĝl,l′ =
1
n′

n′∑
i′=1

ψl(x′i′ )
	ψl′ (x′i′ ),

Ĥl,y =
1
ny

∑
i:yi=y

ψl(xi),

and ψl(x) is a basis function defined in Eq. (2). Note that
tuning parameters such as σ and λ can be optimized by
cross-validation.

With the solution β̂, the PE divergence PE(pθ‖p′) can
be estimated as

P̂E(pθ‖p′) = β	Ĥθ − 1
2
β	Ĝβ − 1

2
.

The class-prior {θy}cy=1 that minimizes the above PE diver-
gence is typically chosen by searching from a set of candi-
date values [3].

3.3 L2 Distance

The KL and PE divergences are members of the f -
divergence class [22], [23], containing the density ratio
function pθ(x)

p′(x) . Another class of distance measures is the Lt

distance for t ≥ 0, which contains the density difference
function pθ(x) − p′(x):

Lt(pθ, p′) =
( ∫ ∣∣∣pθ(x) − p′(x)

∣∣∣tdx
) 1

t
.

Although density ratio function pθ(x)
p′(x) can be unbounded

(e.g., the ratio of Gaussian densities with the same variance
and different means), density difference function pθ(x) −

p′(x) is always bounded as long as pθ(x) and p′(x) are both
bounded. Thus, divergence measures based on the density
difference are expected to be more stable. Note that f -
divergences are invariant under transformation of x, while
the Lt distance is symmetric, i.e., Lt(pθ, p′) = Lt(p′, pθ).

The idea of direct L2 distance estimation without den-
sity estimation [11] is to directly approximate the density
difference function pθ(x) − p′(x) by a model fα(x) with pa-
rameter α estimated by minimizing the squared error:∫ (

fα(x) − (
pθ(x) − p′(x)

))2
dx.

Let us employ a Gaussian kernel density difference model,

fα(x) =
n+n′∑
l=1

αlψl(x),

where

ψl = exp
(
−‖x − cl‖2

2σ2

)
.

cl denotes (c1, . . . , cn+n′ ) = (x1, . . . , xn, x′1, . . . x′n′ ). With
empirical approximation and �2 regularization, the solution
α̂ can be obtained analytically as

α̂ = min
α

[
α	Uα − 2α	v̂ + λα	α

]
=

(
U + λI

)−1v̂,

where, for d being the dimensionality of x,

Ul,l′ = (πσ2)
d
2 exp

(
−‖cl − cl′ ‖2

4σ2

)
,

v̂l =
1
n′

n′∑
i′=1

ψl(x′i′ ) −
c∑

y=1

θy

ny

∑
i:yi=y

ψl(xi),

λ ≥ 0 is the regularization parameter and I is the identity
matrix. Note that tuning parameters such as σ and λ can be
optimized by cross-validation.

With the solution α̂, the L2 distance L2(pθ, p′) can be
estimated as

L̂2(pθ, p′) = 2̂v	α̂ − α̂	Uα̂.

The class-prior {θy}cy=1 that minimizes the L2 distance is
typically chosen by searching from a set of candidate val-
ues [11].

3.4 Maximum Mean Discrepancy

Maximum mean discrepancy (MMD) [24] measures the dis-
tance between embeddings of probability distributions in a
reproducing kernel Hilbert space (RKHS) [13].

Let x, x̌ and x′, x̌′ be samples drawn from the probabil-
ity distributions with densities pθ and p′, respectively, and ψ
be a characteristic kernel [24] such as the Gaussian kernel.
Then MMD is defined
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MMD(pθ, p′) = Ex,x̌∼pθ [ψ(x, x̌)] + Ex′,x̌′∼p′ [ψ(x′, x̌′)]
− 2Ex∼pθ,x̌′∼p′ [ψ(x, x̌′)],

where E denotes the expectation. For any characteristic ker-
nel ψ, MMD(pθ, p′) = 0 if and only if pθ = p′.

An advantage of MMD is that it can be immediately
estimated from samples. However a practical difficulty of
using MMD is that the performance depends on the choice
of kernel function ψ, and cross-validation cannot be used,
because changing the kernel function corresponds to chang-
ing the error metric. A popular heuristic in MMD is to
use the median distance of samples as the Gaussian kernel
width [12], although this does not always work well [15].
Recently, an MMD-based class-prior estimator was pro-
posed, which learns the kernel function by multiple kernel
learning [14]. Although this was shown to work well, it is
computationally very expensive.

4. Proposed Method

As shown above, the MMD-based class-prior estimator with
a single kernel can be computationally more efficient than
the methods based on the KL divergence, the PE divergence,
and the L2 distance because no cross-validation is included.
However, in practice, the choice of kernel functions is not
straightforward. In this section, we introduce another dis-
tance measure called the energy distance [16], and propose
to use it in class-prior estimation.

4.1 Energy Distance

The energy distance is defined as the weighted L2 dis-
tance between characteristic functions, which is the inverse
Fourier transform of the density function.

More specifically, the energy distance between pθ and
p′ is defined as follows:

ED(pθ, p′)

=

∫
Rd
‖φpθ (t) − φp′ (t)‖2

(
π

d+1
2

Γ
( d+1

2

)‖t‖d+1
)−1

dt,

where φp denotes the characteristic function of p, ‖ · ‖ de-
notes the Euclidean distance, and Γ(·) is the gamma function.
The energy distance has the following properties:

• ED(pθ, p′) = ED(p′, pθ),

• ED(pθ, p′) ≥ 0,

• ED(pθ, p′) = 0 if and only if pθ = p′.

An important property of the energy distance is that
ED(pθ, p′) can be equivalently expressed as

ED(pθ, p′) = 2Ex∼pθ,x̌′∼p′ ‖x − x̌′‖ − Ex,x̌∼pθ‖x − x̌‖
− Ex′,x̌′∼p′ ‖x′ − x̌′‖, (3)

under the mild assumptions that Ex∼pθ‖x‖ < ∞ and

Ex′∼p′ ‖x′‖ < ∞. Equation (3) allows us to immediately ob-
tain a sample approximation to the energy distance in the
same way as MMD. However, unlike MMD, there is no tun-
ing parameter such as the Gaussian kernel width. Below, we
propose to use the energy distance in class-prior estimation,
which we will demonstrate to be practically useful in the
next section.

Actually, the energy distance was shown to be a special
case of MMD [17], meaning that MMD with a certain choice
of kernels is reduced to the energy distance. Therefore, our
contribution in this paper can be regarded as providing a
practical choice of the kernel function in the MMD-based
method. The resulting proposed method does not contain
any tuning parameter, and thus it is extremely simple and
computationally highly efficient.

4.2 Class-Prior Estimation under Energy Distance

Here, we describe the procedure of class-prior estimation
based on the energy distance, which minimizes an empirical
approximation of ED(pθ, p′) with respect to θ.

4.2.1 Convexity of ED(pθ, p′) as a Function of θ

ED(pθ, p′) given by Eq. (3) can be more specifically ex-
pressed as

ED(pθ, p′) = 2
c∑

y=1

θyEx∼p(x|y),x̌′∼p′ ‖x − x̌′‖

−
c∑

y,y′=1

θyθy′Ex∼p(x|y),x̌∼p(x|y′)‖x − x̌‖

− Ex′,x̌′∼p′ ‖x′ − x̌′‖. (4)

Equation (4) can be compactly expressed as a function of θ
by

J(θ) = −θ	Aθ + 2θ	s,

where A is the c × c symmetric matrix and s is the c-
dimensional vector defined as

Ay,y′ = Ex∼p(x|y),x̌∼p(x|y′)‖x − x̌‖,
sy = Ex∼p(x|y),x′∼p′ ‖x − x′‖.

To solve min
θ

J(θ), let us begin with rewriting J(θ) using θ̇ =

(θ1, . . . , θc−1)	 and θc = 1 −∑c−1
y=1 θ̇y as follows:

J̇(θ̇) = θ̇	Bθ̇ − 2θ̇	 t +C, (5)

where C is a constant, B is the (c − 1) × (c − 1) symmetric
matrix and t is the (c − 1)-dimensional vector defined as

By,y′ = −Ay,y′ + Ay,c + Ac,y′ − Ac,c (6)

ty = −sy + Ay,c + sc − Ac,c.

For the function J̇(θ̇), we have the following theorem.
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Theorem 1: J̇(θ̇) defined by Eq. (5) is convex with respect
to θ̇.

The proof of Theorem 1 is given in Appendix A.
Especially in the binary case where c = 2, B is not a

matrix but a scalar given as

B = −A1,1 + 2A1,2 − A2,2

= ED
(
p(x|y = 1), p(x|y = 2)

)
> 0. (7)

Thus, J̇(θ̇) is strongly convex when c = 2.
On the other hand, for the strong convexity in general

multi-class cases where c > 2, let us express B defined by
Eq. (6) as the following block matrix:

B = Bc−1 =

[
Bc−2 bc−2

b	c−2 Bc−1,c−1

]
,

where Bc−2 denotes the (c− 2)-th leading principal minor of
Bc−1 and bc−2 = [B1,c−1, . . . , Bc−2,c−1]	. Then we have the
following theorem.

Theorem 2: In the multi-class classification cases where
c > 2, J̇(θ̇) is strongly convex, if and only if the following
conditions are satisfied.{

B1 > 0,
By,y − b	y−1B−1

y−1by−1 > 0 (y = 2, . . . , c − 1).

A proof of Theorem 2 is given in Appendix B.
Below, we will explain the intuition of the conditions

in Theorem 2, in case of c = 3. B1 > 0 is derived in the
same way as Eq. (7). B2 is defined as

B2 =

[
B1 b1

b	1 B2,2

]

=
1
2

[
2d13 d13 + d32 − d12

d23 + d31 − d21 2d23

]
,

where di j = ED
(
p(x|y = i), p(x|y = j)

)
. Let us consider

what the following condition indicates.

B2,2 − b	1 B−1
1 b1

=
1

4d13

{
4d13d32 − (d13 + d32 − d12)2}

=
1

4d13

(
2
√

d13d32 + d13 + d32 − d12
)×

(
2
√

d13d32 − d13 − d32 + d12
)

=
1

4d13

{( √
d13 +

√
d32

)2 − d12
}×

{
d12 − ( √

d13 −
√

d32
)2}

> 0. (8)

Equation (8) is equivalent to( √
d13 −

√
d32

)2
< d12 <

( √
d13 +

√
d32

)2
,

which is equivalent to∣∣∣ √d13 −
√

d32

∣∣∣ < √
d12 <

√
d13 +

√
d32.

This is satisfied if and only if the following three conditions
hold:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

√
d12 +

√
d23 >

√
d13,√

d21 +
√

d13 >
√

d23,√
d13 +

√
d32 >

√
d12.

Therefore, the condition B2,2 − b	1 B−1
1 b1 > 0 is equivalent to

the triangle inequalities which consist of the square root of
the energy distance.

4.2.2 Class-prior Estimation by Solving an Optimization
Problem

In the binary case where c = 2, J̇(θ̇) is strongly convex as
shown in 4.2.1. The optimal solution θ∗ can be obtained
analytically by

θ∗1 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
θ̃1 if θ̃1 ∈ [0, 1],

0 if θ̃1 < 0,

1 if θ̃1 > 1,

θ∗2 = 1 − θ∗1,
where

θ̃1 =
−s1 + A1,2 + s2 − A2,2

−A1,1 + 2A1,2 − A2,2
.

In practice, we approximate A and s from samples as

Ây,y′ =
1

nyny′

∑
i:yi=y

∑
j:y j=y′

‖xi − x j‖,

ŝy =
1

nyn′
∑
i:yi=y

n′∑
i′=1

‖xi − x′i′ ‖.

Then θ̃1 can be approximately computed as

θ̃1 ≈ −ŝ1 + Â1,2 + ŝ2 − Â2,2

−Â1,1 + 2Â1,2 − Â2,2

.

In multi-class cases where c > 2, the optimal solution
θ∗ may be obtained by solving the following quadratic pro-
gramming problem:

min
θ̇

J̇(θ̇) subject to ∀y θ̇y ≥ 0,
c−1∑
y=1

θ̇y ≤ 1.

An empirical approximation to ED(pθ, p′) given by Eq. (4)
can be expressed as

ÊD(pθ, p′) = 2
c∑

y=1

θy

nyn′
∑
i:yi=y

n′∑
i′=1

‖xi − x′i′ ‖

−
c∑

y,y′=1

θyθy′

nyny′

∑
i:yi=y

∑
j:y j=y′

‖xi − x j‖
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− 1

n′2

n′∑
i′=1

n′∑
j′=1

‖x′i′ − x′j′ ‖.

Then the empirical solution θ̂ can be obtained by solving the
following quadratic programming problem:

min
θ̇
θ̇	 B̂θ̇ − 2θ̇	 t̂ subject to ∀y θ̇y ≥ 0,

c−1∑
y=1

θ̇y ≤ 1,

where B̂ and t̂ are defined as

B̂y,y′ = −Ây,y′ + Ây,c + Âc,y′ − Âc,c,

t̂y = −ŝy + Ây,c + ŝc − Âc,c.

If ̂̇θ satisfies ̂̇θy ≥ 0 for all y and
∑c−1

y=1
̂̇θy ≤ 1, then we can

simply obtain the solution by

̂̇θ = B̂−1 t̂, θ̂c = 1 −
c−1∑
y=1

̂̇θy.

5. Experiments

In this section, we report experimental results. We com-
pared the performance of the proposed method, denoted by
ED, with the following four methods.
PE-DR†: The density-ratio method using the PE-divergence
estimator [3].
LSDD††: The density-difference method using the L2 dis-
tance estimator [11].
MMD: The MMD-based method with the single Gaussian
kernel [14], where the median distance of samples is used as
the Gaussian kernel width.
MMD-MKL†††: The MMD-based method with multiple
kernel learning (MKL) [14].

5.1 Binary Cases

First, we conducted experiments with binary classification
data. Table 1 shows the list of datasets we used, containing
the input dimensionality d, the number of training samples n
and the number of test samples n′. The class ratio of training
samples was fixed at 1 : 1, while the class ratios of test
samples were set according to the selected true class-priors
θ∗ ∈ {0.1, 0.2, . . . , 0.9}.

Gauss1, Gauss2 and Gauss3 are artificial datasets.
Samples in class 1 of Gauss1, Gauss2 and Gauss3 follow
N(0, 1), the normal distribution with mean 0 and variance 1.
While samples in class 2 of Gauss1, Gauss2 and Gauss3 fol-
low N(1, 1),N(2, 1) and N(3, 1) respectively. Other datasets
in Table 1 are benchmark datasets. For each dataset, all

†We used the code available from http://www.ms.k.u-tokyo.ac.
jp/˜christo/pages/classprior-pearson-page.html.
††We used the code available from http://www.ms.k.u-tokyo.ac.

jp/˜christo/pages/classprior-L2-page.html.
†††We used the code personally provided by the authors. As a

quadratic program solver, we used “Gurobi” instead of “quadprog”
in the original code.

Table 1 Specification of binary datasets. ♥ indicates artificial data.
♠, ♦ and ♣ indicate datasets taken from Machine Learning Data Set
Repository††††, LIBSVM Data††††† and The Elements of Statistical Learn-
ing††††††, respectively.

Dataset d n n′ 
 Class 1 
 Class 2
♥ Gauss1 1 200 200 5, 000 5, 000
♥ Gauss2 1 200 200 5, 000 5, 000
♥ Gauss3 1 200 200 5, 000 5, 000
♠ Banana 2 200 200 2, 924 2, 376
♠ Image 18 200 200 898 1, 188
♠ Waveform 21 200 200 3, 353 1, 647
♦ Breast cancer 10 200 100 444 239
♦ SVMguide1 4 200 200 3, 089 4, 000
♣ SAheart 9 100 100 302 160

methods were run 100 times with random selection of data
samples from the original datasets.

The average and standard deviation of the squared error
between estimated and true class-priors are shown in Fig. 1.
This shows that ED works well as a whole and has a sta-
ble performance over a wide range of datasets. MMD uses
a fixed parameter which coincidentally worked well with
the Banana dataset, but failed for other datasets. This is in
contrast to the proposed method which scored well with all
datasets.

Table 2 summarizes the computation time of all meth-
ods, showing that the proposed method ED is faster than
other methods in orders of magnitude. MMD is also rela-
tively fast, but compared with ED, the computation of Gaus-
sian kernels themselves is expensive. PE-DR and LSDD
are slow due to cross-validation, and MKL requires a huge
amount of computation time for learning kernel combina-
tions.

The summary of the experiments for binary cases is
as follows. In most cases ED is on par with other meth-
ods, though the estimation error of ED is not always lower
than that of LSDD and MMD-MKL, such as in the case of
SVMguide1 and SAheart. However, the performance of ED
is always close to that of LSDD and MMD-MKL in spite of
its shortest computation time. Thus we can say that the per-
formances of those methods depend on the datasets while
ED is always much faster than LSDD and MMD-MKL.

Next, we trained a Gaussian-kernel support vector ma-
chine (SVM) [19] with instance weights based on the esti-
mated class-priors:

min
w,δ

[̂
θ1

∑
i:yi=1

max
(
0, 1 − (w	ψ(xi) + δ)

)
+ (1 − θ̂1)

∑
i:yi=2

max
(
0, 1 + (w	ψ(xi) + δ)

)
+ λ‖w‖2

]
,

where θ̂1 is an estimated class-prior for class 1, w denotes
a coefficient vector, ψ(x) denotes a feature vector in the
Gaussian reproducing kernel Hilbert space and δ is a bias
term. We solved this optimization problem in the dual us-
ing LIBSVM [25]. All the hyper-parameters (regularization
parameter λ and the Gaussian kernel width σ) were selected
††††http://mldata.org/repository/data/.
†††††http://www.csie.ntu.edu.tw/˜cjlin/libsvmtools/datasets/.
††††††http://statweb.stanford.edu/˜tibs/ElemStatLearn/datasets/.
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Fig. 1 The average and standard deviation of the squared error between estimated and true class-
priors. We applied t-test at significance level 5%, and the best method and methods that do not have
significant difference from the best one are marked with ‘◦’.

Table 2 Computation time (sec). a{b} def
= a × 10b. We used Intel

Xeon E5 − 2667 CPU, equipped with 64 GB of memory. B-cancer� and
SVMg1�� indicate Breast cancer and SVMguide1.

Dataset ED
MMD
-MKL MMD PE-DR LSDD

Gauss1 3.7{−3} 7.0{2} 4.9{−2} 1.2{2} 1.7{2}
Gauss2 3.7{−3} 8.2{2} 4.9{−2} 9.2{1} 1.7{2}
Gauss3 6.0{−3} 5.9{2} 4.9{−2} 9.1{1} 1.7{2}
Banana 3.5{−3} 7.2{2} 4.9{−2} 8.3{1} 1.7{2}
Image 4.4{−3} 1.2{3} 4.7{−2} 9.6{1} 4.5{1}

Waveform 4.5{−3} 1.2{3} 4.9{−2} 1.2{2} 4.5{1}
B-cancer� 4.0{−3} 3.7{3} 3.7{−2} 1.0{2} 1.8{2}
SVMg1�� 4.0{−3} 8.0{2} 4.7{−2} 9.4{1} 4.4{1}
SAheart 3.3{−3} 1.4{2} 4.7{−2} 9.4{1} 4.4{1}
Average 4.1{−3} 8.0{2} 4.7{−2} 1.0{2} 1.2{2}

via 5-fold weighted cross-validation [26] in terms of the 0/1
loss.

The average of the misclassification rate are shown in
Fig. 2, showing that all the weighted methods tend to out-
perform the non-weighted counterparts and are comparable
overall.

In case of Image, SVMguide1 and SAheart, there are
low correlations between the squared error of class-prior
estimation and the misclassification rate. This may be at-
tributed to the fact that p(x|y = 1) and p(x|y = 2) are
somewhat distant. If the two densities have almost no over-
lap, small differences in the estimated class-prior estimation
does not strongly affect the misclassification rate. For ex-
ample, since the densities of class 1 and class 2 in Gauss3
are more distant than those in Gauss1, the squared error and
the misclassification rate of Gauss3 are less correlated than
those of Gauss1.

5.2 Multi-Class Cases

Next, we applied class-prior estimation to multi-class clas-
sification. Since the compared methods, with the excep-
tion of MMD, is prohibitively slow for a large number of
classes, we used only three-class datasets for multi-class ex-
periments. Table 3 shows the list of datasets we used.

As training data, n samples were drawn from each of
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Fig. 2 The average and standard deviation of the misclassification rates. SVM was used for the clas-
sification. We applied t-test at significance level 5%, and the best method and significant methods that
do not have significant difference from the best one are marked with ‘◦’.

Table 3 Specification of three-class datasets. All the datasets are taken
from LIBSVM Data.

Dataset d 
 Class 1 
 Class 2 
 Class 3
Combined 100 39, 455 18, 300 21, 068

DNA 180 1, 051 464 485
SVMguide2 20 221 53 117

the classes (i.e. the class ratio of training samples was fixed
at 1 : 1 : 1), while as the test data, 100 samples were drawn
following the probabilities 0.6, 0.1 and 0.3 from each of the
classes.

We computed the L2 distance between the estimated
and true class-priors, and trained a L2 regularized kernel lo-
gistic regression [27] with instance weights based on the es-
timated class-priors:

min
w

[ c∑
y=1

θ̂y

∑
i:yi=y

g(xi, yi,w(y)) + λ‖w(y)‖2
]
,

where θ̂y is an estimated class-prior for class y. g(xi, yi,w(y))
indicates the logistic loss function defined as

g(xi, yi,w(y)) = log
exp

(
yi

∑n
j=1 w(y)

j ψ j(xi)
)

∑c
y′=1 exp

(
yi

∑n
j=1 w(y′)

j ψ j(xi)
) ,

where w = (w(1)
1 , . . . ,w(1)

n , . . . ,w(c)
1 , . . . ,w(c)

n )	. All
the hyper-parameters (regularization parameter λ and the
Gaussian kernel width σ) were selected via 5-fold weighted
cross-validation [26] in terms of the logistic loss.

Since MKL is prohibitively slow, it was only run 50
times on the datasets. All other methods were run 100
times. Figure 3 indicates that the performance of all meth-
ods roughly improves as the number of training samples in-
creases, and ED works stably. ED is not the best method on
every datasets, however it is not much worse than the best
performing algorithm.

Table 4 shows the computation time of each dataset
with the largest number of labeled samples. ED is much
faster than the other methods. MMD is also fast, however it
is not stable especially in the case of DNA. This is an exam-
ple which indicates that MMD with a fixed parameter does
not work well.
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Fig. 3 The upper row: The average and standard deviation of the squared error between estimated
and true class-priors. The lower row: The average and standard deviation of the misclassification rates.
We applied t-test at significance level 5%, and the best method and methods that do not have significant
difference from the best one are marked with ‘◦’.

Table 4 Computation time (sec). a{b} def
= a × 10b. We used Intel Xeon

E5 − 2667 CPU, equipped with 64 GB of memory. SVMg2��� indicates
SVMguide2.

Dataset ED
MMD
-MKL MMD PE-DR LSDD

Combined 1.3{−2} 5.3{3} 7.1{−2} 6.7{1} 2.7{3}
DNA 1.4{−2} 7.1{3} 8.1{−2} 6.8{1} 2.7{3}

SVMg2��� 5.1{−3} 4.7{3} 2.9{−2} 2.3{1} 8.9{2}
Average 1.1{−2} 5.7{3} 6.0{−2} 5.3{1} 2.1{3}

Through both binary and multi-class experiments, we
conclude that the proposed method can be a computation-
ally efficient alternative to the existing class-prior estimation
methods.

6. Conclusion

In this paper, we proposed a simple and computationally ef-
ficient class-prior estimator based on the energy distance,
and proved the convexity of the optimization problem of the
proposed method. We conducted experiments for both bi-
nary and multi-class cases, and the results showed that the
proposed method worked well and is stable over a wide
range of datasets. Furthermore, the computation time of
the proposed method was much faster than the compared
method significantly.
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Appendix A: Proof of Theorem 1

If the matrix B is positive semi-definite, J̇(θ̇) is convex with
respect to θ̇. So we prove the positive semi-definiteness of
B below.

Proof : Let X be the domain of input vector x, Hk be an

RKHS, K be a positive-semidefinite kernel K : X × X → R
defined as

K(x, x̌) = −‖x − x̌‖ + ‖x‖ + ‖x̌‖.
K is called the distance kernel [17]. The map ϕ : X → Hk,
ϕ(x) : x �→ K(·, x) is the canonical feature map. Let ϕy be
the true mean of the feature vectors of the y-th class:

ϕy = Ex∼p(x|y)ϕ(x).

Since ϕy
	ϕy′ = Ex∼p(x|y),x̌∼p(x|y′)K(x, x̌), Ay,y′ can be ex-

pressed as

Ay,y′ = Ex∼p(x|y),x̌∼p(x|y′)
[−K(x, x̌) + ‖x‖ + ‖x̌‖]

= −ϕ	y ϕy′ + Ex∼p(x|y)‖x‖ + Ex̌∼p(x|y′)‖x̌‖.
Then we can rewrite By,y′ as follows:

By,y′ = ϕ
	
y ϕy′ − ϕ	y ϕc − ϕ	c ϕy′ + ϕ

	
c ϕc

= (ϕy − ϕc)	(ϕy′ − ϕc)

= (B̃	B̃)y,y′ ,

where B̃ = [ϕ1 − ϕc, · · · , ϕc−1 − ϕc]. Since B is a positive-
semidefinite matrix, J̇(θ̇) is convex. �

Appendix B: Proof of Theorem 2

If the matrix B is strictly positive definite, J̇(θ̇) is strongly
convex with respect to θ̇. So we prove that B is strictly pos-
itive definite below.

Proof :

B1 = −A1,1 + 2A1,c − Ac,c

= ED
(
p(x|y = 1), p(x|y = c)

)
> 0.

Then we can immediately prove that B is strictly positive
definite, from the Schur complement condition for positive
definiteness [28]. �
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