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PAPER

Combining Multiple Acoustic Models in GMM Spaces for Robust
Speech Recognition∗

Byung Ok KANG†,††a), Nonmember and Oh-Wook KWON††b), Member

SUMMARY We propose a new method to combine multiple acous-
tic models in Gaussian mixture model (GMM) spaces for robust speech
recognition. Even though large vocabulary continuous speech recogni-
tion (LVCSR) systems are recently widespread, they often make egregious
recognition errors resulting from unavoidable mismatch of speaking styles
or environments between the training and real conditions. To handle this
problem, a multi-style training approach has been used conventionally to
train a large acoustic model by using a large speech database with various
kinds of speaking styles and environment noise. But, in this work, we com-
bine multiple sub-models trained for different speaking styles or environ-
ment noise into a large acoustic model by maximizing the log-likelihood of
the sub-model states sharing the same phonetic context and position. Then
the combined acoustic model is used in a new target system, which is robust
to variation in speaking style and diverse environment noise. Experimental
results show that the proposed method significantly outperforms the con-
ventional methods in two tasks: Non-native English speech recognition for
second-language learning systems and noise-robust point-of-interest (POI)
recognition for car navigation systems.
key words: noise-robust speech recognition, acoustic model, GMM com-
bination, non-native speech recognition

1. Introduction

With the significant progress of research on automatic
speech recognition (ASR) over the past few decades, vari-
ous applications of ASR have been successful beyond the
boundary of research laboratories. In particular, large vo-
cabulary continuous speech recognition (LVCSR) have been
applied in many areas: Mobile voice search, broadcast news
transcription, voice recording at call centers, lecture and
meeting transcriptions, automatic speech translation, dialog-
based information retrieval, and car navigation. Among
them, a mobile voice search application is expanding its
user base by improving the speech recognition accuracy un-
der the gradationally matched conditions through utilizing
enormous speech logs.

However, despite the widespread commercial adop-
tion, LVCSR systems operating in real environments still of-
ten suffer from egregious recognition errors resulting from
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adverse background noise, channel distortion, diversity of
speaking styles, disfluency in spoken dialogs, non-native
speech, and out-of-vocabulary words. This is because the
acoustic model of LVCSR systems is not robust to the mis-
match between the training and real environments so that it
cannot cope with various unexpected conditions in real en-
vironments. The mismatch problem could be solved if we
had an infinite matched data covering all acoustic spaces
of the target environments in terms of domain, speaking
style, noise, and channel. In a specific application of mo-
bile voice search services, the performance has been im-
proved under the gradationally matched conditions because
there has been an enormous accumulation of speech logs in
which real conditions are reflected [1]. However, the perfor-
mance improvement is rather limited when the accumulated
speech logs are used for different tasks such as dialog-based
car navigation systems.

Many approaches focusing on acoustic models (AMs)
have been proposed to handle this problem. A multi-
condition training method, currently the most common
method, attempts to train the acoustic model by using a mix-
ture of various amounts and types of noisy speech data [2].
For this purpose, a huge amount of speech data reflecting
real environment noise is required. However, this require-
ment could not be achieved without deploying a real field
service. On the other hand, Povey and others proposed a
universal background model (UBM) framework composed
of a large mixture of Gaussians covering the whole acoustic
space, which is adapted to each context-dependent phone
comprising the acoustic model of the target system [3]. A
drawback of the UBM framework for speech recognition
is the extremely large size of the Gaussian mixture models
(GMMs). Recently, the subspace GMM (SGMM) [4] was
proposed to replace the background model.

Many applications such as second-language learning
or evaluation systems are increasingly exploiting speech
technologies. Furthermore, speech user interfaces driven
by an ASR engine are used globally across language bor-
ders. However, due to the different acoustic and linguis-
tic characteristics from native speech, non-native speech
generally degrades the performance of an ASR system.
Many approaches have been proposed to handle this prob-
lem; acoustic modeling strategies can be classified in ac-
cordance with the amount of non-native speech available in
the applied task. Nallasamy and others [5] proposed a poly-
phone decision-tree extension/adaptation method to accept
new contextual variations identified in a small amount of
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adaptation data. When supplied with plenty of non-native
speech data, Chen and co-workers [6] investigated several
strategies to use native and non-native data effectively for
acoustic modeling, and proposed the use of a phonetic deci-
sion tree (PDT) generated by only native speech data when
constructing acoustic models using both native and non-
native speech data.

In this paper, we propose a new acoustic modeling
method based on a multi-space GMM [7], where multiple
sub-models are trained by using the speech database (DB)
under their own specific conditions and then are combined
into a new acoustic model in a GMM space for the tar-
get task. In some cases, a sub-model can be a pre-existing
acoustic model built for a particular target task. In case of a
customer service system (e.g., a voice search service), multi-
ple sub-models can be trained by using accumulated speech
logs recorded in real environments. For each sub-model, the
GMMs of all hidden Markov model (HMM) states are esti-
mated so that the GMMs of the sub-model can be optimal
elements occupying their acoustic space based on various
conditions of tri-phone context, speaking style, and environ-
ment noise. All states and their GMMs from the HMMs of
a sub-model are gathered into a huge pool of states. Finally,
the target acoustic model is constructed from this pool of
states by merging the states satisfying two criteria proposed
in this paper. Experimental results show that the proposed
method achieves better performance than the conventional
multi-condition training without any adaptation using target
domain speech DBs.

We applied the proposed method to an ASR system for
both native and non-native speakers. The proposed method
is different from the conventional polyphone decision tree-
based extension/adaptation method [5] in that the proposed
method can be extended to non-native speakers with multi-
ple sources of first languages without target domain speech
DBs. As shown in experimental results to be described
later, the method proposed in [6] can be used to handle the
same problem, but shows limited performance improvement
compared to the proposed method. Whereas the previous
paper [7] focused on the approach of building an acoustic
model robust to environment noise, this paper expands tar-
get tasks to include non-native speech recognition and point-
of-interest (POI) recognition. Compared with the SGMM-
based approach [4], our method has a simple algorithmic
structure and does not require additional complicated pa-
rameter estimation steps.

In terms of handling speaking style with multiple pho-
netic variations, the proposed method is closely related to
the study of multidialectal speech recognition. Caballero
et al. [8] presented research results about ASR dealing with
five dialects of Spanish, in which different methods for com-
bining data between dialects were proposed and compared.
Whereas dialect information is also needed in the regres-
sion through the decision tree during the training and decod-
ing stage for the dialect-context-dependent (DCD) acoustic
modeling approach proposed in [8], our proposed method
does not require any information on whether input speech is

native or non-native during the decoding stage.
The remainder of this paper is organized as follows.

Section 2 describes the proposed method to combine the
GMMs from multiple AMs. Section 3 and Sect. 4 present
experimental results in two cases to show the effectiveness
of the proposed method. Finally, concluding remarks are
given in Sect. 5.

2. Proposed Method

Figure 1 shows an overview of the main procedure of the
proposed acoustic modeling method. In the figure, the sub-
models are the pre-existing AMs that have been trained and
optimized for specific tasks using the appropriate training
speech DB. For example, ‘sub-model 1’ can be a native
English AM trained by using native-spoken English speech
DBs, and ‘sub-model 2’ can be a non-native English AM
trained by using Korean-spoken English speech DBs.

2.1 Training Sub-Models

For each sub-model, mono-phone HMMs are expanded into
tri-phone HMMs, where the model parameters Λ are esti-
mated by maximizing the likelihood P(O |Λ), where O is
a sequence of speech feature vectors of a training speech
DB. In LVCSR, the states occupying a similar acoustic
space are tied using a decision-tree-based clustering mech-
anism [9], [10]. In the conventional HMM-based speech
recognition, the probability of observing a data vector x in
an HMM state j is expressed through a GMM as follows.

p(x| j) =
Mj∑

i=1

wjiN
(
x;μ ji,Σ ji

)
, (1)

where Mj is the number of mixture components in state j,
wji is the weight of the i-th component and N(.;μ ji,Σ ji) is
a multivariate Gaussian probability density function with
mean vector μ ji and covariance matrix Σ ji. In this step,
each sub-model has a unique set of states and GMMs that
are the optimal elements characterizing their own acoustic
space based on various conditions of tri-phone distribution,
noise environment, and channel distortion. Each sub-model
includes a GMM and a single Gaussian for each context-
dependent HMM, and includes a physical and logical HMM

Fig. 1 Block diagram of the proposed acoustic modeling method.
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mapping table generated by a PDT. The single Gaussian of
each state is used only to find the pairs of states to be merged
from a pool of states. Actual merging of states is done in
the states with a full GMM which are used in the decoding
stage.

2.2 Computing Log Likelihood of States

At first in the succeeding step, all GMMs from the mul-
tiple sub-models are gathered into a huge pool of states.
Then the state occupation counts for all states are computed
in the state pool using the Baum-Welch re-estimation algo-
rithm [9]. These state occupation counts are generated req-
uisitely in the process of training sub-models and referred
to generate a PDT for each sub-model. Since the state oc-
cupation counts are saved together with the corresponding
sub-models, we do not need to access the original training
data in the next step of state merging. In combination with
the means and variances, the state occupation counts form
sufficient statistics to calculate the log likelihood for single-
Gaussian distributions [9]. Assuming that state tying [10]
does not change the frame alignment, the log likelihood of
each state in the state pool L(s) is approximately calculated
as follows.

L(s) =
∑

f∈F
log
(
P
(
x f ;μs,Σs

))
γs(x f ), (2)

where F is the set of time frames aligned to state s, γs(x f )
is the a posteriori probability of the observation data vector
x f being generated by state s, and P(x f ;μs,Σs) is the state
observation probability.

In particular, for a Gaussian distribution, the log likeli-
hood is given by

L(s) = −1
2

(log[(2π)n|Σs|] + n)
∑

f∈F
γs(x f ), (3)

where n is the dimensionality of the data vector x f [10].

2.3 Merging States Occupying a Similar Acoustic Space

Among the pool of states, all pairs of states clustered into the
same terminal node of the PDT, which has the same center-
phone and the same phone state position in the HMM, are
merged if one of two criteria is satisfied. A combined
GMM is obtained by concatenating the Gaussian distribu-
tions of all merged GMMs as follows. Assuming that a
GMM with Mj mixtures at state j has a parameter set of
λ j = {wji,μ ji,Σ ji, i = 1 · · ·Mj}, the parameter set λ̃c of the
combined GMM is given as

λ̃c = {w1i,μ1i,Σ1i, · · ·wji,μ ji,Σ ji,

· · · ,wSci,μSci,ΣSci, i = 1 · · ·Mj}, (4)

where Sc is the total number of states merged to the target
state c. Consequently, each state of the combined model has
a variable number of Gaussian distributions.

The first criterion is as follows:

ΔLmerged = L(state1) + L(state2) − L(statemerged)

ΔLmerged ≤ Threshold, (5)

where ΔLmerged is the decrease in the log likelihood after
state merging, L(state1) and L(state2) are the log likelihood
of any pair of states in the state pool. These log likelihoods
are computed using Eq. (3) with a single Gaussian model of
each state. Any pair of states whose decrease in log likeli-
hood is less than a threshold is merged. The threshold influ-
ences the total number of states of the final acoustic model.
As the distribution of state likelihood depends on the speech
DB used for training sub-models, the merging threshold is
tuned from a small randomized subset of the training speech
DB. In our experiments, the best performance in terms of
the final AM size and the recognition accuracy was obtained
when the threshold was set to the values ranging from 4,000
to 8,000 depending on the target tasks.

The second criterion is as follows:

{Tsub1 |Tsub1 is the logical tri-phone sharing state1}
== {Tsub2 |Tsub2 is the logical tri-phone sharing state2},

(6)

where {Tsub1} and {Tsub2} are a set of logical tri-phones shar-
ing states state1 and state2 of the state pool in a specific state
position, respectively.

Figure 2 shows the concept of the second criterion for
merging states. The cloud-like figure describes a huge pool
of states in an acoustic space composed of sub-models. An
arrow in the figure indicates that any state of the state pool
can be a state position of several logical tri-phones of a sub-
model. If a set of states shares the same logical tri-phone
set from sub-models, these states are likely to occupy the
same acoustic space and can be merged as a single state. For
example, if state1 is a state position of a logical tri-phone set

Fig. 2 Concept of the second criterion for merging states.
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{Th,Ti,T j} of sub-model1 and state2 is a state position of the
same logical tri-phone set of sub-model2, then state1 and
state2 are merged. After the merging process using the two
criteria, a common PDT for the target task is constructed
based on the clustered terminal nodes.

2.4 Adjusting State Weights and GMM Parameters

Because the state pool is generated through the concatena-
tion operation, the mixture weights of the GMMs constitut-
ing these states should be adjusted. Because these GMMs
are constructed from a combination of several sub-models
reflecting multiple spaces, they should be adjusted to repre-
sent an acoustic space that their states delegate for the target
task. If a target domain speech DB such as user’s speech
log is available, the weights of the combined GMMs in each
state, which are induced from the GMM spaces from multi-
ple AMs, can be adjusted based on the maximum a posteri-
ori estimation or discriminative adaptive training [11], [12].
For the state weights to influence on recognition perfor-
mance, we need a sufficient amount of target domain DB
from real environment conditions such as speech logs to ad-
just mixture weights of several or tens of thousands of states.
Since we could not obtain a sufficient amount of adaptation
DB from real environment conditions, we just proportion-
ately scaled the original mixture weights of sub-models as
follows,

wadj =
worig of each state of sub-models

Total number of states merged into target state
,

(7)

where wadj is the adjusted weight vector of GMMs in the
target state and worig is the original weight vector of GMMs
in the state of a sub-model merged to the target state.

3. Combining Native and Non-Native Acoustic Models

3.1 Experimental Conditions

For many applications such as a language learning or evalua-
tion system for a second language, an acoustic model should
provide robust speech recognition performance for both na-
tive and non-native speech. For this purpose, we applied the
proposed acoustic modeling method for combining native
and non-native acoustic models. The speaker information
on whether input speech is native or non-native is assumed
to be unknown during the decoding stage in the proposed
method. Instead, the kind of the target task, for example,
whether an English evaluation system for Korean speakers
or a car navigation system, is assumed to be known during
the training and decoding stages.

The training speech DB for acoustic modeling con-
sisted of 426 hours of native American English speech data,
which were derived from the training set of several speech
DBs: The Wall Street Journal database (WSJ1) [13], the
native English speech corpus of the Speech Information
Technology and Industry Promotion Center (SiTEC) [14],

and the native English speech DB of the Electronics and
Telecommunications Research Institute (ETRI). The train-
ing speech DB for non-native English AM was composed of
382 hours of Korean-spoken English speech data extracted
from the training set of the Korean-spoken English speech
DB of ETRI.

In our experiments, all states in the acoustic models for
the baseline and sub-models were set to have a fixed number
of Gaussians for simplicity. The number of states of each
model was determined according to the amount of training
speech DBs. In detail, the number of states was counted af-
ter the leaf nodes with the number of occurrence less than
threshold are removed in the PDT. For fair comparison, we
used the same parameters for the proposed method as the
baseline and sub-models. Using native-spoken English AM
and Korean-spoken English AM, we built the combined na-
tive and non-native AM following the procedure of the pro-
posed acoustic modeling. We used both criteria for the
state merging step described in Sect. 2.3. We adjusted the
state weights by scaling proportionately the original mix-
ture weights of GMMs from sub-models as described in
Sect. 2.4.

We extracted 39 dimensional feature vectors composed
of 13 mel frequency cepstral coefficients (MFCCs) includ-
ing C0, and their first and second derivatives. The acoustic
models consisted of left-to-right and cross-word tri-phone
HMMs with three states, where each state has a mixture of
16 GMMs. The acoustic models were built by using the
hidden Markov model toolkit (HTK) [9]. For each AM, the
mono-phone HMMs were expanded into tri-phone HMMs,
and the states of the tri-phone HMMs were then tied using
the PDT clustering mechanism [9], [10]. For acoustic and
pronunciation models, we used the CMU-DICT American
English phone set [15], which consists of 39 phones.

For native English evaluation, we used 4,878 utter-
ances from the evaluation set of the WSJ1 (NatEngSet).
For non-native English evaluation, we used three evaluation
sets. The first non-native evaluation set is made up of 3,109
utterances from the evaluation set of the Korean-spoken
English speech DB of ETRI (KorEngSet1). The second one
is made up of 3,000 utterances which were spoken by kids
and recorded in real situations by GnB, an English educa-
tion institute in Korea (KorEngSet2). The third one is made
up of 400 utterances recorded by 10 Korean speakers for as-
sessing GinieTutor [17], an English-learning application of
ETRI (KorEngSet3).

Two types of language models in the form of backed-
off bigrams were used for the native and non-native
English evaluation sets. For the native English evaluation
set, 5,593 unique words and 21,378 bigram entries were
used. For the two non-native English evaluation sets, 5,059
unique words and 105,401 bigram entries were used. For the
speech recognition engine, we used a finite state transducer
(FST)-based large vocabulary speech recognizer developed
at ETRI [16].
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3.2 Experimental Results

First, we compared the performance of AMs trained with
native-spoken English speech DB and non-native-spoken
English speech DB.

Table 1 shows that word error rates (WERs) of native-
spoken English AM are 3.2% and 38.9% for NatEngSet and
KorEngSet1, respectively. Native-spoken English AM per-
forms well for NatEngSet. However, due to the mismatch of
acoustic and linguistic characteristics, it shows serious per-
formance degradation for Korean-spoken English evaluation
sets. On the contrary, Korean-spoken English AM yields
WERs of 8.1% and 18.9% for NatEngSet and KorEngSet1,
respectively.

Next, following the conventional method to build
acoustic models for covering non-native speech, we directly
combined the native English speech DB and the Korean-
spoken English speech DB, and constructed native/Korean-
spoken English AM with an 808 hour speech DB. As shown
in the table, native/Korean-spoken English AM gives com-
parable performance with native-spoken English AM for
NatEngSet, but gives small performance degradation com-
pared to Korean-spoken English AM for KorEngSet1. As
Chen and co-workers proposed [6], we generated a PDT
by using only native-spoken speech DB and then trained
GMMs for each leaf node based on native/Korean spoken
speech DB. In spite of a smaller number of total Gaussian
mixtures as shown in Fig. 3, native PDT & native/Korean
spoken English AM gives comparable performance with
native/Korean spoken English AM for NatEngSet, but re-
sults in performance degradation for Korean-spoken English
evaluation sets.

Using native-spoken English AM and Korean-spoken
English AM, we combined two acoustic models in the
state level by the proposed method. The results show that
the proposed method achieved significant error rate reduc-
tion (ERR) of 15.0%, 7.6%, and 13.9% for all non-native
English evaluation sets of KorEngSet1, KorEngSet2,
and KorEngSet3 compared to the conventional method,
respectively.

Compared to native-spoken English AM, the pro-
posed AM consistently achieves significant improvement
for all 3 kinds of Korean-spoken English evaluation sets,
but has worse performance for NatEngSet. The proposed
method outperformed Korean-spoken English AM, achiev-
ing significant ERR of 42.0% and 6.9% for NatEngSet and
KorEngSet1, respectively, which implies that the combined
native and non-native AM gives better performance than the
AM obtained by using only non-native speech data.

To evaluate the effect of the two criteria on recogni-
tion accuracy, we applied the first and second criteria sep-
arately and then compared their performance with the pro-
posed method which used both criteria together. Table 2
shows the recognition performance of two criteria in the
state merging step described in Sect. 2.3. While two crite-
ria got similar performance for the Korean-spoken English

Table 1 Comparison of word error rates (WERs, in %) of native English
AM, Korean-spoken English AM, Native/Korean-spoken AM, Native PDT
& native/Korean spoken English AM, and the proposed AM.

Fig. 3 Comparison of the total number of Gaussian mixtures.

Table 2 Comparison of the two state merging criteria of the proposed
AM.

evaluation sets, the second criterion showed somewhat more
contribution to the recognition performance for NatEngSet.
The proposed method which uses two criteria consistently
achieved good performance compared with applying each
criterion separately.

Figure 3 shows the total number of Gaussian mix-
tures of native-spoken English AM, Korean-spoken English
AM, the conventional native/Korean spoken English AM
and the proposed AM. The figure suggests that the proposed
AM achieves better performance than the conventional na-
tive/Korean spoken English AM, even though the proposed
method has the total number of mixtures similar to the con-
ventional one.
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4. Combining Acoustic Models for Car Navigation Sys-
tems

4.1 Experimental Conditions

We applied the proposed method to build a noise-robust
acoustic model for speech recognition in a car navigation
system. Our target system has a speech recognition interface
for both POI input and dialog-based information retrieval.
The target domain for dialog-based information retrieval
includes the recognition of POIs and addresses, location-
based search items such as gas stations and parking lots,
command and control for digital multimedia broadcasting
(DMB), and information retrieval for traffic reports about
congested areas. The vocabulary size was about 1,800k.

The training speech DB for acoustic modeling was
1,100 hours of training speech data composed of 750 hours
of dictation speech and 350 hours of phonetically opti-
mized words (POWs) [18], connected digits, words with
low-frequency phoneme strings, and speech logs of a mo-
bile search service. To build an acoustic model based on the
proposed method, we used two sub-models trained with a
clean speech DB and noisy speech DB, respectively. The
first sub-model was trained by using speech DBs in a quiet
office environment and the second sub-model was trained
for noisy environments. The original training speech DB for
the second sub-model was the same as the speech DB of the
first sub-model. However, noise signals recorded in a car un-
der various conditions were randomly mixed into the origi-
nal training speech DB at a randomly selected SNR within
the range of 5 to 15 dB. For the baseline multi-condition
training, we used all speech DBs: The clean speech DB
of the first sub-model and the noisy speech DB of the sec-
ond sub-model. For evaluation in real car environments, we
used 1,200 utterances recorded in two types of vehicles: The
Hyundai Sonata (D segment sedan) and the Hyundai Santa
Fe (E segment SUV). To emulate real environments of car
navigation systems, three different driving conditions were
considered: Idling, driving through town, and driving at a
high speed.

4.2 Experimental Results

Table 3 compares the WERs between AM obtained by the
proposed method and AM used in baseline multi-condition
training. To check the contribution of two criteria used in

Table 3 Comparison of WERs (%) of the baseline AM and the proposed
AM.

the state merging step, we applied the first and second cri-
teria separately and then compared their performance with
the baseline and proposed methods. The experimental re-
sults indicate that the proposed AM has better performance
than the baseline AM under various driving conditions and
the AMs with each criterion applied separately.

5. Conclusion

We proposed a new method for combining multiple AMs
in GMM spaces for robust speech recognition of non-native
and noisy speech. The proposed method is motivated by the
fact that each acoustic model with an intrinsic target task has
the optimal elements occupying its acoustic space reflecting
specific conditions and environments. Thus, after gathering
all states and their GMMs from sub-models into a huge pool,
a new acoustic model for the target task can be constructed
by state merging and weight adjustments.

To evaluate the proposed acoustic modeling method for
robust speech recognition, we performed computer experi-
ments for two tasks: A non-native speech recognition task
for English learning systems as a second language and a
noise-robust speech recognition task for car navigation sys-
tems. For the non-native speech recognition task, the pro-
posed method of combining native and non-native models
achieved an average ERR of 12.2%. For the noise-robust
speech recognition task, the proposed method achieved con-
sistent and significant error reduction under various driving
conditions compared to the conventional method.
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