
IEICE TRANS. INF. & SYST., VOL.E99–D, NO.1 JANUARY 2016
141

PAPER

Reconstructing AES Key Schedule Images with SAT and MaxSAT∗

Xiaojuan LIAO†a), Hui ZHANG†b), Nonmembers, and Miyuki KOSHIMURA††c), Member

SUMMARY Cold boot attack is a side channel attack that recovers data
from memory, which persists for a short period after power is lost. In the
course of this attack, the memory gradually degrades over time and only
a corrupted version of the data may be available to the attacker. Recently,
great efforts have been made to reconstruct the original data from a cor-
rupted version of AES key schedules, based on the assumption that all bits
in the charged states tend to decay to the ground states while no bit in the
ground state ever inverts. However, in practice, there is a small number of
bits flipping in the opposite direction, called reverse flipping errors. In this
paper, motivated by the latest work that formulates the relations of AES
key bits as a Boolean Satisfiability problem, we move one step further by
taking the reverse flipping errors into consideration and employing off-the-
shelf SAT and MaxSAT solvers to accomplish the recovery of AES-128 key
schedules from decayed memory images. Experimental results show that,
in the presence of reverse flipping errors, the MaxSAT approach enables re-
liable recovery of key schedules with significantly less time, compared with
the SAT approach that relies on brute force search to find out the target er-
rors. Moreover, in order to further enhance the efficiency of key recovery,
we simplify the original problem by removing variables and formulas that
have relatively weak relations to the whole key schedule. Experimental re-
sults demonstrate that the improved MaxSAT approach reduces the scale
of the problem and recover AES key schedules more efficiently when the
decay factor is relatively large.
key words: cold boot attack, maximum satisfiability, advanced encryption
standard, key recovery

1. Introduction

1.1 Background

A dynamic random access memory (DRAM) cell is essen-
tially a capacitor that can be either charged or discharged,
indicating that a bit is in the charged state or the ground
state, respectively. DRAM remanence, presented by Halder-
man in 2008 [1], refers to that after power is lost, the DRAM
holds its state for several seconds, and for minutes or even
hours if the chips are kept at low temperature. Cold boot
attack [1] is a sophisticated side channel attack that exploits

Manuscript received June 9, 2015.
Manuscript revised August 21, 2015.
Manuscript publicized October 6, 2015.
†The authors are with School of Computer Science and Tech-

nology, Southwest University of Science and Technology, Sichuan,
China.
††The author is with Graduate School of Information Science

and Electrical Engineering, Kyushu University, Fukuoka-shi, 819–
0395 Japan.

∗Part of this paper was presented at IEEE 25th International
Conference on Tools with Artificial Intelligence (ICTAI), 2013.

a) E-mail: liao xiaojuan@swust.edu.cn
b) E-mail: h-zhang@swust.edu.cn
c) E-mail: koshi@inf.kyushu-u.ac.jp

DOI: 10.1587/transinf.2015EDP7223

DRAM remanence effects to recover sensitive data from a
running computer. It poses a particular threat to systems
that typically store sensitive data in memory. For example,
several disk encryption systems have been defeated by the
cold boot attack, such as BitLocker and dm-crypt [2]. These
on-the-fly disk encryption softwares typically store the en-
cryption key in DRAM while the disk is mounted, which
opens a door for an attacker to access the contents of DRAM
to learn the key and decrypt the disk.

Given the nature of the cold boot attack, memory bits
gradually decay over time once power is removed, and fi-
nally, only a corrupted image of memory contents may be
available to the attacker. The recovery of a cryptographic
key from a corrupted image of memory contents is usually
achieved by exploiting the redundancy of key material in-
herent in cryptographic algorithms. In practice, many en-
cryption programs store data pre-computed from the encryp-
tion keys to speed up computation. For block ciphers, a key
schedule, made up of multiple roundkeys, is usually pre-
computed from the secret key. These data contain much
more information than the key itself, by which one can effi-
ciently reconstruct the original key even in the presence of
errors [2]. The focus of this paper is to recover AES encryp-
tion keys from a cold boot attack.

Advanced Encryption Standard (AES) is a specifica-
tion for the encryption of electronic data established by the
U.S. National Institute of Standards and Technology (NIST)
in 2001, and is currently used as a worldwide prevalent sym-
metric cryptographic algorithm. As a kind of block ciphers,
AES is vulnerable to the cold boot attack, via which the at-
tacker could extract the encryption key from memory. An
AES encryption key refers to a key schedule consisting of
multiple roundkeys that are expanded from an initial key,
via the key expansion algorithm [3]. The length of an AES
initial key is 128, 192, and 256 bits, referred to as AES-128,
AES-192, and AES-256, respectively. The AES key sched-
ule is the primary source of key redundancy, which enables
an attacker to reconstruct the initial key by exploiting the
known bits present in the memory, even if the content he
extracts has a moderate amount of errors.

1.2 Previous Works

In this section, we first introduce the models related to decay
patterns and then survey existing works for recovering the
AES key schedule from a cold boot attack.

When memory is out of power, the refresh cycle of

Copyright c⃝ 2016 The Institute of Electronics, Information and Communication Engineers

142
IEICE TRANS. INF. & SYST., VOL.E99–D, NO.1 JANUARY 2016

DRAM is interrupted. Halderman et al. [1] observed that
most memory bits tend to decay to the ground states as time
goes on, with a constant and small fraction of bits flipping
to the charged states. The ground state could be encoded as
either 0 or 1, depending on how the cell is wired, thus the
decay of memory bits is overwhelmingly either 0→ 1 or 1
→ 0. The decay direction in a given region could be inferred
by comparing the numbers of 1s and 0s since in an uncor-
rupted key schedule, we expect these to be approximately
equal [1]. For simplicity of elaboration, in the rest of the pa-
per, we assume 1 as the charged state, and 0 as the ground
state. Then the decay direction is overwhelmingly 1 → 0,
with a small fraction from 0 to 1.

We denote the probability of 1 degrading to 0 by decay
factor δ0, and the the probability of 0 flipping to 1 by some
fixed δ1. Generally, δ0 reflects the extent of decay, which
approaches to 1 as time goes on after power is lost. By con-
trast, δ1 is relatively constant and tiny, from 0.05% to 0.1%
[1]. According to the different settings of δ1, existing works
model the decay patterns by either of the following cases.

• Perfect assumption: since δ1 is quite small in true cold
boot attacks, the decay direction is assumed only from
1 to 0 with no bit flipping in the opposite direction, i.e.,
δ1 is set 0. Therefore, all 1s present in the decayed key
schedule are correct with absolute certainty.

• Realistic assumption: δ1 is from 0.05% to 0.1%. In
this setting, both 1→ 0 and 0→ 1 coexist in an attack,
thus none of the key bits in the decayed key schedule
are known with absolute certainty.

The technique of identifying AES keys in memory has
been developed in [2]. In the following, we investigate pre-
vious works on how to reconstruct AES key schedules af-
ter they have been extracted from memory. The AES key
schedule contains a large amount of linearity, which allows
one to search for a small set of keys exhaustively and then
combine these small pieces into the overall key. The method
proposed in [1] takes advantage of the high amount of lin-
earity. Instead of trying to reconstruct the entire key at a
time, their algorithm cuts up the 128-bit roundkey into four
subsets of 32 bits, and uses 24 bits of the subsequent round-
key as redundancy. These small sets are decoded in order of
likelihood, and then combined into a candidate key, which
could be checked against the full schedule. Their work re-
constructed AES-128 keys with δ0 = 15% and δ1 = 0.1% in
a fraction of a second, and up to half of keys with δ0 = 30%
and δ1 = 0.1% within 30 seconds.

As far as we concern, [1] is the only work that works
for the realistic assumption, while many existing works
adopt the perfect assumption. The algorithm presented in
[4] makes better use of the AES key schedule structure, by
modeling the search of keys in a depth-first tree under tree-
pruning constraints. Their method allows one to recover
the AES-128 key schedules with averagely 300 seconds for
δ0 = 70% and δ1 = 0. Although it was noted in [4] that the
proposed algorithm did still work for realistic assumption,
the methodology was not mentioned in their work, and the

performance in this case was not demonstrated in [4]. Later
on, motivated by the dramatic speed-up of Boolean Satisfi-
ability (SAT) solvers, Abdel et al. [5] took the initial step
to model the AES key recovery problem as a SAT problem
by making full use of bits equal to 1. Based on the perfect
assumption, all 1s in the decayed key schedule are correct,
thus a set of correct constraints could be constructed from
1s. On the other hand, the large amount of redundant in-
formation available in the AES key schedule could also be
formulated as constraints that have to be satisfied in a SAT
problem. As a result, by employing CryptoMiniSat [6], an
XOR supported SAT solver, their approach considerably im-
proved the performance of AES key recovery, in terms of
both the recovery speed and the maximum recoverable de-
cay factor. Specifically, the authors reported that recovering
AES-128 key schedules could be fulfilled with δ0 = 70%
and δ1 = 0 in around 1.2 seconds on average, and recover-
ing keys with δ0 = 80% and δ1 = 0 became possible.

1.3 Our Contribution

The performance obtained in [5] confirmed the superiority
of SAT solvers in AES key recovery. However, Abdel et
al. [5] thoroughly excluded the possibility of reverse flip-
ping errors, by assuming that all 1s are correct with absolute
certainty. In fact, based on δ1 = 0.1%, the event of reverse
flipping is expected to arise around 1 or 2 times in a real
key recovery attack for AES-128 where the total number of
key bits is 1408, and more times for AES-192 and AES-256,
which contain larger number of bits apt to decay. Although
bits flipping from 0 to 1 are very rare in number, these fa-
tal events are sufficient to derail SAT solvers, leading SAT
solvers to mistake the wrong 1s as the correct constraints to
infer the rest unknown bits. As a result, conflicts may occur
during the reasoning and SAT solvers would fail to recover
the correct key schedule, with unsatisfiable outputted.

In this paper, we show how to employ SAT and
MaxSAT to recover AES key schedules in the presence of
reverse flipping errors. More specifically, we make the fol-
lowing contribution:

• We extend the SAT approach in [5], which is originally
designed for AES key recovery under the perfect as-
sumption, to adapt to the realistic assumption.

• Motivated by the feature of MaxSAT which satisfies
as many constraints as possible by eliminating the mi-
nority unsatisfied ones, we recast the problem of AES
key recovery under the realistic assumption as a par-
tial MaxSAT problem. Experimental results show that
the MaxSAT approach could recover decayed AES key
schedules with δ0 = 76% and δ1 = 0.1% almost three
times faster than the SAT approach.

• We further improve the presented MaxSAT approach
by simplifying the key recovery problem. Experimen-
tal results demonstrate that, when the decay factor is
relatively large, i.e., δ0 is no less than 60%, the im-
proved approach enables more efficient key recovery.

LIAO et al.: RECONSTRUCTING AES KEY SCHEDULE IMAGES WITH SAT AND MAXSAT
143

2. Preliminaries

Boolean Satisfiability (SAT) is the first problem shown to be
NP-complete [7], which is used to determine whether there
exists an assignment of Boolean values that makes a propo-
sitional Boolean formula evaluate true. If such an assign-
ment exists, the formula is satisfiable, otherwise, the for-
mula is unsatisfiable. A propositional Boolean formula is a
Boolean formula that contains only logic operations and, or
and not. Typically, a propositional Boolean formula is ex-
pressed in conjunction normal form (CNF), a widely-used
expression consisting of a conjunction (logic and) of one or
more clauses. A clause is a disjunction (logic or) of one
or more literals, and a literal is an occurrence of a Boolean
variable (e.g., x) or its negation (e.g., ¬x).

The versatility and effectiveness of SAT solving tech-
niques show the potential use of SAT solvers as a tool
for cryptanalysis. Several cryptanalytic attacks using SAT
solvers emerged, ranging from cryptanalysis of block ci-
phers [8], [9] and stream ciphers [10], [11] to asymmetric-
key algorithms [12], [13] and hash functions [14], [15]. An-
other line of research focuses on the attempts to make SAT
solvers more cryptanalytic-friendly. Soos et al. [6] im-
plemented several steps towards a specialized SAT solver
for cryptography, including native support for the XOR op-
eration, Gaussian elimination, and logical circuit genera-
tion. Facilitated by XOR supported mechanisms in Cryp-
toMiniSat, attacks against stream ciphers such as Crypto-1
[10] could be accelerated considerably, compared with other
standard SAT solvers that only support CNF representations.

Given a propositional Boolean formula, if it is unsatis-
fiable, SAT solvers only report that no solution exists, with-
out any information on unsatisfiable instances. In many re-
alistic situations, not all specified constraints can be satisfied
at the same time, and we seek for an optimized assignment
of variables that could satisfy as many constraints as pos-
sible. At this point, SAT fails by only outputting unsatisfi-
able and MaxSAT comes to rescue. Maximum Satisfiabil-
ity (MaxSAT) [16] is an optimized version of SAT, which
could measure the degree of unsatisfiability. Given a propo-
sitional Boolean formula, MaxSAT tries to find an assign-
ment that maximizes the number of satisfied clauses. Partial
MaxSAT is a variation of MaxSAT. In a partial MaxSAT in-
stance, some clauses are declared soft and the rest are hard.
The problem amounts to finding an optimal assignment that
satisfies all hard clauses and the maximum number of soft
clauses. Also, in practice, a partial MaxSAT instance is usu-
ally given as a CNF. In this paper, we identify a set of clauses
as a conjunction of clauses.

3. Modeling Bits in the AES-128 Key Schedule

AES is a widely spread symmetric key algorithm that uses
the same cryptographic keys for both encryption and de-
cryption. In this paper, we focus on AES-128 and our
method could be extended to AES-192 and AES-256 in a

straightforward way since the key schedule for 128-bit, 192-
bit, and 256-bit encryption are very similar, with only some
constants changed.

An AES-128 key schedule consists of 11 roundkeys,
each made up of 128 bits. The 0th roundkey is equal to the
initial key itself, which is bijectively mapped to the subse-
quent 10 roundkeys, via the public AES key expansion algo-
rithm. Each bit in the key schedule, either 0 or 1, is naturally
expressed as a Boolean variable. We denote the ith bit of the
rth roundkey by br

i , where 0 ⩽ r ⩽ 10 and 0 ⩽ i ⩽ 127. The
key schedule components are addressed with the following
two notations: the round-dependent word array and the sub-
stitution box. The round-dependent word array, denoted by
R (r), contains the values {02}r−1

H for the least significant byte
and 0 for the rest bytes, with {02}r−1

H being powers of {02}H
in the Galois field GF

(
28

)
, where {02}H is the hexadecimal

representation of 2. The substitution box, abbreviated with
S-box, is a basic component regarding security in AES key
schedule, which operates independently on a byte, by tak-
ing the multiplicative inverse in the finite field GF

(
28

)
us-

ing the irreducible polynomial x8 + x4 + x3 + x + 1 and then
applying an affine transformation over GF (2). For more de-
tails, we refer readers to the literature [3]. According to the
hardware implementation of the AES key expansion algo-
rithm, an S-box operation could be split into eight functions
in algebraic normal form (ANF)†, with 1-byte input and 1-
bit output [17]. We denote each of the eight functions by
S x

(
Br

i

)
, where x (= 0, . . . , 7) is the index of the function,

and Br
i is an input byte starting with br

i , following the least-
significant-bit-first convention, i.e., Br

i = {br
i , b

r
i+1, . . . , b

r
i+7}.

The output of an S-box is then obtained by combining the
outputs of these eight functions into a byte, with the decreas-
ing significance of x. Specifically, each bit in 1-10 round-
keys is described by the following formulas.

br
i = br−1

i ⊕ S i mod 8

(
Br−1

104+8·⌊i/8⌋
)
⊕ Ri (r) , 0 ⩽ i ⩽ 23,

br
i = br−1

i ⊕ S i mod 8

(
Br−1

96

)
⊕ Ri (r) , 24 ⩽ i ⩽ 31, (1)

br
i = br−1

i ⊕ br
i−32, 32 ⩽ i ⩽ 127.

where 1 ⩽ r ⩽ 10, Ri (r) is the ith bit of the round constant
word array R (r), and ⌊x⌋ is the floor function that returns
the largest integer not greater than x. The relations among
bits exhibited in Eq. (1) show that each bit in the subsequent
10 rounds is associated with its former bits. In particular, br

i
(0 ⩽ i ⩽ 31, 1 ⩽ r ⩽ 10) is determined by 9 bits, i.e., br−1

i
and Br−1

104+8·⌊i/8⌋, and br
i (32 ⩽ i ⩽ 127, 1 ⩽ r ⩽ 10) is deter-

mined by 2 bits, i.e., br−1
i and br

i−32. Thus, an error occurring
on a bit could be rectified by examining the values of its re-
lated 9 or 2 bits. Similarly, if several bits are decayed, they
could be recovered correctly as long as a sufficient number
of bits are known. For convenience, we call the relations
characterized in Eq. (1) as bit-relations.

†A logical formula is considered to be in ANF if it is an XOR
of a constant and one or more conjunctions of Boolean variables.

144
IEICE TRANS. INF. & SYST., VOL.E99–D, NO.1 JANUARY 2016

4. Recovering the AES-128 Key Schedule with SAT/
MaxSAT

This section introduces three approaches that work for the
true cold boot case. Specifically, the SAT and MaxSAT ap-
proaches described in Sect. 4.1 and 4.2 take the complete
bit-relations as the constraints to infer corrupted key bits,
thus the aim is to recover the complete AES key schedule.
In comparison, the improved MaxSAT approach presented
in Sect. 4.3 seeks to simplify the key recovery problem by
taking only part of bit-relations into consideration, thus the
goal is to recover only a portion of round keys. Based on the
observations made in [1], δ1 is very small (though non-zero)
while δ0 may be relatively large.

4.1 SAT Approach

For a SAT solver, the attempt of finding an assignment to
variables is made on the premise that all the specified con-
straints are satisfied without any exception. This feature is
suitable for the perfect assumption where all 1s present in
the decayed key schedule are correct with absolute certainty.
In addition, the bit-relations in the AES key schedule can be
easily formulated as a SAT problem which lead itself natu-
rally to SAT solvers [5]. Therefore, given enough number of
1s in the corrupted key schedule, a SAT solver could infer
the values of other unknown bits by formulating all the 1s
and bit-relations as hard constraints.

However, in case of some 0s flipping to 1s, a SAT
solver could not be aware of such reverse flipping errors,
instead, it still takes all 1s as absolutely correct. Misled by
the incorrect information, the solver would fail to recover
the key schedule by outputting unsatisfiable as a result of
the conflicts arising during the reasoning. Obviously, the
heart of addressing this problem is to find and rectify the
reverse flipping errors. A straightforward way would be to
conduct exhaustive search over all 1s in a bit-by-bit fash-
ion, by exploiting the fact that a SAT solver would always
output unsatisfiable as long as reverse flipping errors exist.
Only if all the wrong 1s are cleared, the solver is probable to
find the correct assignment of variables. Particularly, when
there is one reverse flipping error, to distinguish this wrong
1 from other correct 1s, we modify the decayed key sched-
ule by turning one of these 1s to 0, then take the modified
key schedule as the input of a SAT solver. If the solver out-
puts satisfiable, it means that the bit that we just modified
is the reverse flipping error. Otherwise, we revert that bit;
convert the next 1 to 0, and run the solver again. This pro-
cess would repeat until the solver outputs satisfiable, i.e., it
locates and corrects the reverse flipping error. In the worst
case, the solver needs to run (n + 1) times, where n is the
number of 1s in the decayed key schedule. The complexity
of the exhaustive search is closely related to the actual num-
ber and the location of the reverse flipping errors, neither of
which are unknown to a SAT solver. If the number of reverse
flipping errors is k, in the best case, the solver needs to run

(∑
0⩽i⩽k−1

Ci
n + 1

)
times, while in the worst case, it has to try∑

0⩽i⩽k
Ci

n times, where Ci
n is the number of i-combinations of

n. It is clear that a SAT solver has to run multiple times to
recover a decayed key schedule with reverse flipping errors.
Obviously, this method is tedious and cumbersome.

4.2 MaxSAT Approach

We can solve the problem significantly better by taking ad-
vantage of the partial MaxSAT. That such a connection ex-
ists should be no surprise: we are in a situation where the
majority of 1s are correct, with only a small fraction of 1s
flipping from 0, and we wish to find out such reverse flipping
errors and recover the true bits. A partial MaxSAT solver
treats the bit-relations as hard constraints, while considers
the bits equal to 1 as soft constraints, i.e., it takes the possi-
bility that the present 1s may be incorrect into consideration.
Solving the partial MaxSAT problem amounts to finding an
assignment of variables that satisfy all hard constraints and
the maximum number of soft constraints. As long as the re-
verse flipping errors account for a small percentage among
all 1s, they can be surely cleared by a partial MaxSAT solver,
which always satisfies the majority of soft constraints by ex-
cluding the unsatisfied minority. By using MaxSAT solvers,
the exhaustive search over all 1s is eliminated.

Modeling 1s as soft clauses is fulfilled without further
elaboration. In particular, if the ith bit of the rth round-
key presents 1 in the decayed key schedule, we only need
to declare br

i = 1 as a soft clause to a MaxSAT solver.
By contrast, modeling bit-relations as hard clauses is not
such straightforward. The main problem is to handle the
XOR operation, which is fundamental in characterizing bit-
relations. In the following, we elaborate the way of describ-
ing the following two kinds of formulas in CNF representa-
tions.

(1) XOR formula: a formula connected by XOR operator,
with all the terms being individual Boolean variables.

(2) ANF formula: a formula connected by XOR operator,
with terms consisting of a constant (0 or 1) and con-
junctions of Boolean variables.

A naive way of describing an XOR formula in CNF
representation introduces 2n−1 clauses, where n is the size
of the XOR formula. This straightforward way, called di-
rect conversion, applies to the case that the size of an XOR
formula is relatively small. For example, in an AES-128
key schedule, to describe the bit-relation br

i = br−1
i ⊕ br−1

i−32
(32 ⩽ i ⩽ 127, 1 ⩽ r ⩽ 10) in CNF, only the following four
clauses are sufficient:

¬br
i ∨ br−1

i ∨ br−1
i−32, br

i ∨ ¬br−1
i ∨ br−1

i−32,

br
i ∨ br−1

i ∨ ¬br−1
i−32, ¬br

i ∨ ¬br−1
i ∨ ¬br−1

i−32.

Obviously, this interpretation is unmanageable for
large n as the number of clauses goes up exponentially with

LIAO et al.: RECONSTRUCTING AES KEY SCHEDULE IMAGES WITH SAT AND MAXSAT
145

the size of an XOR formula. To overcome this exponential
explosion, a long XOR formula is usually cut up into man-
ageable groups, each represented by an auxiliary variable.
Here we set the size of manageable groups as k, i.e., we in-
troduce an auxiliary variable for each k variables, thus the
number of clauses to describe one group is no more than 2k.
The long XOR formula is then represented as a new XOR of
⌈n/k⌉ auxiliary variables, as well as a set of clauses for de-
scribing the manageable groups. If the size of the new XOR
formula is still overlong, then more auxiliary variables are
introduced to further cut up the formula. This process re-
peats until the size of the new XOR formula is manageable.
We call this method as cut-up conversion.

Up to this point, we have discussed the way of de-
scribing both short and long XOR formulas in CNF rep-
resentations. To encode ANF into CNF, we need to first
introduce additional Boolean variables to substitute the con-
junctions, so that turn the ANF formula to an XOR, which
could be handled by either direct or cut-up conversion.
Formally, a conjunction of Boolean variables, denoted by
x0 ∧ x1 ∧ · · · ∧ xn, could be represented by a new Boolean
variable a with n + 1 additional clauses:

x1 ∨¬a, x2 ∨¬a, . . . , xn ∨¬a,¬x1 ∨¬x2 · · · ∨ ¬xn ∨ a.

Thus the ANF formula is converted to a set of clauses and
an XOR of a constant and several additional Boolean vari-
ables. If the constant is 0, we remove it safely without fur-
ther conversion. Otherwise, we eliminate the constant 1 by
turning one of the Boolean variables to its negation. Specif-
ically, 1 ⊕ x1 ⊕ x2 · · · ⊕ xn is tautologically equivalent to
¬x1 ⊕ x2 · · · ⊕ xn.

4.3 Improved MaxSAT Approach

The AES-128 key schedule consists of 11 rounds, in which
the initial round (i.e., the 0th round) is the 128-bit initial
key and the expanded 10-round key bits could be all derived
from the initial key. Then the ultimate goal could be refined
as to recover the 128-bit initial key, rather than the whole
1408-bit key schedule. With this in mind, in this section, we
try to simplify the key recovery problem by removing some
variables and formulas in the expanded rounds.

Definition. A variable br
i (r > 0) in the expanded rounds is

called a leaf variable if there is only one formula containing
br

i . The only formula associated with the leaf variable br
i is

called a leaf formula, denoted by f r
i . The tuple

(
br

i , f r
i

)
is

called a leaf set.

In a complete AES-128 key schedule, there are 32 leaf
variables, i.e., the last 32 bits in the last round, denoted by
b10

i , i ∈ {96, · · · , 127}. The corresponding leaf formula f 10
i

is b10
i = b9

i ⊕ b10
i−32. By contrast, any other variable in the ex-

panded rounds is contained in more than one formula, one of
which describes how this variable is calculated from former
variables, and the rest indicate the way of generating latter
variables. Obviously, compared with non-leaf variables, leaf

variables have weaker relations to other variables, as there
is only one constraint on the leaf variable b10

i , specified by
the leaf formula f 10

i . Without f 10
i , the value of b10

i becomes
unconstrained and could be omitted in key expansion.

On the other hand, in the MaxSAT approach, variables
equal to 1 have high probability (around 99.9%) to be cor-
rect and are treated as soft clauses by the MaxSAT solver.
In comparison, a variable (suppose x) equal to 0 contributes
nothing to the problem solving, because this 0 may be the
original value of x, or the decayed one, while the decay fac-
tor δ0 is totally unknown to the solver. Therefore, it could be
said that variables equal to 0 provide less information than
those equal to 1.

Our improved approach is to search and remove the leaf
sets, i.e., the combinations of leaf variable and the corre-
sponding leaf formula, where all variables in the leaf for-
mula are equal to 0. Since leaf variables have relatively
weak relations to the whole key schedule and bits equal to 0
provide little useful information to the solver, it could be in-
ferred that removing such leaf sets would not result in vital
information loss. Instead, elimination of them would reduce
the scale of the key recovery problem, which plays a positive
role to increase the efficiency of problem solving.

The following algorithm exemplifies the way of elim-
inating qualified leaf sets in the last round. The input is
a complete AES-128 key recovery problem, denoted by
{B, F, S }, where B and F is a set of 1408 bits and formu-
las representing bit-relations, respectively, and S is a set of
bits presenting 1 in the decayed key schedule. The output is
a simplified key recovery problem represented as {B′, F′, S },
where B′ and F′ is a subset of B and F, respectively.

Algorithm Simplify the AES key recovery problem by re-
moving leaf sets in the last round.
Input:

A complete AES-128 key recovery problem {B, F, S };
B = {br

i } is a set of key bits, i ∈ {0, · · · , 127}, r ∈ {0 · · · , 10};
F = { f r

i } is a set of formulas characterizing bit-relations, i ∈
{0, · · · , 127}, r ∈ {0 · · · , 10};
S is a set of variables that present 1 in the corrupted key schedule.

Output:
A simplified AES-128 key recovery problem {B′, F′, S }.

1: LB ← ∅; LF ← ∅; RB ← ∅; RF ← ∅. {LB and LF is a set of leaf
variables and formulas, respectively; RB and RF is a set of removable
variables and formulas, respectively.}

2: for i = 96, 97, · · · , 127 do
3: LB.push

(
b10

i

)
; LF.push

(
f 10
i

)
;

4: end for
5: while LB , ∅ do
6: br

i ← LB.pop; f r
i ← LF.pop;

7: if S contains none of variables in f r
i then

8: RB.push
(
br

i

)
; RF.push

(
f r
i

)
; {

(
br

i , f r
i

)
could be removed.}

9: if i > 31 then
10: LB.push(br

i−32); LF.push(f r
i−32); {Since br

i is removable, br
i−32

becomes the new leaf bit, the successor of br
i .}

11: end if
12: end if
13: end while
14: B′ ← B \ RB; F′ ← F \ RF;
15: return {B′, F′, S };

146
IEICE TRANS. INF. & SYST., VOL.E99–D, NO.1 JANUARY 2016

Steps 1-4 initialize four sets LB, LF, RB, and RF. LB
and LF is a set of leaf variables and formulas, initialized
with {b10

i } and { f 10
i }, respectively, where 96 ≤ i ≤ 127. RB

and RF respectively represents a set of removable variables
and formulas. In the beginning of the algorithm, both RB
and RF are empty.

Steps 5-13 describe the way of finding out removable
variables and formulas from leaf sets. To be specific, first,
the condition whether LB is empty is examined. That LB is
empty means that all the leaf variables have been checked
and the loop terminates. If LB is not empty, the last element
in set LB (set LF) is removed and assigned to a new variable
br

i (formula f r
i), where the indexes i and r are both consis-

tent with those of the removed element (Step 6). For each
leaf formula f r

i , check whether S contains any variables in
f r
i . If S contains none of variables in f r

i , which signifies

that all the variables in f r
i are 0, then the set

(
br

i , f r
i

)
is re-

movable, and we push br
i and f r

i to RB and RF, respectively

(Steps 7-8). Now that the leaf set
(
br

i , f r
i

)
has been removed,

a new leaf set arises as the successor of the removed one,
denoted by

(
br

i−32, f r
i−32

)
if i > 31. i > 31 guarantees that the

new leaf set still belongs to the current round (Steps 9-11).
After br

i−32 and f r
i−32 is pushed to LB and LF, respectively,

whether the new leaf variable and formula could be removed
is determined by the values of variables appearing in f r

i−32.
The while loop terminates when there is no more leaf

variables to be dealt with. Finally, we get the simplified
AES-128 key recovery problem {B′, F′, S }, where B′ is the
difference between B and RB, and F′ is the difference be-
tween F and RF.

It is worth noting that the elimination of leaf sets not
only happens in the last round, but also may occur in the
(10 − m)th round, where 1 ≤ m ≤ 9. However, in prac-
tice, the number of removable leaf sets in these rounds dra-
matically decreases with the increase of m. This is because
each variable in the earlier rounds is contained in a rela-
tively large number of formulas. To remove such variable,
it is necessary to guarantee that all the variables appearing
in these related formulas are 0. For example, each variable
in the last block of the 9th round is involved in eight S-box
functions and two short XOR functions. One of the require-
ments of removing such variable is that all the variables in
these ten functions are 0, which is such a rigorous restrictive
condition that is difficult to satisfy.

5. Experiments and Comparisons

In this section, we evaluate the performance of AES-128 key
recovery with SAT and MaxSAT. We employed CryptoMin-
iSat as the solver to evaluate the SAT approach as it supports
XOR operations natively. In comparison, the solver chosen
for the MaxSAT approach is Pwbo2.0. The way of selecting
the appropriate MaxSAT solver from a variety of candidates
is elaborated in our previous work [18].

5.1 Generating Problem Instances

According to [1], in a true cold boot attack, δ1 is around
0.1% and δ0 increases as time goes on. To be consistent with
the realistic assumption, we generate the problem instances
as follows. The test generator first derives a key schedule
from a randomly selected initial key where the number of 0s
and 1s are approximately equal, then it randomly converts 1s
to 0s with the probability of δ0, and converts 0s to 1s with the
probability of δ1. We set δ1 = 0.1% and vary δ0 from 30% to
76%. Since the time for recovering a key schedule observed
in the experiments rises dramatically when δ0 grows over
70%, we set δ0 from 30% to 70% with 10% increments,
and 70% to 76% with 2% increments, respectively. At each
fixed decay factor δ0, 100 problem instances are generated.
In this setting, the number of reverse flipping errors in the
generated problem instances ranges from 0 to 2.

To investigate the performances of our approaches un-
der specific number reverse flipping errors, we generate ad-
ditional problem instances for the following cases:

(1) Each instance contains only 1 reverse flipping error.
(2) Each instance contains 2 reverse flipping errors.

Methods of generating instances for these two cases are
almost the same as that for the realistic assumption, except
that we remove the setting of δ1 and limit the number of
reverse flipping errors to 1 and 2, respectively. For case (2),
due to the extended time for key recovery, we range δ0 from
30% to 74% and generate 40 instances for each fixed δ0.

5.2 Selecting the Appropriate Cutting Number

As mentioned in Sect. 4.2, to alleviate the exponential ex-
plosion problem when converting long XOR formulas to a
set of clauses, each long XOR formula is cut up into man-
ageable groups. The size of such groups is called cutting
number, denoted by k. Generally speaking, the optimal
value of k may change with different situations and is usu-
ally determined via empirical observations. For instance, to
convert systems of low-degree sparse multivariate equations
into CNF, the optimal cutting number is 6 [19], while to con-
vert a linear ANF in a stream cipher Bivium-n, the optimal
cutting number is 5 [20]. In order to select the appropriate
cutting number in our work, we evaluate the performance of
MaxSAT approach with k = 4, 5, 6, under a time limit of 900
seconds for each instance. δ0 ranges from 30% to 74%, and
the number of reverse flipping errors is set 1 and 2, respec-
tively exhibited in Table 1 and 2. Number in round bracket
means the number of instances that were successfully solved
within the time limit and is omitted in the table if all the 100
instances were solved. Tests were carried out on a 2.0GHz
quad-core Intel i7-4510U processor with 8GB RAM.

As can be seen from Table 1 and 2, when the decay fac-
tor δ0 is relatively small, i.e., δ0 is no more than 60%, cutting
by 4 achieves higher efficiency than the other two settings.
By contrast, when δ0 goes over 60%, cutting by 5 becomes

LIAO et al.: RECONSTRUCTING AES KEY SCHEDULE IMAGES WITH SAT AND MAXSAT
147

Table 1 Average runtime (seconds) with k = 4, 5, 6 (#RFE = 1)

δ0 (%) 30 40 50 60 70 72 74

k = 4 0.63 0.68 0.84 1.47 15.23 20.79 73.78(96)
k = 5 0.77 0.83 1.00 1.64 10.10 17.91 69.50(96)
k = 6 1.19 1.23 1.47 2.10 19.28 28.65 103.25(94)

Table 2 Average runtime (seconds) with k = 4, 5, 6 (#RFE = 2)

δ0 (%) 30 40 50 60 70 72 74

k = 4 0.82 0.98 1.47 3.90 42.50 136.58(97) 250.34(62)
k = 5 0.97 1.19 1.57 4.01 36.99 118.60(97) 253.23(69)
k = 6 1.48 1.70 2.12 5.42 59.75 158.81(94) 234.44(55)

more desirable. Since solving problems with higher decay
factor is more deserving, we choose k = 5 as the cutting
number for the MaxSAT approach.

5.3 Experimental Results of SAT and MaxSAT Approach

In this subsection, we evaluated the performance of AES-
128 key recovery with CryptoMiniSat and Pwbo2.0, respec-
tively. Tests were carried out on a 2.6GHz quad-core Intel
i5-2540 processor with 8GB RAM. The benchmark results
for true cold boot attacks are summarized in Table 3, where
δ1 = 0.1% and δ0 ranges from 30% to 76%.

In general, the MaxSAT approach enables more effi-
cient key recovery than the SAT approach, at all the varied
decay factors. Specifically, the solver time needed by the
MaxSAT approach rises monotonically with the increase of
δ0, indicating that it is more difficult to fulfill the key recov-
ery at increasing decay factor. In comparison, for the SAT
approach, the solver time presents a down and up trend as
δ0 increases. We explain the reasons as follows. First, at
the low decay factor, particularly when δ0 is 30%, the num-
ber of 1s in a decayed schedule is relatively large, implying
that CryptoMiniSat needs to run a considerable number of
times to find out the reverse flipping errors. At this point,
the solver time is maintained in high level. Later, with the
increase of the decay factor, the number of 1s drops, leading
to fewer number of times to run CryptoMiniSat. In addition,
the increasing decay factor is not large enough to affect the
high efficiency of CryptoMiniSat to solve an input file. In
this situation, the solver time declines. Finally, as the de-
cay factor further rises, although the number of times that
the solver needs to run decreases, the difficulty of solving a
single input file increases strikingly. As a result, the compu-
tation time rises sharply when δ0 is over 70%.

Table 3 demonstrates that the MaxSAT approach out-
performs the SAT one in recovering AES-128 key schedules
for a true cold boot attack under the realistic assumption,
where the number of reverse flipping errors ranges from 0
to 2. In the following, we carried out two additional tests, as
described in case (1) and (2), to estimate the performance of
the two approaches under a specific number of reverse flip-
ping errors, shown in Table 4 and Table 5, with the reverse
flipping number 1 and 2, respectively.

When there is only one reverse flipping error, the

Table 3 Average runtime of SAT/MaxSAT approaches

δ0 (%) CryptoMiniSat (s) Pwbo2.0 (s)

30 45.81 0.94
40 28.47 0.96
50 19.67 1.17
60 26.52 1.56
70 225.38 12.53
72 678.45 26.78
74 1004.16 231.61
76 1116.35 296.42

MaxSAT approach runs slightly faster than the SAT ap-
proach, as indicated in Table 4. In particular, when the decay
factor reaches 76%, the solver time of CryptoMiniSat for the
worst case is more than 2.9 hours, with the average time at
8 minutes and median time at 3 minutes, respectively. In the
MaxSAT approach, the worst case for the recovery time is
obtained in 1.8 hours, with the average and median time at
6.4 and 2.4 minutes, respectively.

Table 5 shows the time statistics of the SAT and
MaxSAT approaches for the decay factor from 30% to 74%,
with exactly 2 reverse flipping errors in each instance. Ev-
idently, the MaxSAT approach is far superior to the other
one at all decay factors. In particular, when the decay factor
is 74%, solver time of CryptoMiniSat grows averagely to 4
hours with the median time at 2.2 hours. Moreover, nearly
2 days are consumed by recovering the key schedule for the
worst case. By contrast, the average and median time for
Pwbo2.0 to solve the same set of instances is 36 and 7.9
minutes, respectively, with the worst-case recovery time at
5.7 hours. The low efficiency of the SAT approach is owing
to the large number of times for searching the reverse flip-
ping errors, while the MaxSAT solver only runs one time,
by excluding the minority errors with optimized algorithms.
Moreover, from Table 4 and 5, we can see that St.Dev. of
MaxSAT is smaller than that of SAT for most of decay fac-
tors. This indicates that MaxSAT approach is not only more
time efficient, but also more stable than the SAT approach.

It is worth noting that when recovering the same de-
cayed AES key schedule, the MaxSAT approach generates
overwhelmingly larger number of clauses than the other one.
To be specific, the number of hard clauses for capturing
AES-128 bit-relations is 372,240 for the MaxSAT approach,
around 6 times more than that for the SAT approach, which
generates only 51,440 hard clauses. The conspicuous gap
between the two numbers attributes to the distinct strategies
for handling the XOR operation. As an XOR supported SAT
solver, CryptoMiniSat prunes redundant clauses dynami-
cally along with the process of assigning Boolean values to
variables natively, which considerably decreases the num-
ber of clauses introduced for handling XOR formulas. By
contrast, to date, there have not been any MaxSAT solvers
that could support XOR natively, thus an XOR formula has
to be converted to CNF by the direct conversion and cut-up
conversion introduced in Sect. 4.2. Unfortunately, both con-
versions are executed in a static way, in spite that some in-

148
IEICE TRANS. INF. & SYST., VOL.E99–D, NO.1 JANUARY 2016

Table 4 Runtime statistics of SAT/MaxSAT approaches using 100 instances with 1 reverse flipping
error

Decay Factor δ0 (%) 30 40 50 60 70 72 74 76

C
ry

pt
oM

in
iS

at
(s

)

Avg. 2.05 1.31 1.97 5.03 43.53 47.60 280.83 480.10

Med. 1.76 1.17 1.44 2.29 29.02 43.63 67.48 186.01

Max 5.16 3.94 8.91 78.32 642.39 233.65 3491.27 10498.97

Min 0.09 0.07 0.11 0.18 1.05 0.58 0.75 2.02

St.Dev. 1.42 0.97 1.63 8.68 69.66 43.68 646.06 1196.45
Pw

bo
2.

0
(s

) Avg. 1.04 1.09 1.35 2.25 14.95 28.35 122.52 384.35

Med. 0.79 0.91 1.15 1.94 8.95 13.31 25.22 142.75

Max 2.37 2.39 3.24 6.35 262.72 599.01 3122.61 6492.83

Min 0.71 0.70 0.72 0.76 1.02 1.51 2.28 4.34

St.Dev. 0.45 0.40 0.54 1.31 29.02 61.90 344.66 869.45

Table 5 Runtime statistics of SAT/MaxSAT approaches using 40 instances with 2 reverse flipping
errors

Decay Factor δ0 (%) 30 40 50 60 70 72 74

C
ry

pt
oM

in
iS

at
(s

)

Avg. 198.64 162.25 224.69 329.62 3047.82 4909.57 14715.61

Med. 171.62 186.39 127.72 153.84 2077.35 3517.53 7936.68

Max 387.54 371.53 1358.53 2112.36 9747.16 17027.60 161389.01

Min 13.74 8.61 7.30 27.48 38.42 10.44 62.77

St.Dev. 87.96 89.68 276.60 493.63 2907.31 5077.26 26695.94

Pw
bo

2.
0

(s
) Avg. 1.46 1.56 2.18 4.68 47.73 245.18 2160.49

Med. 1.02 1.17 1.88 3.17 37.34 97.37 473.76

Max 7.12 8.22 5.83 19.19 220.87 1848.42 20687.92

Min 0.23 0.90 0.91 1.00 5.05 6.71 20.05

St.Dev. 1.11 1.22 1.20 3.94 37.33 358.49 3982.25

Table 6 Average runtime of OMA and IMA

Decay Factor #RFE = 1 #RFE = 2
δ0 (%) OMA (s) IMA (s) OMA (s) IMA (s)

30 0.78 0.77 1.02 1.00
40 0.82 0.85 1.16 1.17
50 0.99 1.03 1.61 1.62
60 1.59 1.64 4.28 3.92
70 10.84 10.46 38.15 36.04
72 17.44 16.35 151.46 133.19
74 246.09 192.93 1802.97 1638.23
76 358.79 301.60 - -

troduced clauses are redundant for the current assignment of
variables. Though the XOR-CNF conversions in MaxSAT
are not as refined as the strategies adopted by CryptoMin-
iSat, experimental results still show that the MaxSAT ap-
proach excels the SAT one, and we say with assurance that
the development of a MaxSAT solver that supports XOR
natively would further stretch the advantage of the MaxSAT
approach.

5.4 Experimental Results of Improved MaxSAT Approach

This subsection evaluates the improved MaxSAT approach
(IMA) developed in Sect. 4.3 and compares the performance
of IMA with the original MaxSAT approach (OMA) pre-
sented in Sect. 4.2. δ0 ranges from 30% to 76% for 1 reverse

Fig. 1 Average number of variables and clauses

flipping error and from 30% to 74% for 2 reverse flipping
errors. Both approaches were tested on a 2.0GHz quad-core
Intel i7-4510U processor with 8GB RAM.

As summarized in Table 6, when the decay factor δ0
is relatively small, i.e., δ0 is no more than 60%, the perfor-
mance of two approaches is quite similar. In comparison,
when δ0 goes over 60%, IMA becomes more time efficient
than OMA. In particular, when δ0 reaches 76%, the average
runtime with 1 reverse flipping error by OMA is around 358
seconds, while the IMA approach takes merely 300 seconds
to recover the same set of corrupted key schedules.

In order to explain the reason why IMA is superior to
OMA, we investigate the average numbers of variables and
clauses in OMA and IMA, depicted in Fig. 1. Obviously, no
matter whether the number of reverse flipping errors is one
or two, for solving the same set of instances, both variables
and clauses in IMA are fewer than those in OMA. Generally,

LIAO et al.: RECONSTRUCTING AES KEY SCHEDULE IMAGES WITH SAT AND MAXSAT
149

given unchanged problem difficulty, MaxSAT computation
time reduces with the decreased number of variables and
clauses. That is why IMA is more time efficient than OMA
at fixed δ0. It is worth noting that though the numbers of
variables and clauses decline with the increase of δ0, the
average runtime rises sharply. This is because the growth of
decay factor makes the key recovery problem more difficult,
heavily influencing the efficiency of problem solving.

6. Conclusion

In this paper, we made the first step in a study of apply-
ing SAT and MaxSAT solvers to fulfill the reliable AES key
recovery from a true cold boot attack, in which reverse flip-
ping errors account for a small fraction of all 1s in decayed
key schedules. Specifically, limited by the bit-relations that
are encoded as hard constraints, the SAT approach treats
all 1s in the decayed key schedule as hard constraints and
search the reverse flipping errors in a bit-by-bit manner. By
contrast, the MaxSAT approach encodes all 1s as soft con-
straints and thus recovers key schedules by satisfying as
many soft constraints as possible. In addition, we moved
one step further to simplify the key recovery problem by re-
moving leaf variables and formulas that have weak relations
to the whole problem, so as to further speed up the recovery
process. Experimental results demonstrated that, compared
to the SAT approach that searches for the reverse flipping
errors exhaustively bit by bit, our MaxSAT approach suc-
ceeds in recovering the same set of key schedules within
significantly less time, and the improved MaxSAT approach
further enhances the efficiency, especially when the decay
factor is relatively large.

Acknowledgements

We wish to thank Prof. R. Hasegawa and Prof. H. Fujita for
their constructive suggestions and support of our research.
This work is partially supported by SWUST Doctorial Re-
search Fund No.15zx7114, No.14zx7147, and JSPS KAK-
ENHI Grant No.25330085. The last author made use of
AIST Super Green Cloud in his experiment.

References

[1] J.A. Halderman, S.D. Schoen, N.A. Heninger, W. Clarkson, W. Paul,
J.A. Calandrino, A.J. Feldman, J. Appelbaum, and E.W. Felten,
“Lest we remember: Cold boot attacks on encryption keys,” Proc.
USENIX USENIX Security Symposium (SEC’08), California,
USA, pp.45–60, July 2008.

[2] N.A. Heninger, “Error correction and the cryptographic key,” Mas-
ter’s thesis, USA, 2011.

[3] Federal Information Processing Standards Publication (FIPS 197),
“Announcing the advanced encryption standard (aes),” 2001.

[4] A. Tsow, “An improved recovery algorithm for decayed aes
key schedule images,” Proc. of Selected Areas in Cryptography
(SAC’09), pp.215–230, 2009.

[5] A.A. Kamal and A.M. Youssef, “Applications of SAT solvers to aes
key recovery from decayed key schedule images,” Proc. of Interna-
tional Conference on Emerging Security Information Systems and

Technologies (SECURWARE’10), pp.216–220, 2010.
[6] M. Soos, K. Nohl, and C. Castelluccia, “Extending SAT solvers

to cryptographic problems,” Proc. of International Symposium on
the Theory and Applications of Satisfiability and Testing (SAT’09),
pp.244–257, 2009.

[7] S.A. Cook, “The complexity of theorem-proving procedures,” Proc.
3rd Annual ACM Symposium on Theory of Computing, pp.151–
158, 1971.

[8] N. Courtois and G.V. Bard, “Algebraic cryptanalysis of the data en-
cryption standard,” Proc. of IMA International Conference on Cryp-
tography and Coding, pp.152–169, 2007.

[9] N. Courtois, G.V. Bard, and D. Wagner, “Algebraic and slide attacks
on keeloq,” Proc. of International Workshop of Fast Software En-
cryption, pp.97–115, 2008.

[10] F.D. Garcia, G.K. Gans, R. Muijrers, P. Rossum, R. Verdult, R.W.
Schreur, and B. Jacobs, “Dismantling mifare classic,” Proc. of Eu-
ropean Symposium on Research in Computer Security (ESORICS
’08), pp.97–114, 2008.

[11] T. Eibach, E.Pliz, and G. Völkel, “Attacking bivium using SAT
solvers,” Proc. of International Symposium on the Theory and Ap-
plications of Satisfiability and Testing (SAT’08), pp.63–76, 2008.

[12] R.T. Faizullin, I.G. Khnykin, and V.I. Dylkeyt, “The SAT solving
method as applied to cryptographic analysis of asymmetric ciphers,”
The Computing Research Repository (CoRR), vol.abs/0907.1755,
2009.

[13] C. Patsakis, “RSA private key reconstruction from random bits us-
ing SAT solvers,” IACR Cryptology ePrint Archive (IACR), vol.26,
2013.

[14] I. Mironov and L. Zhang, “Applications of SAT solvers to crypt-
analysis of hash functions,” Proc. of International Symposium on
the Theory and Applications of Satisfiability and Testing (SAT’06),
pp.102–115, 2006.

[15] E. Homsirikamol, P. Morawiecki, M. Rogawski, and M. Srebrny,
“Security margin evaluation of sha-3 contest analists through SAT-
based attacks,” Computer Information Systems and Industrial Man-
agement, vol.7564, pp.56–67, 2012.

[16] A. Biere, M. Heulu, H. Maaren, and T. Walsh, Handbook of Satisfi-
ability, IOS Press, 2009.

[17] X. Zhang and K.K. Parhi, “High-speed vlsi architectures for the aes
algorithm,” IEEE Trans. Very Large Scale Integration (VLSI) Sys-
tems, vol.12, no.9, pp.957–967, 2004.

[18] X. Liao, H. Zhang, M. Koshimura, H. Fujita, and R. Hasegawa, “Us-
ing maxsat to correct errors in aes key schedule images,” Proc. of
International Conference on Tools with Artificial Intelligence (IC-
TAI’13), pp.284–291, Nov. 2013.

[19] G. Bard, N. Courtois, and C. Jefferson, “Efficient methods for con-
version and solution of sparse systems of low-degree multivariate
polynomials over gf(2) via sat-solvers,” IACR Cryptology ePrint
Archive (IACR), vol.24, 2007.

[20] B. Chen, “Strategies on algebraic attacks using sat solvers,”
Proc. of International Conference for Young Computer Scientists
(ICYCS’08), pp.2204–2209, Nov. 2008.

http://dx.doi.org/10.1007/978-3-642-05445-7_14
http://dx.doi.org/10.1007/978-3-642-05445-7_14
http://dx.doi.org/10.1007/978-3-642-05445-7_14
http://dx.doi.org/10.1109/securware.2010.42
http://dx.doi.org/10.1109/securware.2010.42
http://dx.doi.org/10.1109/securware.2010.42
http://dx.doi.org/10.1109/securware.2010.42
http://dx.doi.org/10.1007/978-3-642-02777-2_24
http://dx.doi.org/10.1007/978-3-642-02777-2_24
http://dx.doi.org/10.1007/978-3-642-02777-2_24
http://dx.doi.org/10.1007/978-3-642-02777-2_24
http://dx.doi.org/10.1007/978-3-540-88313-5_7
http://dx.doi.org/10.1007/978-3-540-88313-5_7
http://dx.doi.org/10.1007/978-3-540-88313-5_7
http://dx.doi.org/10.1007/978-3-540-88313-5_7
http://dx.doi.org/10.1007/11814948_13
http://dx.doi.org/10.1007/11814948_13
http://dx.doi.org/10.1007/11814948_13
http://dx.doi.org/10.1007/11814948_13
http://dx.doi.org/10.1007/978-3-642-33260-9_4
http://dx.doi.org/10.1007/978-3-642-33260-9_4
http://dx.doi.org/10.1007/978-3-642-33260-9_4
http://dx.doi.org/10.1007/978-3-642-33260-9_4
http://dx.doi.org/10.1109/tvlsi.2004.832943
http://dx.doi.org/10.1109/tvlsi.2004.832943
http://dx.doi.org/10.1109/tvlsi.2004.832943
http://dx.doi.org/10.1109/ictai.2013.51
http://dx.doi.org/10.1109/ictai.2013.51
http://dx.doi.org/10.1109/ictai.2013.51
http://dx.doi.org/10.1109/ictai.2013.51
http://dx.doi.org/10.1109/icycs.2008.493
http://dx.doi.org/10.1109/icycs.2008.493
http://dx.doi.org/10.1109/icycs.2008.493

150
IEICE TRANS. INF. & SYST., VOL.E99–D, NO.1 JANUARY 2016

Xiaojuan Liao received B.E. degree from
University of Electronic Science and Technol-
ogy of China in 2009 and received D.E. degree
from Kyushu University in 2014. She has been a
Lecturer in Southwest University of Science and
Technology since 2014. Her research interests
include maximum satisfiability and its applica-
tions.

Hui Zhang received B.E. degree from Uni-
versity of Electronic Science and Technology of
China in 2006 and received D.E. degree from
Kyushu University in 2014. He has been a Lec-
turer in Southwest University of Science and
Technology since 2014. His research interests
include cryptographic algorithms and cryptanal-
ysis.

Miyuki Koshimura received B.S. and M.S.
degrees from University of Tsukuba in 1984
and 1986, respectively. He received D.E. de-
gree from Kyushu University in 2002. He has
been an Assistant Professor in Kyushu Univer-
sity since 2009. He was a research associate
of Kyushu University from 1995 to 2009. His
research interests include automated reasoning
and its applications.

