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Nonlinear Regression of Saliency Guided Proposals for
Unsupervised Segmentation of Dynamic Scenes

Yinhui ZHANG†a), Member, Mohamed ABDEL-MOTTALEB††,†††b), and Zifen HE†c), Nonmembers

SUMMARY This paper proposes an efficient video object segmenta-
tion approach that is tolerant to complex scene dynamics. Unlike existing
approaches that rely on estimating object-like proposals on an intra-frame
basis, the proposed approach employs temporally consistent foreground hy-
pothesis using nonlinear regression of saliency guided proposals across a
video sequence. For this purpose, we first generate salient foreground pro-
posals at superpixel level by leveraging a saliency signature in the discrete
cosine transform domain. We propose to use a random forest based non-
linear regression scheme to learn both appearance and shape features from
salient foreground regions in all frames of a sequence. Availability of such
features can help rank every foreground proposals of a sequence, and we
show that the regions with high ranking scores are well correlated with
semantic foreground objects in dynamic scenes. Subsequently, we utilize
a Markov Random Field to integrate both appearance and motion coher-
ence of the top-ranked object proposals. A temporal nonlinear regressor
for generating salient object support regions significantly improves the seg-
mentation performance compared to using only per-frame objectness cues.
Extensive experiments on challenging real-world video sequences are per-
formed to validate the feasibility and superiority of the proposed approach
for addressing dynamic scene segmentation.
key words: video object segmentation, salient object-like proposal, non-
linear regressor, dynamic scene, random forest

1. Introduction

In contrast to interactive [12] or semi-supervised [13] video
segmentation, unsupervised video object segmentation ad-
dresses the problem of automatically assigning labels for
objects in an unannotated video sequence, which is an im-
portant task with many potential applications in computer
vision and pattern recognition. Unfortunately, the perfor-
mance of the state-of-the-art video object segmentation al-
gorithms tend to drop significantly in the case of dynamic
scenes. Several factors such as motion ambiguity, ap-
pearance variations, background clutter and camera motion
make the segmentation of objects from dynamic scenes ex-
tremely challenging. The major bottleneck lies in the inher-
ent difficulty of inferring temporal consistent object propos-
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als in video sequences.
It is well recognized that the use of only appearance

features is inefficient to characterize consistent object pro-
posals due to ineffective learning of discriminative models
and their sensitivity to both foreground appearance varia-
tions and background scene dynamics. Overall, many object
classes cannot be adequately described by color or texture
cues alone and, indeed, even the same object in a video se-
quence might comprise several parts with different appear-
ances.

To some extent the problems of appearance model-
ing can be alleviated by formulating object hypothesis or
trajectory clustering in the temporal domain using motion
cues. Motion based inside mapping and trajectory clustering
usually utilize optical flow [5] or point trajectory [23], [24]
to impose consistency constraints over time, which could
range from two consecutive frames to hundreds of frames.
Aside from the well-known challenges associated with op-
tical flow (e.g., boundary ambiguity) and spectral clustering
of point trajectory (e.g., model selection), these motion seg-
mentation methods lack explicit mid-level information (e.g.,
size and shape) specific to foreground features during object
hypothesis estimation. Consequently, directly applying the
motion cues to video object segmentation inevitably results
in a fairly sparse and ambiguous trajectory embedding espe-
cially near occlusion and disocclusion areas due to camera
motion or nonhomogeneous articulation.

Proposal ranking approaches [7]–[10] explicitly lever-
age mid-level information about object-like features con-
veyed by a number of foreground hypotheses and hence can
address the sparsity and occlusion problems caused by tem-
poral tracking of key points. However, most of these ap-
proaches attempt to explore proposal ranking at intra-frame
level using objectness cues derived in the spatial domain.
As a consequence, the proposals generated in each frame
generally have difficulty in remaining consistent over time.
Another major drawback of these approaches is the compli-
cated hypothesis generating models that further restricts the
real-world applicability of proposal ranking.

In this paper we propose a nonlinear regression scheme
for video object segmentation. The main assumption of the
proposed segmentation approach is that the foreground ob-
jects should be visually salient against their dynamic scenes.
Our main idea is to leverage saliency guided object-like fea-
tures to train a random forest regressor to enable temporal
consistent hypothesis of foreground proposals. Our main
contributions with respect to previous work can be summa-
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rized as follows:
(1) We present an automatic approach to characterize

inter-frame features of saliency guided proposals across a
video sequence. The integration of both appearance and
shape features enables temporal consistent ranking of fore-
ground regions in an unsupervised manner.

(2) We show that a combination of the top ranked
proposals with spatio-temporal constraints leads to a more
accurate video object segmentation of real-world dynamic
scenes compared to other competing algorithms.

The rest of the paper is organized as follows. We be-
gin by reviewing related work on video object segmenta-
tion in Sect. 2. In Sect. 3, we generate descriptive features
of saliency guided hypotheses by leveraging saliency sig-
nature in the frequency domain. In Sect. 4, we detail our
approach for saliency guided nonlinear regression scheme
to deal with scene dynamics. We propose to use a random
forest based nonlinear regression technique to learn and pre-
dict inter-frame features within all frames of a sequence.
Our system leverages the learned ranking scores, along with
a Markov Random Field to integrate spatio-temporal con-
straints of the top ranked regions. Subsequently, in Sect. 5,
experimental results are illustrated. Finally, we draw con-
clusions in Sect. 6.

2. Related Work

Unsupervised video object segmentation methods can be
roughly divided into three categories: background subtrac-
tion, proposal ranking and motion trajectory.

2.1 Background Subtraction

Approaches in this category take into account classic back-
ground subtraction techniques [1], [15] or make use of dy-
namic background texture modeling [2] for unsupervised
segmentation. Barnichm et al. [3] determine whether a pixel
belongs to the background by comparing its current value
with past ones and propagate the value of background pix-
els into a background subtraction model. Haines et al. [4]
use Dirichlet process Gaussian mixture models to estimate
background distributions and use them as input to a model
learning process for continuous update as scene changes.
These methods are typically based on the strong assumption
that the dynamic backgrounds are changing slowly, which is
not the case for highly dynamic scenes. The large variations
in the appearance and locations of objects that may appear
in the image sequence remain a concern for these object seg-
mentation approaches. Grundmann et al. [6] combine hier-
archical cues by constructing a tree of spatio-temporal seg-
mentation. This approach allows for subsequent selection
of granularity from varying levels. Although good for han-
dling multiscale appearance cues, a strong limitation of this
method is that it does not solve the foreground segmentation
task on its own due to the oversegmentation of the scene.
Unlike other saliency based segmentation methods such as
[28] and [29] wherein foreground objects are extracted from

images, our approach focus on video object segmentation
in spatiotemporal domain. Moreover, the main difference
between our approach and the discriminant center-surround
spatiotemporal saliency proposed in [30] is that, in addi-
tion to appearance stimulus, our approach incorporates both
appearance and shape geometry into descriptive features to
generate more reliable foreground hypotheses in dynamic
scenes.

2.2 Proposal Ranking

Another category of recent work in video object segmen-
tation focuses primarily on a ranking mechanism of object
proposals, which uses the notion of objectness and a selec-
tion mechanism. Endres et al. [7] propose to generate bag
of regions based on seeds and rank them using structured
learning. Lee et al. [8] use consistent appearance and mo-
tion to rank hypothesis of object-like regions. Whereas Ma
et al. [9] introduce a weighted region graph to find maxi-
mum weight cliques. Alternatively, in [17] segmentation is
performed using graph cuts and simple color cues, and the
regions are ranked through classification based on gestalt
cues with a simple diversity model. Most recently, object
models [10] are built based on the primary object hypothesis
regions. Our approach falls in this category as it also esti-
mates object-like foreground regions. However, unlike most
proposal ranking techniques that are limited to intra-frame
object hypothesis, we are able to find temporal consistent
object proposals via a nonlinear regressor across a video se-
quence. Moreover, instead of learning random forest using
training set with ground truth annotations, we employ de-
scriptive features derived from saliency guided mappings to
efficiently rank foreground hypotheses in an unsupervised
manner.

2.3 Motion Trajectory

Papazoglou et al. [5] propose a Fast Object Segmentation
(FOS) algorithm which attempts to build dynamic appear-
ance models of the object and background under the as-
sumption that they change smoothly over time. An ad-
vantage of this approach is that it may be possible to han-
dle spatio-temporal cues on image patches such as color
and location in the labeling refinement stage. But relying
in the initialization of inside foreground object points only
on motion boundaries tends to produce a large number of
false-positive seeds, especially in case of highly dynamic
scenes. Opposed to classical two-frame optical flow, point
trajectories that span hundreds of frames are less susceptible
to short term variations that hinder separating different ob-
jects [24]. Instead of using the motion boundaries by optical
flow between two consecutive frames, point trajectory ap-
proaches employ spectral cluster [24] or boundary disconti-
nuities of embedding density [23] between neighboring tra-
jectories. Similarities between each pair of trajectories are
derived from the maximal motion difference between them
over all frames. The underlying assumption for point tra-
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jectory [23], [24] is that the video sequence covers a long
time span, which makes this approach not suitable for short
clips. Our method, instead, does not attempt to cluster tra-
jectory points and does not assume any kind of relative mo-
tion between foreground and background. Moreover, the
selection of the number of clusters or the dimensionality
of embedded spaces is nontrivial as it could easily con-
fuse sparse trajectory clustering algorithms, causing over-
or under-segmentation of embedded trajectories.

3. Features of Salient Hypotheses

We will first introduce the saliency mapping scheme at su-
perpixel level that forms the foundation of our feature ex-
traction. Then we detail our descriptive features generated
from salient superpixel regions.

3.1 Salient Hypotheses

Due to the highly dynamic and complex nature of real-world
scenes, a set of object candidates are initially generated in
order to form a pool of hypotheses using object intrinsic
features. Unfortunatelly, an image sequence may contain
multiple object instances and we would like to compute a
mapping to highlight the most salient foreground regions
for each frame. Intuitively, saliency characterizes some lo-
cations of a scene that appear to an observer to stand out rel-
ative to their neighboring parts. Moreover, we should derive
a soft decision on the support of foreground regions to main-
tain local coherence of saliency mappings at pixel level. For
this purpose, our saliency mapping function builds on the
saliency signature [21] scheme, which is defined in the Dis-
crete Cosine Transform (DCT) domain and works well for
image segmentation with medium sized objects. Although
there are more sophisticated visual attention modeling meth-
ods [22] to estimate saliency mappings, this frequency do-
main technique suffices in providing satisfactory results.

The original video sequence is denoted asV = {It}Tt=1,
in which It denotes the t-th frame. Let S(i) denote the
saliency signature operator for all pixels i ∈ V. To capture
local coherency of saliency mappings, we first break down
the video sequence into superpixels. Specifically, given the
video V, let R = {r j}Kj=1 be a partitioning of V with K re-
gions, each of which is associated with an unique region
index j. The partitioning of a video sequence can easily
be computed by common superpixel or supervoxel meth-
ods. With the partitioned video R, we then define the local
consistent saliency map as the mean saliency signature over
each region:

S̄(r j) =

⎧⎪⎪⎨⎪⎪⎩
1
|r j|
∑

i

S(i)
∣∣∣∣∣i ∈ r j

⎫⎪⎪⎬⎪⎪⎭ (1)

where |r j| is the number of pixels in the j-th region. Once
the local consistent saliency map is computed, the percep-
tual saliency guided foreground hypothesis, which returns
a soft decision H(r j) for each region, can be evaluated by

thresholding S̄, i.e. H(r j) = 1 if S̄(r j) ≥ τ and H(r j) = 0,
otherwise. For simplicity, we abbreviateH(r j) byH j.

3.2 Descriptive Features

Descriptive features are then extracted from saliency guided
hypothesis regions. The descriptive features X ∈ Rm×n are
defined as the concatenation of m feature vectors, and n is
the dimension of a feature vector. Formally, the feature set
of a video sequence is given by X = [x1; . . . ; x j; . . . ; xm],
and x j ∈ Rn.

In this paper, the descriptive features and their corre-
sponding soft labels constitute a training set D ⊆ X × H ,
which will be used to train a nonlinear regressor. More
specifically, the training data is identified by {(x j,H j) : j =
1, . . . ,m}, where H j ∈ {0, 1}. Note that in our case, the
saliency guided foreground hypothesis is regarded as a soft
classifier that projects input training data pairs (x j,H j) into
positive (H j = 1) or negative (H j = 0) samples.

To build feature vectors for random forest regression,
we combine multiple cues that are commonly used in mid-
level proposal selection [18] for image segmentation. Unfor-
tunately, generating proposals using uniformly distributed
seeds on regular grids of an image risk missing the true cor-
respondences due to inevitable flaws caused by the diversifi-
cation scheme via maximal marginal relevance measure. In
contrast, we consider object-like proposals together with the
perceptually salient description, which allows us to distin-
guish the most promising proposals from a list of hypothe-
ses.

Specifically, for a region r j of a partition R, the feature
vector x j encodes both the appearance and the shape geom-
etry of the region and consists of two components:

Appearance: we incorporate color information into the
feature vector as this is one of the most important cues re-
turned by the saliency signature operator and certain object
appearances tend to stand out from their surroundings in dy-
namic scenes. We compute the average pixel color in r j and
characterize the color features in CIELab color space.

Shape geometry: we use area and perimeter of the re-
gion; relative position, aspect ratio and area of the bounding
box; the area balance (defined as the minimum area divided
by the maximum area of the regions); normalized perimeter
(defined as the perimeter divided by the squared root of the
area); area ratio (defined as the area of the region divided by
that of the bounding box); contour strength; minimum and
maximum ultrametric contour map; thresholds that cause
appearance or disappearance of the proposals [19].

The aforementioned features are concatenated and will
be used in the ranking of the salient regions through random
forest regression. Through this process, superpixel regions
whose appearance and shape geometry are comparable to
the salient object-like hypotheses in the video sequence will
result in top ranked proposals.
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4. Inter-Frame Regression of Descriptive Features

Directly using the mean saliency for hypotheses ranking
tends to generate inconsistent proposals across different
frames, as the mean saliency signature and the correspond-
ing descriptive features are independently estimated at intra-
frame level. For this reason, nonlinear regression of saliency
regions is employed to impose temporal consistent con-
straints. In this section we detail our approach for saliency
guided nonlinear regression scheme to deal with scene dy-
namics. Our goal is to find temporally consistent proposals
in salient foreground to obtain a set of candidate object pro-
posals across all frames of a video sequence.

4.1 Forest Model Training

We train a random forest similar to the randomized tree
algorithms in [26], [27]. Each tree tr in a forest F is
trained independently on a random subset of the training set
D ⊆ X×H according to the saliency guided foreground hy-
pothesis. By concatenating features in all frames of a video
sequence, the feature vectors X with their corresponding
soft labelsH are used to train the random forest regressorF ,
which is composed of a collection of N trees. A tree tr ∈ F
is characterized by a binary split function ψ(x) : X → {0, 1}.
The role of the split function is to decide whether a sam-
ple feature x should be forwarded to the left sub-tree or to
the right sub-tree according to an information gain criterion.
Formally, the split function ψ of a tree tr is selected from a
randomly generated set Ψ in a way to minimize the classic
information gain [20] as follows:

ψ∗ = arg minψ∈Ψ|Dψ
l | · H(Dψ

l ) + |Dψ
r | · H(Dψ

r ) (2)

where H(·) denotes the entropy of class distributions of the
left and right data splitted by ψ. Subsequently, the tree’s left
and right sub-trees are recursively grown with their respec-
tive training data Dψ

l and Dψ
r . In our case, the termination

criterion of the training process is based on the maximum
number of trees. We continue growing the forest until the
maximum number, N, of trees are assembled in the random
forest model F .

4.2 Random Forest Ranking

Nonlinear regression through random forest is subsequently
carried out to obtain temporal consistent foreground regions
across a video sequence. For each unknown feature vector
x ∈ X, the learned forest predicts a ranking score y ∈ Y by
routing x through the forest to a leaf, where the prediction
is taking place. Formally, given F , the ranking score of the
feature vector x extracted from a region is defined as:

ŷ =
∑

tr∈F
I[ptr(x|tr) = y] (3)

where ptr ∈ Y denotes the prediction for a feature vector x

obtained from tree tr ∈ F , and I[·] is the indicator function.
In our case, the features with the top k ranking scores are
returned by the nonlinear regressor, which correspond to the
top k ranked proposals r j.

4.3 MRF Refinement

The outputs of the regressor are the regions ranked by ran-
dom forest prediction during the unsupervised nonlinear re-
gression. Once we have the top ranked region proposals r j,
we can use a Markov random field (MRF) to further refine
the foreground labels of every frame of the video sequence.
As in [5], to assign labels L = {lti}i,t to a video sequence, we
minimize an energy function to refine the proposals:

E(L) =
∑

t,i

At
i(l

t
i) + α1

∑

t,i

Lt
i(l

t
i)

+ α2

∑

(i, j)∈Es

Vt
i j(l

t
i, l

t
j)

+ α3

∑

(i, j,t)∈Et

Wt
i j(l

t
i, l

t+1
j )

(4)

where A denotes the appearance term. More specifically, A
is defined as the negative log-likelihood of a superpixel i to
have label li given the foreground and background Gaussian
Mixture Models (GMMs). The location prior L of a su-
perpixel i denotes the percentage of pixels that are inside
the foreground hypothesis. (i, j) ∈ Es indexes the edges
of the MRF graphical model in spatial domain, where i
and j correspond to superpixels in every frame. Similarly,
(i, j, t) ∈ Et indexes the edges of the MRF model in temporal
domain. The potential term V encodes Euclidean distance
and color contrast between superpixels on spatial edges in
Es. The pairwise term W encodes the percentage of overlap
and color contrast between superpixels connected by tem-
poral edges in Et. Note that Et is derived from temporal
connections of consecutive frames by optical flow [11], [14].
The main difference between the proposed method and [5] is
that, instead of estimating foreground seeds by inside map-
ping of motion boundaries, we initialize the GMMs of ap-
pearance model and the location term by the top ranked pro-
posals r j returned by forest regression.

5. Experimental Results

The main goal of our experiments is to verify that the non-
linear regressor, which is automatically trained using fea-
tures from saliency guided foreground hypotheses, is likely
to generalize better and attain higher segmentation accu-
racy than alternative algorithms, especially tested on videos
from unconstrained real-world dynamic scenes. To this
end, we provide qualitative and quantitative evaluations on
the test set of the Freiburg-Berkeley Motion Segmentation
(FBMS) [24] dataset publicly available at [25], which is
composed of 30 video clips captured in challenging real-
world dynamic scenes. The sequences show wide varia-
tion in scale and comprise non-rigid shape articulation as
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Fig. 1 Example images from the FBMS dataset used in our experiments.

well as dramatic camera motion. To reduce the computa-
tional requirements, the maximum length of each video se-
quence is limited to 100 frames and each frame is sampled
every 5 pixels. In our experiments, the test set has a total
of 2552 frames, among them every 20th frame comes with
ground truth and 367 annotated frames are used for quanti-
tative evaluation. Figure 1 shows example images from the
FBMS dataset.

For all video sequences, we utilized the SLIC algo-
rithm [16] to compute superpixels because of its low compu-
tational cost. Throughout our experiments, the size of each
superpixel is fixed at 10 pixels and the regularizer is fixed at
0.2. The length of each feature vector x j is n = 19, which
consists of three appearance features and sixteen shape ge-
ometry features of a region r j. We have observed a range
of 1620∼3000 feature vectors being concatenated from dif-
ferent frames in a video. As in traditional random forest
regression approach, the feature importance can be directly
calculated in the training process. In our case, the area
balance feature is most important among the different fea-
tures, whose relative importance attains 13.7% among nine-
teen features. The training is terminated when the maximum
N = 50 trees are assembled in the random forest model.

For a quantitative evaluation of the results, we use the
standard mean Area Under Curve (AUC) to evaluate the seg-
mentation performance with respect to ground truth (GT),
which is equal to the area under the Receiver Operating
Characteristic (ROC) curve. For each video sequence, the
AUC of the segmentation at each annotated frame is ob-
tained. These per-frame AUC values are then averaged
to produce the mean average accuracy for each of the se-
quences.

5.1 Random Forest Ranking

We start by providing ranking results by random forest re-
gression. In order to evaluate the ranking performance of
forest regression, we compare ROC curves of top four pro-
posal regions. Initially, the soft label H j of a region r j is
fixed at τ = 0.55. The ROC curves and its AUC results are
reported in Fig. 2. As can be seen from this figure, the pro-
posal with the maximum ranking score significantly outper-
forms the three other proposal results on the FBMS dataset.
This result coincides with our modeling intuition and con-

Fig. 2 Comparison of ROC curves of top four ranking proposals
(denoted as H1-H4) on the FBMS dataset (τ = 0.55).

firms that the appearance and shape features with high rank-
ing scores are well correlated with ground truth object de-
scriptors. This is very encouraging, as we expect that tuning
optimal soft threshold and encoding temporal constraints
would provide even better segmentation performance of top
ranked proposals.

5.2 Parameter Tuning

To quantify the effect of the parameter τ on random forest re-
gression, we measure segmentation accuracy on the FBMS
dataset for different values of τ from 0.2 to 0.7 with step
0.1 and report AUC values of the top ranked proposals in
Fig. 3. We can observe that the performance is maximized
for τ = 0.4, at which the top ranked proposals attain perfor-
mance measure AUC = 71.29%.

5.3 Top Proposals Refinement

We utilized the MRF model to further refine the top ranked
proposals returned by the random forest. The appearance
and location terms in the energy function are derived from
the top ranked proposals estimated at τ = 0.4. We use the
same experimental setup as [5] to infer the optimal labels
of a video sequence and compare the proposed approach
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Table 1 Comparison of segmentation accuracies in terms of Correct Pixels of the proposed method
and VOS.

Video camel01 cars1 cars4 cars5 cars10 cats01 cats03 cats06 dogs01 dogs02
VOS 6219 8340 10913 11899 3688 8140 2188 1869 4272 5592
Ours 8562 10035 8099 9750 8457 10745 6481 2576 7198 7154
Video farm01 giraffes01 goats01 horses02 horses04 horses05 lion01 marple2 marple4 marple6
VOS 4441 5330 3183 3291 2627 3900 10740 3795 3692 1410
Ours 8290 7762 5104 7113 3885 5500 6981 1853 1980 2196
Video marple7 marple9 marple12 people1 people2 people03 rabbits02 rabbits03 rabbits04 tennis
VOS 1433 2900 2456 8557 11555 7682 3034 4023 5093 4677
Ours 2885 3062 4207 8634 10117 5614 2812 5939 6438 6641

Fig. 3 Impact on segmentation accuracy of the top ranked proposals for
varying τ on the FBMS dataset.

Fig. 4 Comparison between our segmentation method and three state-of-
the-art approaches on the FBMS dataset: directed acylic graph based Video
Object Segmentation (VOS) [10], Key-Segments (KS) [8] and Fast Object
Segmentation (FOS) [5].

to three state-of-the-art video object segmentation meth-
ods: directed acylic graph based Video Object Segmentation
(VOS) [10], Key-Segments (KS) [8] and Fast Object Seg-
mentation (FOS) [5]. The segmentation performance of the
proposed method, KS, VOS and FOS are shown in Fig. 4.

As can be seen from the figure, our method outper-
forms other competing approaches in terms of the AUC av-
eraged over all 30 video sequences of the FBMS dataset.
Compared with VOS, KS and FOS, the segmentation ac-
curacy in terms of AUC is improved by 5.48%, 23.53%
and 32.00%, respectively. These improvements indicate
that our approach is very successful in correctly localizing

the objects and therefore obtaining temporal consistent seg-
mentation across the video sequences. It is worthwhile to
point out that the significant improvement over FOS mainly
comes from two factors: (1) Our foreground seeds are es-
timated with the top ranked proposals, which avoids the
false-positive hypothesis of inside mapping. (2) Our top
ranked proposals encodes appearance and shape geometry
cues across frames.

In Fig. 5, we present qualitative segmentation results
from our method on 30 video sequences of the FBMS
dataset. For evaluating the segmentation quality of each
video sequence, we report results obtained with the met-
ric of Correct Pixels (CP): 1

T

∑
t(|It | − |XOR(Lt,GT t)|). The

segmentation accuracies in terms of CP on every video se-
quence of the FBMS dataset are reported in Table 1. As
can be seen from this table, compared with the VOS algo-
rithm, which is the most similar approach to our work, the
proposed method achieves higher performance on 22 out of
the 30 video sequences. More specifically, the average CP
of VOS and our method over the 30 video sequences are
5231 and 6202, respectively. This result again shows that
the proposed inter-frame regression of descriptive features
derived from salient support regions enables temporal con-
sistent video object segmentation compared to other com-
peting methods.

6. Conclusion

In this paper, we have presented an unsupervised approach
for object segmentation in video clips of dynamic scenes.
To this end, we have formulated a foreground hypothesis
as a random forest based nonlinear regression framework to
associate a ranking score with each proposed region across
the video sequence. Both appearance and shape features of
saliency guided proposals are effectively incorporated into
the regression framework. We integrate the appearance and
location information into a Markov random field, which fa-
cilitates further refinement of the top ranked proposals. Ex-
tensive experiments on a challenging dynamic scene video
dataset demonstrate the feasibility and superiority of the
proposed segmentation approach. In the future, we intend
to study how features of this regressor can be extended by
including, e.g., HOG and MBH features of foreground hy-
potheses at multiscales.
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Fig. 5 Qualitative segmentation results obtained by the proposed method on 30 sequences of the
FBMS dataset.
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