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Enhanced Particle Swarm Optimization with Self-Adaptation on
Entropy-Based Inertia Weight

Hei-Chia WANG†a), Nonmember and Che-Tsung YANG†, Student Member

SUMMARY The inertia weight is the control parameter that tunes the
balance between the exploration and exploitation movements in particle
swarm optimization searches. Since the introduction of inertia weight, var-
ious strategies have been proposed for determining the appropriate inertia
weight value. This paper presents a brief review of the various types of
inertia weight strategies which are classified and discussed in four cate-
gories: static, time varying, dynamic, and adaptive. Furthermore, a novel
entropy-based gain regulator (EGR) is proposed to detect the evolutionary
state of particle swarm optimization in terms of the distances from parti-
cles to the current global best. And then apply proper inertia weights with
respect to the corresponding distinct states. Experimental results on five
widely applied benchmark functions show that the EGR produced signifi-
cant improvements of particle swarm optimization.
key words: adaptive inertia weight, exploration-exploitation trade-off,
particle swarm optimization, entropy

1. Introduction

Particle swarm optimization (PSO) is a relatively new
heuristic algorithm proposed in 1995 [1]. In the context of
PSO, a swarm consists of a group of randomly initialized
individuals, called particles, that represents a population of
potential solutions to a given optimization problem. Each
randomly initialized particle moves toward the optimal loca-
tion with an iteratively updated velocity in the search space.
The velocity of a particle is calculated using Eq. (1):

Vi(t + 1) = Vi(t) + c1r1(pBest − Xi(t))

+ c2r2(gBest − Xi(t)) (1)

where Vi(t) represents the current velocity, Vi(t + 1) is the
new velocity, c1 and c2 are the acceleration coefficients that
weight the cognitive and social components. r1 and r2 are
independent random numbers in the range [0, 1].

The new velocity consists of three components, includ-
ing the previous velocity and two attracting forces. The so-
called cognitive learning attracts a particle towards the in-
dividual known-best. Whereas, the social learning attracts
a particle towards the global known-best, which has been
experienced and shared in community. Iteratively, each ran-
domly initialized particle is driven by both cognitive and so-
cial components towards the global known-best in the search
space.
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The position of the particle and the memory of the par-
ticle’s known-best are updated using Eqs. (2) and (3).

Xi(t + 1) = Xi(t) + Vi(t + 1) (2)

pBesti(t + 1) =

{
f (xi(t + 1)), f (xi(t + 1)) > pBesti(t)
pBesti(t), f (xi(t + 1)) ≤ pBesti(t)

(3)

where Xi(t) is the current position of the particle, pBesti(t+1)
is the personal best position of the particle achieved so far,
and pBesti(t) is the new best position.

The global known-best position is updated using
Eq. (4).

gBest(t + 1) = Max(pBesti(t + 1)) (4)

where i is the index of particles ranging from 0 to n. The
pBest and gBest are updated in iterations to keep the known-
best in the memory of the individual and the community.
These processes repeat iteratively until either the optimal lo-
cation within a predefined threshold is achieved or the limit
on the number of iterations is reached.

In the original PSO, the new velocity is derived from
the combination of current velocity with the drives of cog-
nitive learning and social interaction without inertia weight.
The concept of inertia weight was first introduced in 1998
with a constant inertia weight [2], shown as Eq. (5).

Vi(t + 1) = ωVi(t) + c1r1(pBest − Xi(t))

+ c2r2(gBest − Xi(t)) (5)

The parameter ω, inertia weight, was introduced to balance
the exploration and exploitation of a particle in PSO. It is
notable that a large inertia weight facilitates a global search,
while a small inertia weight facilitates a local search [3], [4].
Exploration is the ability to conduct a search with diversity
on a global scale. Exploitation is the ability to concentrate
the search area around a promising candidate solution in or-
der to locate the optimum precisely [5].

The fine-tuning balance between the local search and
global search is crucial to the performance of heuristic algo-
rithms [6]. However, most of studies apply the inertia weight
ignoring the existing inhomogeneous of varying scatters of
data samples in iterations. In this sense, a novel inertia
weight strategy applying distinct inertia weight based on the
measure expressing the evolutionary state in terms of the
distances from particles to the expected goal is proposed to
enhance the adaptability of particles during evolutions. Ex-
perimental results show that the novel inertia strategy out-
performs the static and time-varying approaches.
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In this paper, various types of the previous works about
inertia weight strategies are classified into four categories
and reviewed in Sect. 2. Section 3 describes the novel
entropy-based inertia weight. Section 4 presents the experi-
ments and results. Section 5 delivers the conclusions.

2. Review on Inertia Weight Strategies

Inertia weight plays a key role in facilitating the balance be-
tween exploration and exploitation searches in PSO. The
larger inertia weight facilitates searches in global scale,
while the smaller inertia weight tend to produce local
searches in a smaller scale. It is recommended in heuristic
optimization technique that the exploration is more suitable
at the initial stages of searches and then shift to exploita-
tion around promising solutions gradually as the search pro-
gresses [7]. In the early stages, exploration with great diver-
sity can prevent becoming trapped by a local optimal. While
during the later stages, exploitation in small scale is more
suitable to reach the optimum solution efficiently for better
convergence speed [8].

In this section, various types of PSO inertia weight
strategies are reviewed briefly in four categories: static, time
varying, dynamic, and adaptive which are shown as Table 1.

Static inertia weight is the first attempt and has been
shown that able to improve performance of original PSO.
It was reported that PSO with static inertia weight in the
range [0.9, 1.2] can improve performance [2]. Nevertheless,
a critical drawback of static inertia weight lies in problem
dependency. Since, the association between inertia weight
and problem optimality is usually ambiguous or difficult to
discover, the appropriate inertia weight is therefore usually
unknown [9].

Instead of using a fixed value of inertia weight, the
time-varying strategies produce the value of inertia weight
in a function of the iteration number. Time-varying strate-
gies are the most majority of the variants of modified
PSO [10] for introducing the more efficient inertia weight.
The linearly decreasing strategy with values from 0.9 to 0.4
is recommended to produce excellent results for enhancing
the performance of PSO efficiently [4].

In addition to linearly strategy, various types of non-
linear decreasing strategies are reported combining the log-
arithmic, the exponential, and the simulated annealing tech-
niques. Some exponential type of inertia weight is proposed
in [11]–[13].

In a dynamic system, the objective function keeps
changing and the optimum position is supposed to move
over time. The traditional PSO has difficulty in tracking the
dynamic goal [14]. To addresses this problem, a random in-
ertia weight strategy [15] is proposed to enhance PSO for
tracking the moving optima in a dynamic environment.

Another dynamic inertia weight strategy is the chaotic
inertia weight approach. The concept of “chaos” stands
for a non-linear system exhibiting highly dependence on
initial conditions and compromising infinite unstable peri-
odic motions within a bounded range. A general procedure

Table 1 Types of PSO inertia weight strategies.

for chaotic search can be found in [16]. A chaotic inertia
weight strategy using the benefits of better ability of moun-
tain climbing and escape from a local optimum in the evolu-
tionary process. In [17], the chaotic inertia weight strategy
compromises the simple chaotic motions to the linear iner-
tia weight and random inertia weight to produce the perturb
inertia weight.

In PSO, the evolutionary state would vary at different
stages instead of merely varying with time. The common
shared concept of adaptive inertia weight strategies is to
detect the evolutionary state and then apply proper inertia
weights with respect to the corresponding distinct states.
The value of an adaptive inertia weight is usually deter-
mined on the measures that exhibiting the state of evolution
or situation of searching.

A self-adaptive inertia weight [18] introduces a func-
tion relates the inertia weight to the size of the population
dimension to compute the value of inertia weight adaptively.

The global-local best acceleration coefficient [19] com-
putes the ratio of the global best fitness over the average
local best fitness to determine the inertia weight in each iter-
ation to prevent the problem of premature convergence. [20]
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adjusts particle’s position considering the particle’s ranking
in the swarm so that the most best particle moves slowly
when compared to the least fitted particle. The adaptive in-
ertia weight ω proposed in [21] is varied depending on the
particle’s fitness value. The particles with good fitness tend
to perform exploitation to refine the found results by local
search. The particles with inferior fitness value tend to ex-
plore the solution space with large steps.

3. Entropy-Based Adaptive Inertia Weight

A novel adaptive inertia weight strategy involves using
entropy-based gain (EG) is proposed. The EG aims to detect
the evolutionary state of PSO in terms of the distances from
particles to the current global best which is defined as:

EGi = −
n∑
j

⎛⎜⎜⎜⎜⎜⎜⎝
d
(
x j, gbesti

)
∑n

j=1 d
(
x j, gbesti

) log
d
(
x j, gbesti

)
∑n

j=1 d
(
x j, gbesti

)
⎞⎟⎟⎟⎟⎟⎟⎠

(6)

Furthermore, the entropy-based gain regulator (EGR)
weight which is defined as the reciprocal of EG, is used to
adjust the inertia weight as:

EGRi =
1

EGi
(7)

EGRi is the entropy-based gain regulator of the i-th itera-
tion. d(x j, gbesti) is the distance between the j-th particle
and the global best in the i-th iteration. The EGR is ex-
pected to produce turbulences with adequate amplitude at
proper iterations to improve the performance of PSO. The
EGR is designed to control the balancing of exploration and
exploitation by adjusting the inertia weight adaptively.

The value of the EG will be greater while the distances
from particles to the global best are equidistant (Fig. 1 left)
than the distances are diverse (Fig. 1 middle). The smallest
EG value is situations of the distances are in extremely great
differences (Fig. 1 right).

In the left of Fig. 1, referred as the compact state, the
EG value is significantly great and trends toward to conduct
searches of exploitations with smaller ERG adjusted inertia
weights since particles are all seem to be good and equally.
In addition to that, giant movements of explorations are im-
proper for convergence in this situation. In the middle of
Fig. 1, referred as the diverse state, the EG value is rela-
tively great and probably is the general initial situations of
the PSO evolutions. Whereas the right of Fig. 1, referred as

Fig. 1 States (compact, diverse and leap) of entropy-based gains.

the leap state, exhibits the scenario of the smallest EG oc-
curred while a new global best is found currently. A new
found far-moved global best decreases the EG value sharply
and produce larger EGR and inertia weights with which are
supposed to generates explorations. Therefore, the EGR
controls the appropriate trade-off between exploration and
exploitation depending upon the evolutionary state of the
particles.

In general, the adaptive mechanism of inertia weight
based on EG is considered as begin with diverse state in the
early iterations and trends toward the compact state itera-
tively. Occasionally, the leap state cause turbulences result-
ing from the EG decreased sharply while a new far-moved
global best occurred. And then followed by blending ex-
ploitations and explorations continuously toward the com-
pact state until another new far-moved global best is hap-
pened occasionally or converge to the ever global best itera-
tively.

4. Experiments

4.1 Experimental Settings

The proposed EGR inertia weight (EGR-IW) strategy is val-
idated with a number of analytical benchmark functions
which have been extensively used in optimization prob-
lems [23]. The selected test functions, Ackley, Sphere,
Rosenbrock, Rastrigin and Griewank, are considered as
popular ones which are extendable to arbitrary dimensional-
ity allowing for scaling investigations [24]. Each benchmark
function was tested with a population of 30 particles and
c1 = c2 = 2 for a maximum of 1000 iterations as the stop-
ping criteria. Fifty independent trials of each test function
with respect to distinct inertia weight strategies on different
test functions were executed. All of the employed bench-
mark functions and corresponding experimental settings are
listed in Table 2.

Two strategies, a linear decreasing inertia weight
(LDIW) varying from 0.9 to 0.4 and a random inertia weight
(RIW) are used in comparisons to the novel inertia weight
strategy with EGR. The comparative criteria of experimen-
tal results are presented in terms of the precision, success
rate, and convergent period. The precision is in terms of the
statistical results of the obtained optimum value in each trial.
The success rate is the ratio of 50 independent trials that
achieved the desired goals within a tolerance of the given
threshold. The convergent periods express in terms of the
number of iterations that were required to reach the goals in
a limited predefined number of iterations. The projects are
conducted in predefined limited iterations, Gmax = 1000,
maximum generations with different dimensions of 30, 40
and 50.

The experimental results of different inertia weight
strategies on the given benchmark functions with various di-
mensions are presented in Tables 3, 4 and 5 which are with
dimension D = 30, 40, 50 respectively.

In Table 3, D = 30, the accuracies of the obtained re-
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Table 2 Experimental settings of benchmark functions.

Table 3 Results of benchmark functions with D = 30.

sults with EGR-IW are better than those of LDIW and RIW
on f2, f3, f4, and f5. In the end, EGR-IW also presented
substantial advantages for the required iterations to reach
the desired goals.

In 30-dimensional search space, the simulation results
show that the EGR-IW performs better in comparison to the
linearly decreasing inertia weight and random inertia weight
widely used in many well-known test functions. Among
all five test functions, EGR-IW obtained most of the advan-
tages in terms of precision, success rates and convergent pe-
riods as compared to linearly decreasing and random inertia
weight. Based on the analysis of experimental results, the
EGR-IW has proved to be an appropriate adaptive mech-
anism providing effective control between exploration and
exploitation in the process of particle swarm optimization.

In Table 4, D = 40, the accuracies of the obtained re-
sults with EGR-IW are better than those of LDIW and RIW

on all benchmark functions. The accuracies of EGR-IW are
more close to the real optimum also with smaller deviations.
EGR-IW also presented substantial advantages for the re-
quired iterations to reach the desired goals on all benchmark
functions. It is remarkable that the EGR-IW outperforms
overwhelmingly while the dimension of search space scale
up from 30 to 40.

While the dimensions of search space are increased to
50, both the LDIW and RIW inertia strategies fail to reach
the convergences on all benchmark functions. However, the
EGR is still able to find the optimal solutions on Ackley
and Griewank functions. The accuracies of EGR-IW are
even better than that of LDIW and RIW with distinguish
advantages. In addition to that, it is also observed that the
accuracies on all benchmark functions are worse and worse
on the increasing dimensions of search space.
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Table 4 Results of benchmark functions with D = 40.

Table 5 Results of benchmark functions with D = 50.

4.2 Statistical Analysis

The differences between experimental results of EGR-IW
and its corresponding opponents are tested by Wilcoxon
sign rank test statistically to verify if there exist signifi-
cant differences. Wilcoxon sign rank test is a nonparamet-
ric hypothesis test which has been applied to test solutions
of global optimization [25], [26]. Wilcoxon sign rank test
performs paired comparisons as an alternative to the paired

t-test without the assumption of normally distributed sam-
ples. Wilcoxon test rank the absolute value of differences of
paired samples and then sum the signed ranks. Its results are
summarized as R+, R−, which represent the sum of positive
and negative ranks of samples in comparisons.

The results of Wilcoxon sign rank tests are computed
by SPSS and listed in Tables 6, 7 and 8 with 30, 40 and 50 di-
mensions respectively whose acronyms, “LDIW-EGR” and
“RIW-EGR”, represent the differences between the mean er-
rors of traditional inertia weight strategies, Linear Decreas-
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Table 6 Wilcoxon signed rank test of mean error of accuracies regarding
D = 30.

Table 7 Wilcoxon signed rank test of mean error of accuracies regarding
D = 40.

ing (LDIW) and Random (RIW), in comparisons to EGR-
IW. It is important to remind that the p value is computed
based on the less one of numbers of positive and negative
ranks. Therefore, the decisions of Wilcoxon signed rank test
are made according to the p value from the less one of R+
and R−. Besides, the conclusions of significant small are de-
sired since that the given benchmark functions are designed

Table 8 Wilcoxon signed rank test of mean error of accuracies regarding
D = 50.

to locate the minimum value.
Table 6 presents results of Wilcoxon signed rank test of

EGR-IW in comparisons to the others regarding mean error
of accuracies as the performance criteria on given bench-
mark functions in 30-dimensional search space. Table 6
shows that EGR-IW outperforms LDIW and RIW inertia
strategy in most of the given benchmark functions except
the f 1 RIW, f 2 LDIW and f 2 RIW.

The results for 40-dimensional and 50-dimensional
search space are shown in Tables 7 and 8 respectively. The
analysis show that EGR inertia strategies take overwhelm-
ing advantages and perform significantly better than LDIW
and RIW on all the benchmark functions. EGR-IW is there-
fore regarded significantly better than LDIW and RIW.

4.3 Analysis on Adaptability

The changes of entropy-based gain in the evolutions of PSO
are plotted and analyzed on adaptability. The figures of
EG on iterations show the various types of turbulence cor-
responding to the distinct test functions. In Figs. 2 and 3,
both Ackley and Sphere are unimodal functions that con-
tain no local optima, the global optimum is reached before
the half of iterations. The remaining high EG value implies
most particles have come together and become equidistant
around the global best location.

In Fig. 4, the Rosenbrock function shows that the ex-
ploration and exploitation movements appearing staggered
in the middle period (400–600 of 1000 iterations) and the
ending period (850–1000 iterations) of the evolution. The
Rosenbrock function is also a unimodal function whose gra-
dient is relatively small on its wide flat valley. Therefore, a
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Fig. 2 Entropy-based gain on Ackley function.

Fig. 3 Entropy-based gain on Sphere function.

Fig. 4 Entropy-based gain on Rosenbrock function.

little improvement of global best is likely to produce a sig-
nificant change in location which might cause huge changes
in EG value. The far-moved tiny-improved global best gen-
erate frequent shifts between explorations and exploitations.

The benchmark functions in Figs. 5 and 6 are multi-
modal. The turbulences between exploration and exploita-
tion moves are clearly observed. The changing between ex-
plorations and exploitations shown in the Rastrigin test pro-
duce the perturbed effects on inertia weight is considered to
be a valuable feature of the EGR that can attain high qual-
ity results even under a fast convergence speed. From the
frequently changing EG, the perturbed EGR adjusted inertia
weight is considered has the capacity to escape from local
optima for a good quality.

In general, the blending of exploration and exploitation
movements result in adaptive tunings corresponding to the
EG value that empirically enhance the adaptability of iner-
tia weight strategies against the varying states of evolution.
According to the demonstrations from the figures of EG, the
proposed EGR inertia weight strategy provides an appropri-
ate adaptive mechanism reflecting the evolutionary state of
a given particle swarm. Consequently, EG is regarded as an
appropriate measure for an adaptive control that tuning bal-
ances between explorations and exploitations for a particle
swarm optimizer.

Fig. 5 Entropy-based gain on Rastrigin function.

Fig. 6 Entropy-based gain on Griewank function.

5. Conclusions

In this work, we proposed the entropy-based gain (EG)
or entropy-based gain regulator (EGR) to improve perfor-
mance of the original particle swarm optimization. The
mathematical term EGR is derived from the idea of entropy
based on the concept of the measure of disorder of a system,
originally in the thermodynamic context. We further investi-
gated the performance of EGR applied empirically to linear
decreasing inertia weight and analyzed observed data to il-
luminate the effect of the EGR and its relations to inertia
weight strategies. The performance results from introduc-
ing the EGR to the linear decreasing inertia weight is quite
good. Entropy-based gain is confirmed to be an effective
parameter for detecting and providing feedback for adjust-
ing the inertia weight adaptively in PSO algorithms for con-
trolling the balancing of the exploration and exploitation of
searches.

In this study, the EGR provides effective tuning of in-
ertia weight using the distances between particles and the
global best. Though the EGR has proved to be able to pro-
duce significant improvements of PSO on the selected five
test functions, a further analysis would be valuable to clar-
ify the correlations of location distances between particles
from the global best on the search space and the differences
of fitness value on the solution space. Investigating strate-
gies other than linear decreasing inertia weight is also en-
couraged.

In addition, we expect further investigations to discover
correlations between the EGR and such features as swarm
size, number of dimensions, different limits on generations,
and diverse kinds of problems. To clarify the subtle and
sophisticated effects of the EGR, the tests on the rotated
and shifted functions are worth delicate experiments to pro-
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vide further insights in the future. We expect that studies on
the relations between particle trajectories and entropy-based
gain will be especially interesting and valuable.
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