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PAPER

Improvement of Renamed Trace Cache through the Reduction of
Dependent Path Length for High Energy Efficiency∗

Ryota SHIOYA†a) and Hideki ANDO†, Members

SUMMARY Out-of-order superscalar processors rename register num-
bers to remove false dependencies between instructions. A renaming logic
for register renaming is a high-cost module in a superscalar processor, and
it consumes considerable energy. A renamed trace cache (RTC) was pro-
posed for reducing the energy consumption of a renaming logic. An RTC
caches and reuses renamed operands, and thus, register renaming can be
omitted on RTC hits. However, conventional RTCs suffer from several
performance, energy consumption, and hardware overhead problems. We
propose a semi-global renamed trace cache (SGRTC) that caches only re-
named operands that are short distance from producers outside traces, and
solves the problems of conventional RTCs. Evaluation results show that
SGRTC achieves 64% lower energy consumption for renaming with a 0.2%
performance overhead as compared to a conventional processor.
key words: superscalar processor, register renaming, trace cache, energy
efficiency

1. Introduction

Single thread performance remains important even in the
era of multi-core processors, and major developers have ex-
tended out-of-order superscalar processors to improve this
performance. For example, recent commercial processors,
such as IBM POWER8 [2], Intel Haswell [3], and ARM
Cortex A72 [4], are so large that they can execute eight or
more instructions in each cycle. Although the performance
level of out-of-order superscalar processors is high, they
consume much more energy than do in-order processors, be-
cause a large amount of energy is consumed by hardware for
out-of-order execution.

In an out-of-order superscalar processor, a register map
table (RMT) is one of the most energy consuming units.
An out-of-order superscalar processor dynamically renames
register numbers to remove false dependencies between in-
structions, and this process is called register renaming. An
RMT is a table for register renaming, and it holds mapping
information from logical to physical register numbers. An
RMT in general consists of a heavily multi-ported memory
and occupies a large area. For example, the area of the re-
name logic in Alpha 21464 is larger than that of the L1D
cache [5]. Moreover, the number of accesses to an RMT
is also large, and consequently, it consumes a considerable
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amount of energy. As a result, the energy consumption of an
RMT is comparable to that of a reservation station [6], and
its power density is the fourth highest on chip [7].

A renamed trace cache (RTC) was proposed for reduc-
ing the energy consumption of an RMT. An RTC extends
a trace cache (TC) [8] and caches and reuses renamed in-
structions. Instructions fetched from an RTC have renamed
operands, and thus, register renaming can be omitted, which
reduces the energy consumption.

Researchers have proposed two types of RTCs [9],
[10], which we refer to as Local-RTC (LRTC) and Global-
RTC (GRTC) for simplicity.

LRTC directly extends a TC and caches renamed
source operands that refer to producers in the same trace∗∗.
LRTC renames the logical register numbers of source
operands to instruction positions in a trace. When an in-
struction and its producer are in the same trace, the position
of the producer in the trace is constant, and consequently,
LRTC can reuse the renamed source operands. The prob-
lem of LRTC is that it cannot reuse renamed operands that
refer to producers outside a trace. As a result, its advan-
tage is limited, and it can cache renamed operands only for
approximately 30% of operands (Sect. 6).

GRTC renames source operands to displacements be-
tween instructions and caches them according to each past
executed path. This scheme allows GRTC to cache renamed
operands outside a trace, and thus, it does not have the limi-
tation of LRTC in terms of caching renamed operands.

However, GRTC significantly reduces the capacity ef-
ficiency. A TC suffers from a similar problem, but that of
GRTC is more serious. In a TC, there are multiple traces
that start from the same basic block, and consequently, its
capacity efficiency is lower than that of a general instruc-
tion cache. Additionally, in GRTC, there are multiple re-
named traces depending on each backward executed path
outside a trace. The number of renamed traces is increased
exponentially with the length of a backward executed path,
and thus, the capacity efficiency is significantly reduced in
GRTC. Moreover, in GRTC, it is necessary to store the tar-
get addresses of indirect jumps to its tag array for check-
ing a path, and it considerably increases the circuit area
and energy consumption. As a result, its energy overhead
mostly cancels most of the reduced energy consumption of
the RMT, as described in Sect. 6.

∗∗The term trace means instructions ordered by a dynamic exe-
cution sequence.
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We propose semi-global renamed trace cache
(SGRTC), which is based on GRTC and solves the prob-
lems of the conventional GRTC. SGRTC restricts caching
renamed operands to those having a short off-trace distance
to their producer. The number of renamed traces is increased
exponentially with the distance, and thus, this restriction
makes it possible to reduce the number of generated traces,
and this significantly improves the capacity efficiency. In
addition, SGRTC also solves the problem of GRTC that it
needs to store the target address of indirect jumps. SGRTC
restricts the off-trace distance of a backward executed path,
and thus, indirect jumps rarely exist in a backward exe-
cuted path. As a result, target address storages can be omit-
ted without significant performance degradation, and energy
consumption is thus reduced.

The evaluation results presented in Sect. 6 show that
the energy consumption for register renaming is reduced by
64% as compared to a processor with a conventional in-
struction cache, and only a 0.2% performance degradation
is incurred. Further, the evaluation results show that the
proposed method achieves an 8.5% and 4.5% higher perfor-
mance, 23% and 60% lower energy consumption, and 41%
and 151% higher performance-energy ratio (the inverse of
the energy-delay product (EDP)) than conventional LRTC
and GRTC, respectively.

Researchers of conventional LRTC and GRTC previ-
ously stated that the complexity of a rename logic can be
mitigated; however, they did not evaluate energy consump-
tion quantitatively. One of the contributions of this paper
is a quantitative evaluation of the energy consumption and
performance of these conventional methods.

The rest of the paper is organized as follows. In
Sect. 2, a description of an RMT and the caching of renamed
operands provides background knowledge. In Sects. 3 and
4, GRTC and its problems are described, respectively. In
Sect. 5, our proposed method, SGRTC, is described. In
Sect. 6, our evaluation results are presented. In Sect. 7, re-
lated work is summarized.

2. Background

In this section, we first describe the problems related to an
RMT, and then, we briefly explain why it is in general dif-
ficult to cache renamed operands and how the manner in
which LRTC overcomes this difficulty.

2.1 Problems of Register Map Table

Register numbers are renamed by reading and writing an
RMT. An RMT is a table containing the relationship infor-
mation between the logical and physical register numbers;
in general, it comprises multi-ported RAM [11], [12]†.

An RMT occupies a considerably large circuit area.
For general ISAs with a three-operand format, an RMT re-
quires four ports per instruction [11], [13]. For example, in

†There is a method with a CAM-based RMT [5], and our pro-
posal also can be implemented on a CAM-based method.

a processor having a decode width of eight, such as IBM
POWER 8 [2], a straightforward implementation of an RMT
requires 32 ports. The area of a RAM grows proportionally
with the square of the number of ports [14], and therefore,
the area of the RMT is large despite its small number of en-
tries.

Moreover, spreading SMT processors makes the RMT
considerably larger. SMT processors require RMTs with ca-
pacities that are proportional to the number of threads for
retaining the thread contexts. In fact, Alpha 21464 with 4-
thread SMT has a rename logic that is larger than its L1-data
cache [15]. The recent IBM POWER 8 [2] supports 8-thread
SMT and this problem becomes more severe.

As a result, the energy consumption and generated heat
of the RMT is a very important issue. The energy consump-
tion of a RAM is proportional to its area and access fre-
quency [14]. Almost all instructions access the RMT more
than once, and thus, the number of accesses to it is consider-
ably high. Consequently, the RMT consumes significantly
more energy than a data cache in the same area.

In fact, the RMT in the Intel P6 architecture accounts
for 4% of the energy consumed by the processor, which is
comparable to that of its reservation station [6]. The RMT
in the ARM Cortex A15 accounts for 6% of the energy
consumption of the processor when its loop cache is dis-
abled [16]. When the loop cache is enabled and operates ef-
fectively, the proportion of energy consumed by the RMT is
practically increased, because the loop cache can omit insti-
tution fetch, decode, and branch prediction, which accounts
for 40% of the total consumed energy. In recent proces-
sors, such as IBM POWER 8, the rename width is signif-
icantly wider than those of the Intel P6 and ARM Cortex
A15, and since they support SMT, their RMT is also signif-
icantly larger.

2.2 Caching Renamed Operands

As a means of mitigating the problems of an RMT, caching
and reusing renamed operands is an attractive idea; how-
ever, in general, this approach is difficult for the following
reasons;

1. The producers of source operands are changed de-
pending on the executed paths, and consequently, the
physical register numbers of source operands are not
reusable.

2. Physical registers are assigned from a free list, and
consequently, assigned register numbers are not repro-
ducible and reusable.

We show an example in Fig. 1. This figure shows the
control flow graph, and each node represents an instruction.
In this figure, It2 depends on r1 and r2. The physical regis-
ter numbers assigned for each operand are denoted by [pN],
for example, [p8]. The first operand r1 can be produced by
Ip0, Ip1, or Ip2 depending on its executed path, and conse-
quently, the physical register number can be changed and is
not reusable. The second operand r2 is always produced by
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Fig. 1 Non-reusability of renamed operands

It0, but its physical register number is assigned from a free
list and is not reproducible.

2.3 Local Renamed Trace Cache

LRTC, described in Sect. 1, avoids the above problems and
partially reuses renamed operands by using the following
methods. LRTC uses a physical register file (RF) that is lo-
cal for each trace, in addition to a conventional physical RF.
Each entry of this local physical RF is sequentially assigned
to each instruction in a trace, and is referred to with an offset
from the start of a trace†. In a trace, it is guaranteed that the
positions of each instruction and its execution paths are set
according to the behavior of TC. Consequently, LRTC can
resolve the above two problems and reuse renamed operands
in the trace.

We show an example in Fig. 1. In this figure, It0, It2,
and It3 are fetched as a single trace. It0 is the producer of the
source operand r2 of It3, and they are in the same trace. In
this case, the r2 of It3 is renamed to the position of It0 (0) in
the trace. In the trace, it is guaranteed that the position of It0

and the execution path from It0 to It3 are set according to the
behavior of TC, and thus, a renamed operand can be reused.

However, this means that LRTC can cache renamed
operands only when source operands refer to destination
operands generated in the same trace. For example, in Fig. 1,
the source operand r1 of It3 refers to the producers outside
the trace, and its producer is changed depending on the ex-
ecuted path outside the trace. Consequently, its renamed
operand cannot be reused and it is renamed as a conven-
tional processor. As a result, LRTC cannot operate effec-
tively and can cache only approximately 30% of renamed
operands (Sect. 6).

3. Global Renamed Trace Cache

Unlike LRTC, GRTC was proposed for caching renamed
†There is a more optimized implementation, but we describe

this implementation for simplicity.

Fig. 2 General front-end

Fig. 3 GRTC’s front-end

operands that refer to producers outside a trace [10]. Fig-
ures 2 and 3 show the front-end of a conventional super-
scalar processor and that with GRTC, respectively. A con-
ventional superscalar processor renames operands for each
fetched instruction. On the other hand, in GRTC, fetched in-
structions are directly dispatched to the instruction window,
because their operands are already renamed. Operands are
renamed only when traces are generated on an RTC miss,
and consequently, the number of ports of an RMT can be
reduced without performance degradation. This reduction
of ports considerably reduces the RMT’s area and energy
consumption.

GRTC modifies the allocation and reference of physi-
cal RFs, and allows the reuse of renamed operands without
the restriction of caching in LRTC. This section describes
GRTC.

3.1 Register File Method

GRTC uses the two RFs, the physical register file (PRF) and
logical register file (LRF). The entries in these RFs are al-
located in the same manner as a reorder buffer and LRF in
a processor with a reservation station. However, only the
allocation method is the same. The issue queue in GRTC
does not have values and the RFs are accessed only after is-
suing from the issue queue. In particular, the PRF has a ring
structure and its entries are sequentially allocated. The LRF
holds the execution results of retired instructions. Instruc-
tions write their execution results to the LRF in sequential
order.

3.2 Instruction Method

In GRTC, source operands are referred to with the displace-
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Fig. 4 Example of conversion to dualflow ops

ment between instructions as “the execution result before n
instructions.” This displacement is equal to that between
entries allocated to instructions in the PRF, because the en-
tries of the PRF are sequentially allocated to instructions.
Each instruction obtains the physical register number of the
source operands by adding its displacement to the physical
register number of its own destination operand. When a pro-
ducer is at a greater distance than WS , which is the size of
an instruction window††, it is guaranteed that the producer
is retired and its execution result is obtained from the LRF.

An instruction with this displacement is called a du-
alflow op. GRTC dynamically converts instructions to du-
alflow ops for generating traces on an RTC miss. This con-
version is performed with an RMT that is similar to that in
a usual rename logic [10].

3.3 Caching Dualflow Ops

GRTC generates traces including dualflow ops for each ex-
ecution path, and separately caches them. This caching uses
a structure that is similar to a conventional TC. The con-
ventional TC generates and caches traces for each execution
path in a trace. On the other hand, GRTC generates and
caches traces for each backward execution path outside a
trace, in addition to those in a trace.

We explain this scheme by using the example presented
in Fig. 4. In this figure, instructions in (a) are converted to
dualflow ops in (b) when the branch I1 is taken, and those in
(c) are converted vice versa. I3 in (b) and (c) has a different
displacement, −2 and −1, respectively. The displacements
differ according to the backward execution path of I3. GRTC
generates traces Tb and Tc for each pattern and caches them
for each backward execution path.

GRTC distinguishes traces by using path information
that is similar to that used in a conventional TC. The term
“path information” is specifically the directions of branches
and the target addresses of indirect jumps. GRTC stores this
path information and the start address of the path to a tag
array. When GRTC determines an RTC hit or miss, it gen-
erates path information from the PC and branch history in-
formation and compares it with the path information stored
in a tag array.

3.4 Reusing Renamed Operands

GRTC resolves the two problems that prevent the reuse of

††WS is the size of a reorder buffer.

renamed operands (Sect. 2.3). First, the non-reproducibility
of physical register numbers is solved by the sequential as-
signment of registers and operand access with displacement.
The displacement, which is a static distance between in-
structions, is always constant. Consequently, the displace-
ment, once converted, can be reused. Second, the change
in the producer for each path is solved by caching traces for
each backward execution path. As a result, GRTC can cache
and reuse renamed operands.

4. Problems of Global Renamed Trace Cache

This section describes two problems of GRTC.

4.1 Low Capacity Efficiency

The first problem of GRTC is its low capacity efficiency.
As compared to TC and LRTC, each trace depends on its
backward path outside a trace, and it is necessary to cache
different traces starting from the same basic block for each
backward path. The increase in the length of a dependent
path exponentially increases the number of generated traces,
and the capacity efficiency is considerably reduced.

We explain this problem by using Fig. 5. This figure
shows the control flow graph, where each node represents
an instruction. In the following, we explain the fetch of the
trace that starts from It start to It end by comparing TC and
GRTC. Note that we do not explain a case of LRTC, because
the fetch methods of LRTC and TC are identical.

(1) TC: A trace hits if the path from It start to It end in
the trace matches the path information in the tag array. In
this case, the length of path information is three instructions,
which is the length of a trace.

(2) GRTC: In addition to the path in a trace, GRTC
requires that the backward execution the path of a trace and
path information in the tag array match. The length of the
backward path of a trace is determined by the largest dis-
placement in the source operands in a trace (we refer to
it as the dependent path length). For example, when the
source operands of It start, It br, and It end refer the destina-
tion operand of Ip1, the length of the path information is six
instructions, three instructions in the trace and three instruc-
tions in the backward path from Ip1 to It start. This is longer
than that of TC, which is three instructions.

The maximum dependent path length in GRTC is the
size of the instruction window, WS . This is because pro-
ducers that are distant more than WS must be retired, and it
is guaranteed that their results are in the LRF, as described
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in Sect. 3.1.
Because of the difference in dependent path lengths,

the numbers of generated traces in TC and GRTC are con-
siderably different. For example, in TC the length of a
trace of which is three instructions, the number of generated
traces that started from the same address is 23 = 8 in the
worst case when all the instructions in a trace are branches.
On the other hand, in GRTC, each trace depends on its back-
ward path outside a trace, in addition to the inside of a trace.
The maximum dependent path length is WS , which is more
than 200 instructions in recent processors [2], and conse-
quently, the number of generated traces is more than 2200

in the worst case. As described above, the number of gener-
ated traces is considerably higher and the capacity efficiency
of GRTC is consequently decreased.

4.2 Overhead of Tag

The second problem is the hardware overhead of the stored
path information in a tag;

(1) Increased Information for Branch Directions:
The path information of GRTC is similar to the information
of branch directions in a trace in TC. As described previ-
ously, the dependent path length of GRTC is considerably
longer than that of TC, and consequently, more hardware is
necessary to store it.

(2) Stored Target Address of Indirect Jump: In TC,
the target address of an indirect jump is not stored to its tag
array in order to avoid hardware overhead. Consequently,
a trace is complete if an indirect jump exists in a case of
TC. This does not decrease the performance significantly,
because the appearance frequency of indirect jumps is suffi-
ciently low.

On the other hand, in GRTC, if the target address of
an indirect jump is not stored to a tag array, its performance
is degraded sufficiently [10]. This is because the hit/miss
determination in GRTC depends on its backward path out-
side a trace. When the target addresses are not stored to a
tag array, it is unable to cache a trace with indirect jumps
that are placed backward within the dependent path length
of the trace, because matching its path is not guaranteed. For

Fig. 5 Control flow and path information

example, in Fig. 5, if Ip br is an indirect jump, instructions
above Ip1 cannot be cached. As a result, when an indirect
jump appears, it is unable to cache a considerable number
of instructions in front of the indirect jump.

Thus, GRTC stores some target addresses of indirect
jumps to a tag array. If the number of indirect jumps is
greater than the maximum number, traces are not cached and
are renamed with an RMT. Ichibayashi et al. explained that
it requires two-target addresses in a tag array for avoiding
performance degradation; however, they did not evaluate its
overhead such as energy consumption [10].

However, the overhead of its additional hardware is
considerably large. For example, when an instruction length
is four bytes and a trace length is four instructions, the re-
quired capacity for the data part of a trace is 16 bytes. On
the other hand, when the length of a target address is 64 bits,
the tag part with two target addresses for the path informa-
tion consumes capacity greater than its data part. Moreover,
it requires WS directions of branches, and consequently, the
capacity of the tag array is considerably larger than that of a
conventional cache and TC.

5. Semi-Global Renamed Trace Cache

We propose semi-global renamed trace cache (SGRTC),
which is based on GRTC. In our proposed method, only re-
named operands that are a short distance from the producers
outside traces are cached.

5.1 Motivation

Many source operands of consumers in general refer to pro-
ducers near the consumers. Figure 6 shows the distribution
of the distances from each source operand to its producer in
SPECCPU INT 2006 benchmark suite [17]†. The horizon-
tal axis shows the distance from each source operand to its
producer, and the vertical axis shows the cumulative ratio
to all source operands. For example, the point plotted at 10
on the horizontal axis and 0.7 on the vertical axis represents
that source operands having a distance to their producers of
less than 10 instructions occupy 70% of all source operands.
This preliminary evaluation result shows that about 70% of

Fig. 6 Distribution of distances to producers

†Evaluation environment is the same as that used in Sect. 6.
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Fig. 7 GRTC’s front-end

Fig. 8 SGRTC’s front-end

source operands refer to producers within 10 instructions in
SPECCPU INT 2006.

On the other hand, the dependent path length of a trace
(Sect. 4.1) is considerably longer than the distance from
each source operand to its producer. This is because the
dependent path length of a trace is determined by the largest
distance from a source operand to a producer in the trace. As
a result, although the distance from most source operands to
those producers is within 10 instructions, the average depen-
dent path length is over 80 instructions in GRTC.

5.2 Limiting Caching by Dependent Path Length

We focus on the fact that many source operands gener-
ally refer to producers near to the consumers, and propose
a method that caches only renamed operands that are a
short distance from the producers outside traces. The other
operands are stored to an RTC as logical register numbers
and are renamed with an RMT after instruction decoding.

We describe our proposal, SGRTC, by comparing the
conventional GRTC and SGRTC. Figures 7 and 8 show the
front-end pipeline of GRTC and SGRTC, respectively. In
GRTC, on an RTC hit, fetched traces are immediately dis-
patched to the instruction window. On an RTC miss, in-
structions are fetched from an instruction cache, and then,
they are renamed. The stages accessing an instruction cache
and an RMT are placed outside the instruction pipeline and
operate only on an RTC miss. On the other hand, SGRTC
has stages that can access an instruction cache and an RMT,
regardless of the RTC hit/miss, and these stages operate as
follows.

(1) RTC Hit: In Fig. 8, the successive Fetch-I stage
does not access the instruction cache. The successive Re-
name stage renames only operands stored in traces as logi-

Fig. 9 Reference distance for each instruction

cal register numbers.
(2) RTC Miss: The Fetch-I stage accesses the instruc-

tion cache, and the Rename stage renames operands.
The traces in RTC are replaced and filled in the same

way as in a conventional TC [8]. As described above, on
an RTC miss, instructions are fetched from the instruction
cache and renamed. Then, the renamed instructions are dis-
patched to the instruction window, and at the same time, fed
to a fill unit with path information. The fill unit generates
trace data from the fed instructions and path information,
and it is filled to RTC. In this time, a replacement target is
determined using the LRU policy in the same way as con-
ventional caches.

SGRTC can reduce the number of ports of its RMT as
can the conventional GRTC. When the number of ports is
small, the front-end is stalled, and the operands in a fetch
group are renamed in multi-cycles.

5.3 Effects of Proposed Method

Although our proposed method is very simple, it can effec-
tively solve the two problems of the conventional GRTC de-
scribed in Sect. 4 and can cache renamed operands more fre-
quently than LRTC does.

5.3.1 Improving Capacity Efficiency

Our proposed method limits the dependent path lengths of
traces to short distances and improves the capacity efficiency
of RTC. We explain this improvement by using the example
shown in Fig. 9, which is a control flow graph similar to that
in Fig. 5. In this figure, each instruction has only one source
operand. We focus on the trace with It0 and It1; and there
are three backward paths that arrive in this trace.

In general, when the distance from a consumer to a pro-
ducer increases, the number of paths to its producer also in-
creases. The producer of It0 is near to It0, and is always Ip3,
regardless of which backward path is executed. On the other
hand, the producers of It1 are different for each backward
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path, and they are Ip0, Ip1, and Ip2.
In conventional GRTC, the dependent path length is de-

termined by the largest displacement in the source operands
in a trace. Consequently, different traces are generated for
every three paths arriving at It0.

On the other hand, we assume a case of SGRTC that
limits the dependent path length to one instruction. The
producer of It0 is within one instruction from It0, and conse-
quently, its renamed operand is cached. On the other hand,
the renamed operands of all the producers of It1 that are
more than one instruction distant from It1 are not cached.
That is, unrenamed r1 is cached to RTC as it is, regardless
of which backward path is executed, and then it is renamed
even if RTC hits.

In this case, there is only one path that arrives at It0

from one previous instruction, and consequently, the num-
ber of traces that may be generated is one. The number of
generated traces is reduced, and this improves its capacity
efficiency.

As described in Sect. 4, an increase in the dependent
path lengths of traces exponentially increases the number
of generated traces, and the capacity efficiency of RTC is
considerably reduced. Our proposed method can shorten
the dependent path lengths of traces from over 200 instruc-
tions to approximately 12 instructions (Sect. 6), and conse-
quently, the number of generated traces is considerably re-
duced, which significantly improves its capacity efficiency.

Renaming operands stored as logical register numbers
does not incur significant overheads. As described previ-
ously, most source operands refer to producers within 10
instructions, and therefore, the number of source operands
stored as logical register numbers is small. Consequently,
these source operands can be renamed by a small RMT that
was originally used for renaming when traces are generated
on RTC misses in GRTC, and its energy consumption is
small.

5.3.2 Reducing Hardware Overhead of Tag

Our proposed method can omit the target address storage
of indirect jumps to the tag array without significant perfor-
mance degradation. As described in Sect. 4.2, the conven-
tional GRTC requires target addresses in a tag array to avoid
significant performance degradation. On the other hand, our
proposed method can shorten the dependent path lengths of
traces to approximately 10 instructions. Consequently, if the
target addresses are not stored to the tag array, and SGRTC
cannot cache traces with indirect jumps that are placed back-
ward within the dependent path lengths of the traces, the
number of non-cachable instructions is not more than 10.

5.3.3 Penalty of Prolonged Pipeline

The pipeline length of SGRTC is slightly longer than that
of GRTC, but this does not cause serious problems. The
pipeline of SGRTC presented in Fig. 8 can be optimized as
follows; 1) Only the tag of RTC is accessed in the Fetch-

R stage for hit/miss detection, and then, 2) the trace-data
of RTC is accessed in the Fetch-I stage in parallel with the
access of the instruction cache. As a result, the Fetch-R
stage can be implemented as a single stage, because only
the tag is accessed, and consequently, the pipeline length of
SGRTC is slightly longer than that of GRTC by one stage.
The prolonged pipeline in general increases the mispredic-
tion penalty, but the IPC degradation for a single stage in-
crease is slight [18]–[20], no more than 2% even in the worst
cases [20]. In addition, the RMT of SGRTC is much smaller
than that in conventional processors, and consequently, the
pipeline length of the rename stage can be shortened and this
cancels the prolonged fetch stages. The evaluation results
presented in Sect. 6 show that the performance degradation
of the prolonged pipeline is negligible.

6. Evaluation

We evaluated SGRTC and other methods, and the results are
presented in this section.

6.1 Evaluation Environment

We evaluated the IPCs using Onikiri2 cycle-accurate pro-
cessor simulator [21]. We used all the programs from the
SPECCPU 2006 benchmark suites [17] with ref data sets.
The programs were compiled using gcc 4.2.2 with the “-O3”
option. We skipped the first 10 G instructions and evaluated
the next 100 M instructions.

We evaluated the energy consumption and the area re-
quired for register renaming by evaluating the arrays and
their peripheral circuits related to our proposed method,
which are the RMT, TC, RTC and instruction cache. We did
not evaluate the energy consumption of the comparators for
dependency checking on register renaming [11], [13], but

Table 1 Baseline configuration

fetch width 8 inst.
rename width 8 inst.
issue width 8 inst.
issue queue 64 entries, unified
execution unit int:4, fp:4, mem:4
ROB 224 entries
branch predictor 8 KB g-share, 2K entries BTB
SMT 8 threads
L1DC 64 KB, 8 way, 64 B/line, 2 cycles
L1IC 32 KB (34.3 KB†), 8 way, 64 B/line, 2 cycles
L2C 512 KB, 8 way, 64 B/line, 8 cycles
L3C 8 MB, 8 way, 64 B/line, 24 cycles
main memory 200 cycles
ISA Alpha

Table 2 Configurations of TC and RTC

TC 1 K traces (37 KB†), 8 way, trace:8 inst., 3 cycles
LOCAL 1 K traces (39 KB†), 8 way, trace:8 inst., 3 cycles
GLOBAL 1 K traces (82.9 KB†), 8 way, trace:8 inst., 3 cycles
S GLOBAL 1 K traces (39.4 KB†), 8 way, trace:8 inst., 3 cycles

†These capacities include the tag parts.
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each comparator consists of a few transistors, and thus, we
considered their energy consumption to be comparatively
small. Moreover, our proposed method omits this depen-
dency checking on an RTC hit, which results in a conserva-
tive energy comparison for our technique.

The energy consumption for register renaming was
evaluated by using CACTI 6.5 [22], which simulates cell ar-
rays and peripheral circuits. We assumed 32 nm technol-
ogy (ITRS-HP/nominal), 4 GHz operating frequency, 0.9 V
VDD, and 320 K junction temperature. We also assumed
that each cell consisted of a regular 4 T storage and two ac-
cess transistors per port. The arrays were not banked††. The
static and dynamic access energy of the arrays was calcu-
lated by CACTI under the stated PVT assumptions. The
temperature was assumed to be fixed and leakage is thus
modeled as a constant. The number of accesses to each ar-
ray structure and the elapsed time is provided by our cycle-
accurate processor simulator. The dynamic array access en-
ergy from CACTI was multiplied by the array access fre-
quency from the simulator to form the total dynamic energy.

In addition, we evaluated the energy efficiency impact
of our proposed method on an entire processor by using Mc-
PAT [24]. The processor and device configurations used in
this evaluation were the same as those used in the other eval-
uations.

6.2 Evaluated Models

Table 1 lists the configuration of a baseline processor. Its
major micro-architectural parameters are based on those
of IBM POWER 8 [2], which include parameters such as
fetch width, the size of the instruction window, the num-
ber of FUs, and cache hierarchies. Note that we used
the configuration based on the IBM POWER 8 with a
wide front-end, because it is well known that the influence
of the throughput of a processor front-end on its perfor-
mance is significant [8], [25], [26], and the front-end width
of recent high-performance commercial processors is in-
creased [2], [3], [27]. Moreover, recent high-performance
processors in general are equipped SMT [2], [3], [27], [28],
and thus, the area and energy consumption of their RMTs
are considerable (Sect. 2). Our proposed method allows
the problems of such high-performance processors to be re-
solved.

We evaluated the following models based on baseline
configuration:

(1) BASE: A model with an I-cache only.
(2) TC: A model with TC.
(3) LOCAL: A model with LRTC.
(4) GLOBAL: A model with GRTC.
(5) S GLOBAL: A model with SGRTC, which is our

proposed method.
Table 2 summarizes the configurations of TC and RTC

used in these models. The capacity of RTC in S GLOBAL
was set to 1 K traces, which has a similar area to that of the

††Details are described in [22], [23].

conventional I-cache. In each model, each trace includes
two branches. The TC and RTC in the other models have the
same capacity. The hit/miss of TC and RTC is determined in
the first cycle, and then, the I-cache is accessed on TC/RTC
misses. In GLOBAL, the number of indirect jumps stored to
a tag array is two (Sect. 4.2).

The RMT in BASE and TC has 32 ports in total. An
RMT generally requires one write and three read ports per
single 2-source operand instruction [11], [13]: 1) one write
port for updating new destination mapping, 2) two read port
for reading source operand mapping, and 3) one read port
for reading old destination mapping. As a result, each in-
struction with 2-source operand requires four ports. We as-
sume that the rename-width of the processor is 8, as pre-
sented in Table 1, and thus, the RMT requires 4 × 8 = 32
ports in total. In the other models, the number of the read
ports of the RMT is reduced. The specific parameters of the
read ports are determined by the evaluation presented in the
next section.

6.3 Investigating Configurations

First, to determine the configuration of S GLOBAL, we
evaluated its performance while varying its dependent path
length and the number of read ports of its RMT. Figure 11
shows the IPCs of S GLOBAL relative to BASE. These
IPCs are on the geometric mean of all benchmark programs.
Each line labeled “RMT-Np” shows the IPCs of a configu-
ration with an RMT that has N read ports. Figure 11 shows
that the IPCs are degraded if the number of read ports of the
RMT is less than four, and in the configuration with an RMT
with four read ports. The configuration having a dependent
path length of 12 instructions has the highest performance.
Thus, hereafter, we evaluate S GLOBAL with a four read
port RMT and 12-instruction dependent path length.

6.4 Performance

Figure 10 shows the IPCs for each model relative to BASE.
S GLOBAL degrades the IPC of BASE by only 0.2% on a
geometric mean. As described in Sect. 5.3.1, our proposed
method improves the capacity efficiency, and consequently,
its performance penalty, described in Sect. 4.1, is consid-
erably reduced, and is canceled out by the improved fetch
throughput in the same manner as TC. On the other hand,
S GLOBAL degrades the IPC of TC by 3.7% on the geomet-
ric mean, because TC also improves the fetch throughput.

LOCAL degrades the IPC of BASE by 8.5% on the ge-
ometric mean, and its IPC degradation is considerably larger
than that of S GLOBAL. This is because LOCAL can cache
only 31.7% of renamed operands on average, as shown in
Table 3, and this ratio is about half of that in S GLOBAL.
As a result, the shortage of the RMT ports stalls the front-
end, which degrades its performance.

GLOBAL also degrades the IPC of BASE by 4.5% on
the geometric mean. This is because of its low capacity effi-
ciency described in Sect. 4.1.
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Fig. 10 IPC relative to BASE

Fig. 11 IPC versus RMT read ports and dependent path length

Table 3 Ratio of cached renamed operands

LOCAL GLOBAL S GLOBAL
31.7% 69.3% 57.3%

Fig. 12 Energy consumption of RMT relative to BASE

6.5 Energy Consumption

Figure 12 shows the energy consumption† of the RMT in
each model normalized by BASE. This energy consump-
tion is the average of all benchmark programs. “overhead”
in each model shows the overhead energy incurred by the
addition of the TC or RTC as compared to BASE. This
overhead energy includes the energy consumption for read-
ing the instruction cache and filling the generated traces on
an RTC miss. In S GLOBAL, the RMT is used for renam-
ing source operands stored as logical register numbers into
traces on an RTC hit, as described in Sect. 5.3.1. The part

†This includes both dynamic and static energy consumption.

Fig. 13 Performance energy ratio (Inverse of EDP) relative to BASE

labeled RMT in Fig. 12 includes the energy consumption for
this renaming.

S GLOBAL considerably reduces the energy consump-
tion of the RMT, including its overhead. The energy con-
sumption of the RMT in S GLOBAL is reduced by 64%
as compared with BASE, because both the area and the
access frequency of the RMT are reduced. The energy
consumption is reduced by 65%, 23%, and 60% as com-
pared with TC, LOCAL, and GLOBAL, respectively. LO-
CAL does not reduce its energy consumption as compared
to S GLOBAL, because LOCAL cannot cache renamed
operands sufficiently, as described above. GLOBAL has
a large overhead caused by the tag array in RTC, as de-
scribed in Sect. 4, and consequently, this overhead cancels
out the reduction in the energy consumption in the RMT.
The energy consumption of the RMT without the overhead
in GLOBAL is smaller than that of the RMT in S GLOBAL;
they are 16% and 22% of that of the RMT in BASE, re-
spectively. This is because renaming is completely omit-
ted in GLOBAL on an RTC hit, but a few operands are still
renamed in S GLOBAL, as described in Sect. 5.3.1. How-
ever, this energy consumption for renaming on an RTC hit in
S GLOBAL is negligible, and the total energy consumption
in S GLOBAL is significantly reduced as compared with
that in GLOBAL and BASE, as described previously.

6.6 Performance Energy Ratio

In this section, we show the performance/energy ratio (PER)
of each model, which is equal to the inverse of the EDP.



SHIOYA and ANDO: IMPROVEMENT OF RENAMED TRACE CACHE THROUGH THE REDUCTION OF DEPENDENT PATH LENGTH
639

Fig. 14 Area of RMT relative to BASE

Fig. 15 Energy consumption relative to BASE on entire proccesor

A higher PER indicates higher-level efficiency. Figure 13
shows the PER relative to that of BASE. S GLOBAL con-
siderably improves its PER as compared to the other mod-
els, because the performance is improved/maintained and
the energy consumption is reduced at the same time. Fig-
ure 13 shows that the PER of S GLOBAL is improved by
175%, 180%, 41%, and 158% as compared to BASE, TC,
LOCAL, and GLOBAL, respectively.

6.7 Area

Figure 14 shows the circuit area of the RMT and RTC in
each model. These areas are normalized by that of BASE.
S GLOBAL considerably reduces the area of the RMT as
compared to BASE, but the addition of RTC slightly in-
creases its total area by 7.0%.

6.8 Energy Efficiency Impact on Entire Processor

Figure 15 shows the energy consumption of the RMT and
RTC on the entire processor†. SGRTC reduces the energy
consumption by 7.6% on the entire processor. In BASE,
the RMT accounts for 10.5% of the energy consumption
of the entire processor. This ratio is larger than the 6% of
ARM Cortex A15, described in Sect. 2.1. This is because
BASE has a wider rename-width and supports SMT, which

†These results are basically consistent with the previous results
about energy consumption, but they slightly differs from the pre-
vious ones. This is because the simulator used in this evaluation
differs from that used in the previous evaluation, as described in
Sect. 6.1.

increase the area of the RMT, as described in Sect. 2.1.

7. Related Work

This section describes related work for mitigating the prob-
lems of an RMT described in Sect. 2.

Some researchers focused on the fact that all the ports
of an RMT are in general not entirely utilized, and they pro-
posed methods that reduce the number of the ports of an
RMT in order to mitigate its complexity [29], [30]. These
methods can reduce the number of ports proportionally to
the effective use rate of the ports, but this reduction is lim-
ited.

Moshovos et al. proposed a method that focuses on
checkpointing an RMT for recovering from a branch mis-
prediction [7]. This method takes checkpoints only for
branch instructions with low confidence, and this allows the
resources required for the RMT to be reduced. However,
this method requires an additional confidence estimator for
branch instructions, which consumes additional energy.

Liu et al. proposed a method that uses a register map
cache (RMC) [31]. The RMC is smaller than the main RMT
and can reduce its latency and energy consumption on a hit;
however, its miss penalty may degrade performance. Miwa
et al. proposed another method using an RMC [32]. This
method is based on an unique pipeline structure for a reg-
ister file [18] and effectively mitigates the problems related
to miss penalties. However, an RMC still consumes a large
amount of energy, because it consists of a heavily multi-
ported CAM [32].

There are only two conventional methods that cache re-
named operands, to the best of our knowledge: LRTC [9]
and GRTC [10]. In our opinion, this is because caching
renamed operands is essentially difficult, as described in
Sect. 2. The related studies described in this section are or-
thogonal to LRTC, GRTC, and our proposed method, which
cache renamed operands. Consequently, a combined design
that achieves higher energy efficiency is possible.

8. Conclusion

We proposed SGRTC, which caches only renamed operands
that are a short distance from producers outside traces. Our
evaluation results show that SGRTC achieves 64% lower en-
ergy consumption for register renaming with only a 0.2%
performance overhead as compared to a conventional pro-
cessor. Further, the evaluation results show that the pro-
posed method achieves an 8.5% and 4.5% higher perfor-
mance, 23% and 60% lower energy consumption, and 41%
and 151% higher performance-energy ratio (the inverse of
the EDP) than conventional LRTC and GRTC, respectively.
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