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Reputation-Based Collusion Detection with Majority of Colluders

Junbeom HUR†, Mengxue GUO††, Younsoo PARK††, Nonmembers, Chan-Gun LEE††,
and Ho-Hyun PARK††a), Members

SUMMARY The reputation-based majority-voting approach is a
promising solution for detecting malicious workers in a cloud system.
However, this approach has a drawback in that it can detect malicious
workers only when the number of colluders make up no more than half of
all workers. In this paper, we simulate the behavior of a reputation-based
method and mathematically analyze its accuracy. Through the analysis, we
observe that, regardless of the number of colluders and their collusion prob-
ability, if the reputation value of a group is significantly different from those
of other groups, it is a completely honest group. Based on the analysis re-
sult, we propose a new method for distinguishing honest workers from col-
luders even when the colluders make up the majority group. The proposed
method constructs groups based on their reputations. A group with the
significantly highest or lowest reputation value is considered a completely
honest group. Otherwise, honest workers are mixed together with colluders
in a group. The proposed method accurately identifies honest workers even
in a mixed group by comparing each voting result one by one. The results
of a security analysis and an experiment show that our method can identify
honest workers much more accurately than a traditional reputation-based
approach with little additional computational overhead.
key words: cloud computing, collusion detection, majority voting, reputa-
tion

1. Introduction

In cloud computing, a client distributes computational tasks
to multiple workers in a cloud server that are expected to
perform their tasks and return the results [1], [2]. Because
the workers may not return the true results and the client
may be unable to control the workers, it may be unclear
whether the returned result is actually true [3], which raises
the problem of cloud system integrity [4]–[6]. Occasionally,
malicious workers can communicate with each other effi-
ciently, and collectively decide to return the same false re-
sults. Such attackers are called colluders [7], [8].

Several methods for colluder detection have been pro-
posed [9]. Quiz-based methods use tasks with verifiable
results [7], called ‘quizzes’, which are embedded into the
tasks. When the task server receives the results from the
workers, it can confirm that the results of the real tasks are
true if all of the quizzes are valid. A quiz method is resilient
to collusions, and has an advantage in that the quiz results
can be verified [7], [10]. However, there is no method for
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automatically generating quizzes effectively, which prevents
the use of this technique for large-scale projects.

A spot-checking method is a collusion-resistant
sabotage-tolerance mechanism [11], which estimates the
frequency of malicious attempts that each worker intention-
ally falsifies the results of assigned jobs, and dynamically
eliminates false results from the system. However, this
model is not very effective against collusion attacks. Y. Ding
et al. proposed a trusted worker scheduling method to detect
collusive attackers and assure the integrity of data process-
ing in MapReduce framework [12]. However, the reducers
should be fully trusted. Thus, if they collude, there is no
way to detect it.

In addition to the above methods, majority-voting
methods [13] have been used, such as correlation- and
reputation-based methods. Correlation-based methods use
the results of votes to partition honest workers from collud-
ers [14]. If the voting results of some of the workers are the
same, they will be partitioned into the same group. In this
way, a correlation-based method counts how often each pair
of workers are together in the same group, and how often
they are in opposite groups. It then uses these counts to esti-
mate a distinctive feature, called ‘correlation’. If the correla-
tion among some workers is very high, the workers will be
grouped together. However, this method does not perform
very well in the case of conditional colluders∗ [14], [15]. In
other words, when colluders do not collude often, they are
not identifiable and the workers cannot be grouped.

In addition to correlation-based methods, reputation-
based methods are commonly used to evaluate the reliabil-
ity of workers [16]. The workers are partitioned into several
groups based on the value of their reputation. The group
with the highest reputation value is considered as an hon-
est group. GridEigenTrust [17] combines trust-computation
techniques with the EigenTrust reputation rating system [18]
in grid computing. Lee et al. proposed a simplified group
detection method for detecting colluders, but their method
is restricted to colluders forming a group [19]. Bendahmane
et al. applied a reputation model to the MapReduce frame-
work for big data processing [20]. H.-C. Tsai et al. pro-
posed a threshold-adaptive reputation scheme for mobile
ad hoc networks [21]. E. Abdullah and S. Fujita proposed

∗There are two types of colluders: Unconditional colluders al-
ways try to collude to return false results whereas conditional col-
luders collude only if they know that majority of workers actually
collude in a vote [14].
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a reputation-based colluder detection scheme for peer-to-
peer content delivery networks [22]. The reputation-based
methods have been known to be the most successful among
majority-voting methods.

However, reputation-based methods work properly
only when the number of colluders is no more than one-half
of all workers. We perform a simulation and mathematical
analysis to figure out the problems of traditional reputation-
based methods. In the simulation, we set the proportion of
colluders among all workers (P1) and the probability that a
colluder actually participate in the collusion (P2) as input
parameters. The simulation result shows that regardless of
P1 and P2, if the reputation value of a group is significantly
different, i.e., much higher or much lower, from those of
other groups, the group is an honest group. Here, the reputa-
tion value of a worker is defined as the ratio of the number of
correct results to the number of total votes attempted by the
worker. The formal definition of the reputation value will be
presented by Eq. (1) in Sect. 2.1. Even in the case that the
number of colluders is much more than that of honest work-
ers, the group with the lowest reputation value is observed
as an honest group. Although this observation contradicts
the assumptions of traditional reputation systems, it some-
times happens in the case of majority of colluders. The only
case in which an honest group cannot be found is when hon-
est workers are mixed with colluders in the same reputation
group.

We analyze the reputation-based method mathemati-
cally. We derive a formula to calculate the probability that
honest workers are mixed with colluders in a group for all
cases of P1 and P2. The mathematical analysis almost coin-
cides with simulation results. Based on our rigorous analy-
sis results, we propose a new approach to distinguish honest
workers from colluders as follows:

Even though there is no knowledge about P1 and P2,
just perform the existing reputation-based method. If there
is a group whose reputation is significantly higher or lower
than those of the other groups, this group is the completely
honest group and the search stops. Otherwise, honest work-
ers may be mixed with colluders in the same group and the
checking of all groups continues until all honest workers are
found.

The remainder of this paper is organized as follows.
In Sect. 2, we review a reputation-based method and con-
duct a simple experiment to measure its grouping accuracy.
In Sect. 3, we analyze the grouping characteristics mathe-
matically and propose our scheme based on the analysis re-
sult, and in Sect. 4, evaluate its accuracy and level of perfor-
mance. Finally, in Sect. 5, we provide concluding remarks
and a direction for future work.

2. Review of Reputation-Based Collusion Detection

A client may assign the same task to multiple workers in
a cloud. Some of the computing results may be right and
others may be wrong. Using majority voting, if the voting
results of some of the workers are the same, they will be

partitioned into the same group. Based on the voting results,
all of the workers will be divided into one majority and the
other minority groups [14].

However, the accuracy cannot be high for only a sin-
gle vote. A number of redundant votes are needed to obtain
voting reliability. A reputation-based method was therefore
proposed. This method is based on the assumption that the
number of honest workers is more than the number of col-
luders.

2.1 Existing Reputation-Based Method

If a client has a number of tasks that need to be computed,
it stores them in a queue. For a reputation-based method,
workers compute the task chosen from a task queue and then
vote. Because there is one task per vote, the number of tasks
is equal to the number of votes. The reputation of the ith

worker is defined as:

Ri =
mi

M
, (1)

where mi denotes the number of correct results generated by
the ith worker and M is the total number of votes attempted
by that worker. In a traditional reputation system, a ‘correct’
result is the majority answer [23].

In the next step, we partition the workers into multiple
groups according to the value of their reputation. The work-
ers in each group have the same reputation value. The group
that has the maximum reputation value becomes the honest
group [20]. We refer to these traditional reputation meth-
ods [20], [23] as the existing method for simplicity. The
following example shows how the existing reputation-based
method is carried out:

Example 1) Consider workers wi for 1 ≤ i ≤ 7, and tasks T j

for 1 ≤ j ≤ 4. Assume that w1 − w4 are honest workers and
w5 − w7 are colluders.

The number of honest workers in Table 1 is more than
the number of colluders. If a worker w j’s output for task Ti

is true, the value for row Ti and column w j in Table 1 is set
to 1. Otherwise, it is set to 0.

While w1−w4 naturally return true results because they
are honest workers, w5 always acts as a colluder by returning
false results for all tasks. w6 behaves as a colluder by return-
ing false results for T1, T2 and T4 whereas it pretends to be
an honest worker by returning a true result for T3. w7 pre-
tends to be an honest worker for T1 and T4 while it colludes
for T2 and T3.

According to the reputation-based method, w1−w4 will

Table 1 An example of an existing reputation-based method

w1 w2 w3 w4 w5 w6 w7

T1 1 1 1 1 0 0 1
T2 1 1 1 1 0 0 0
T3 1 1 1 1 0 1 0
T4 1 1 1 1 0 0 1
Ri 1 1 1 1 0 1/4 2/4
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Table 2 Drawbacks of an existing reputation-based method

w1 w2 w3 w4 w5 w6 w7

T1 1 1 0 0 1 1 1
T2 1 1 0 0 1 1 1
T3 0 0 0 0 1 1 1
T4 0 0 0 0 1 1 1
Ri 1 1 2/4 2/4 2/4 2/4 2/4

be partitioned into a group because they have the same rep-
utation value, i.e., one, whereas w5, w6, and w7 will be par-
titioned separately based on their reputation values (0, 1/4
and 2/4, respectively). In addition, w1 − w4 are then chosen
as honest workers to tell the truth because they compose the
group with the highest reputation.

2.2 Grouping Problem

A reputation-based method can efficiently detect both col-
luders and non-colluders, and guarantee high accuracy with
an acceptable amount of overhead [20]. However, this
method does have certain limitations. If the number of col-
luders is more than half of all workers, it cannot discriminate
honest workers from colluders because some colluders will
be partitioned with honest workers, as shown in the follow-
ing example.

Example 2) Consider a case of seven workers (wi) and four
tasks (Ti) to vote on. Unlike Example 1, we assume that
w1 − w4 are colluders and that w5 − w7 are honest workers.
We also set the true output to 1 and a false output to zero.

In Table 2, the number of colluders is more than the
number of honest workers, and the colluders do not always
collude. w5−w7 naturally return the true result because they
are honest workers. Meanwhile, w3 and w4 always act as
colluders by returning false results for all tasks. Both w1

and w2 pretend to be honest workers for T1 and T2 whereas
both return false results for T3 and T4 by colluding with w3

and w4.
For T1 and T2, an output of 1 is regarded as correct. On

the contrary, for T3 and T4, an output of zero is regarded as
correct because it forms the majority answer (Four zeros are
more than three ones).

According to an existing reputation-based method, col-
luders w3 and w4 will be grouped with actual honest workers
w5 − w7 because they all have the same reputation value of
2/4. Meanwhile, w1 and w2 will be chosen as honest workers
because their reputation value of 1 is the highest. The group
w3−w7 including actual honest workers is regarded as a col-
luders’ group because it does not have the highest reputation
value. Therefore, it is undesirable to choose the group that
has the highest reputation in this case. A new method for
identifying honest workers is therefore required.

2.3 Grouping Accuracy

Example 2 shows that, using an existing reputation-based

method, some colluders can be chosen as honest workers
when there are more colluders than honest workers. This er-
ror is caused by incorrect grouping, i.e., w3 and w4 were im-
properly grouped with w5 −w7. Therefore, before proposing
a new method to identify honest workers, it is necessary to
evaluate the accuracy of grouping for an existing reputation-
based method. In this paper, we assume that honest workers
always return true results while colluders behave probabilis-
tically. The colluders may return false results with some
probability but not always.

To facilitate the evaluation, we introduce two param-
eters: P1, which is the proportion of colluders among all
workers, and P2, which is the probability that a colluder will
actually collude. With 1 − P2, a colluder may not collude,
and act like an honest worker to avoid being identified as a
colluder. We assume that all of the colluders have the same
probability of P2. To measure the grouping accuracy, we
utilize the failure rate. Some relevant definitions to facilitate
this are given below.

Definition 1 (Mixed group) If there are both honest work-
ers and colluders in a group, the group is called a mixed
group.

The group of w3 − w7 in Example 2 of Sect. 2.2 is a mixed
group.

Definition 2 (Grouping Failure) After grouping using a
reputation-based method, if a mixed group exists, we can
say the grouping has failed.

Definition 3 (Failure Rate) If grouping is performed K
times and a grouping failure occurs f times, the ratio of
the number of grouping failures to the number of groupings,
i.e., f /K, is called the failure rate.

An experiment was conducted for a set of N = 100
workers and M = 100 tasks, where K = 100. We set the
ranges of P1 and P2 to 0.1−0.9, with an interval of 0.05. To
facilitate the evaluation, we set the following tasks. We give
honest workers input Vinput randomly from domain [0, 1],
and output y is produced as the input received by a worker.
This process can be expressed as follows.

y = Vinput

We also give colluders an input randomly from domain
[0, 1], and at the same time, give them a value of P2. Each
colluder chooses t randomly from domain [0, 1]. If t is in [0,
P2], the worker will generate an improper result denoted by
Verror. Otherwise, it will generate a true output just like an
honest worker. This process can be expressed as follows.

t ← randomly select from [0, 1]

i f t ∈ [0, P2]

y = Verror

else
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Fig. 1 Failure rate of an existing reputation-based method

y = Vinput

We regard the failure rate as a measure of the grouping ac-
curacy.

Figure 1 shows grouping accuracy of an existing
reputation-based method using the failure rate. For P1 <
0.5, no matter how P2 changes, the failure rate is almost
zero because honest workers form the majority group and
the probability that a colluder will be grouped with honest
workers is very low. The following example is provided as
a further explanation.

Example 3) In our experiment, when P1 < 0.5, for a col-
luder to be grouped with honest workers, the 100 voting re-
sults must be the same for both. When P2 has the minimum
value, i.e., P2 = 0.1, the possibility that this will occur is at
maximum because a colluder almost always produces cor-
rect results. In this case, the probability that a colluder will
be grouped with honest workers is (1−0.1)100 = 2.66×10−5,
which is considerably low.

However, when P1 > 0.5, the accuracy of the grouping
is indeterminate and changes with the value of P1 and P2.
In this case, the output of honest workers may be regarded
as incorrect. Either honest workers or colluders become the
majority for each vote. After 100 votes, the reputation of
some colluders may be the same as that of honest work-
ers, and therefore these colluders will be grouped with hon-
est workers, as shown in Example 2. We will analyze why
this phenomenon occurs, in Sects. 3.1 and 3.2. Therefore, to
solve this problem, a novel approach is needed to determine
honest workers with a higher accuracy.

3. Our Method

We observed in Sect. 2 that the existing reputation system
has a grouping failure problem when the number of col-
luders is more than the number of honest workers. In this
section, we analyze in detail why such a grouping failure
occurs, and suggest an algorithm to solve the problem.

In Sect. 3.1, we observe closely through a more com-
plex example what the reputation values of all groups are
when a grouping success/failure occurs. The observation
result states that if the number of colluders is less than a
half of all workers, namely P1 < 0.5, the existing reputation
system always performs successful grouping and the repu-
tation of the honest group is always one. This is a natural
phenomenon in a majority voting system [20].

However, if the number of colluders is more than a half
of all workers (P1 > 0.5), grouping failures occurs accord-
ing to the actual collusion probability (P2) of colluders. If
both P1 and P2 are very high, the grouping also succeeds.
Ironically in this case, the reputation value of the honest
group shows lowest. In the situation that most workers are
colluders, if they actually collude, false results form a ma-
jority group and are regarded as correct. On the other hand,
honest workers are considered to be telling a lie.

Next in Sect. 3.2, we mathematically analyze the cases
that grouping succeeds and/or fails. The analysis result
states that if there is a big reputation difference between
groups, grouping succeeds. Otherwise, the probability of
a grouping failure is high. This analysis result plays impor-
tantly because P1 and P2 are not known in a real situation.

While the existing method always considers the highest
reputation group as the honest group, our method combines
the observation of Sect. 3.1 and the mathematical analysis
of Sect. 3.2, and draws the following conclusion: If there
is a big reputation difference between groups, a completely
honest group necessarily exists and the reputation value of
the honest group is highest or lowest.

In Sect. 3.3, when a grouping failure occurs, i.e., honest
workers are mixed with colluders within a group, a method
to find only honest workers is introduced. By consolidating
these analysis and observation, we propose Algorithm 1 in
Sect. 3.4.

3.1 Observation of Grouping

Let us take a closer look at the cases of successful grouping
and failed grouping through the following example:

Example 4) Assume that the number of workers N = 50,
and that the number of tasks M = 50. The worker ID is
used to identify the workers. Honest workers are set in front
of all other workers; an honest worker’s ID is (1 − P1) ∗ N.
Therefore, when P1 = 0.7, an honest worker’s IDs becomes
1 − 15, and when P1 = 0.9, the ID becomes 1 − 5. In ad-
dition, P2 was set to 0.5 and 0.7. The reputations for these
four combinations of P1 and P2 were generated, as shown
in Table 3, by conducting a reputation-based method.

When both P1 and P2 are 0.7, the existing method will
falsely recognize only the worker 19 as an honest worker be-
cause it has the highest reputation value of 0.68. The actual
honest workers (1− 15) are considered as colluders because
their reputation value (0.50) is not highest. Some colluders
(23, 38 and 39) are grouped with honest workers because
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Table 3 Reputation results for a few cases of P1 and P2

P1 = 0.7 P1 = 0.9

Reputation Worker ID Reputation Worker ID
0.42 44 0.02 1-5
0.44 16, 43 0.54 36
0.46 45 0.60 22, 39, 50
0.48 25 0.64 15, 18, 19
0.50 1-15, 23, 38, 39 0.66 7, 9, 12, 20, 21, 26, 28
0.52 26, 30, 37 0.68 11, 30, 31, 33, 42, 48

P2 = 0.7 0.54 32, 36, 47, 50 0.70 6, 8, 13, 23, 29, 43
0.56 17, 20, 40, 42, 46 0.72 16, 25, 32, 40, 46, 49
0.58 18, 21, 27, 34 0.74 14, 35, 45
0.60 24, 29, 31, 33, 48 0.76 24, 47
0.62 22, 35 0.78 17, 27, 34, 38
0.66 28, 41, 49 0.80 10, 37, 41, 44
0.68 19

0.36 37, 48 0.34 37
0.42 18, 39, 50 0.36 8
0.44 27, 45 0.46 29, 50
0.46 16, 25, 26, 32, 42 0.48 15, 45
0.48 29, 41, 46 0.50 9, 11, 17, 24, 47, 49
0.50 30, 33, 34 0.52 13, 16, 18, 33, 34, 43

P2 = 0.5 0.52 19, 20, 23, 24, 35, 38, 47 0.54 7, 30, 31, 44
0.54 21 0.56 6, 19, 27, 42
0.56 17, 22, 40, 44 0.58 35
0.58 43, 49 0.60 10, 20, 21, 22, 32, 36, 39, 48
0.60 31 0.62 23, 38, 40, 41, 46
0.62 28, 36 0.64 1-5, 12, 14, 26

1 1-15 0.66 28
0.68 25

they all have the same reputation, i.e., 0.50. The difference
in the reputation value between each adjacent group is not
more than 0.05.

For P1 = 0.7 and P2 = 0.5, the honest workers are
well grouped and identified because they have the highest
reputation value of 1. There are no mixed groups because
no colluders are grouped with honest workers. In addition,
the difference between the honest group and the group with
the second-highest reputation (0.60) is as high as 0.4.

When P1 = 0.9 and P2 = 0.7, the existing method will
mistake the workers 10, 37, 41 and 44 for honest workers
because they have the highest reputation value of 0.80. The
actual honest workers (1−5) are considered as colluders be-
cause their reputation value (0.02) is not highest. There are
no mixed groups because no colluders are grouped with hon-
est workers having reputations of 0.02. Even in this case, the
honest group has the lowest reputation because the majority
of workers are colluders and more than half of them actu-
ally collude. The difference between it and the group with
the second-lowest reputation (0.54) is significant at 0.52.

In the case of P1 = 0.9 and P2 = 0.5, the existing
method will falsely recognize only the worker 25 as an hon-
est worker because it has the highest reputation value of
0.68. The actual honest workers (1 − 5) are considered as
colluders because their reputation value (0.64) is not high-
est. Some colluders (12, 14 and 26) are grouped with hon-
est workers because they all have the same reputation of
0.64. The difference in the reputation between each adja-
cent group is not more than 0.05.

In an existing reputation-based method, the group with

Fig. 2 Aerial view of Fig. 1

the highest reputation value is always selected as the hon-
est group. However, in Table 3, this is correct for only one
(P1 = 0.7 and P2 = 0.5) of the four cases. Thus, this method
should be reconsidered, especially when the number of col-
luders is more than half of all workers.

Through Table 3, we can see a particular phenomenon:
After grouping based on the reputation values, if the reputa-
tion value of the honest group is either the highest or lowest,
and the difference in the reputation between an honest group
and the other groups is significant, no mixed group is gener-
ated. If the reputation value of honest workers is neither the
highest nor the lowest, and the differences in the reputation
among all groups are insignificant, a mixed group is gen-
erated. Figure 2 is a redrawing of Fig. 1 that explains this
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phenomenon.
In Fig. 2, when P1 and P2 are in the red area, the repu-

tation of the honest group is the highest, and is much higher
than those of the other collusion groups. When P1 and P2

are in the blue area, the reputation of the honest group is
the lowest, and is much lower than those of the other col-
lusion groups. In both cases, no mixed groups are gener-
ated. However, if the reputation of the honest group is nei-
ther too high nor too low, the difference in the reputation
among all groups is insignificant. Therefore, colluders can
be easily grouped with honest workers. This case is repre-
sented by the white mountain-shaped area, which has a non-
zero failure rate in Fig. 1. Furthermore, in the blue area of
Fig. 2, even though the grouping is successful, honest work-
ers will be regarded as colluders by an existing reputation-
based method because they have the lowest reputation value.

Considering the above phenomenon, we construct a
sketch of our mechanism as follows: Under the premise of
not knowing P1 or P2, after using the existing reputation-
based method, if there is a group whose reputation is the
highest or lowest and that has a significant difference from
the reputations of the other groups, we can conclude that no
mixed group has been generated and that this group is the
honest group.

Otherwise, a mixed group may have been generated,
and thus, it is necessary to check all groups starting from
the group with the largest size until all honest workers are
found. During this process, we denote a ‘significant dif-
ference’ as the threshold, τ1. In the next section, we first
show some probability formulas, and using these formulas,
we then determine the threshold, τ1.

3.2 Theoretical Analysis

Figures 1 and 2 show that when the number of colluders is
larger than that of honest workers, after M votes, some col-
luders may be grouped with honest workers. We calculate
the probability of such an occurrence in this section.

After a vote, the probability that a false result will be-
come a majority answer is denoted by Pb−many. This may
happen only when P1 > 0.5. Thus, we have the following.

Pb−many =

(
N · P1

N · 0.5
)
· PN·0.5

2 · (1 − P2)N·(P1−0.5) + · · ·

+

(
N · P1

N · P1

)
· PN·P1

2 =

N·P1∑
i=N·0.5

(
N · P1

i

)
Pi

2(1 − P2)NP1−i

(2)

After a vote, the probability that the true result will be-
come a majority answer is denoted by Pg−many, which gives
us

Pg−many = 1 − Pb−many (3)

After a vote, the probability that a colluder will gen-
erate a majority answer is denoted by Pobad. We thus have

Pobad = (1 − P2) × Pg−many + P2 × Pb−many (4)

After a vote, the probability that an honest worker will
generate a majority answer is denoted by Pogood. Because
honest workers never collude, the probability that an honest
worker will collude is zero. Thus, we have

Pogood = 1 × Pg−many + 0 × Pb−many = Pg−many (5)

After M votes, the probability that a colluder will gen-
erate majority answers i times is denoted by Pbad(i), giving
us

Pbad(i) =

(
M
i

)
· Poi

bad · (1 − Pobad)M−i (6)

After M votes, the probability that an honest worker
will generate majority answers i times is denoted by Pgood(i).
We therefore have the following:

Pgood(i) =

(
M
i

)
· Poi

good · (1 − Pogood)M−i (7)

According to the definition of a reputation, Pbad(i) and
Pgood(i) can be regarded as the probabilities that a colluder
and an honest worker will have a reputation of i/M, respec-
tively. Let Pbad(x) and Pgood(x) be the probabilities that a
colluder and an honest worker will have a reputation of x,
respectively. Then, Pbad(i) and Pgood(i) can be rewritten as
Pbad(x) and Pgood(x), respectively. If the values of P1 and P2

are given, we can obtain the probabilities of the reputations,
as shown in Fig. 3, for certain values of P1 and P2.

The blue curve represents Pbad(x), and the red curve
represents Pgood(x). Let d = |R2 − R1| be the absolute value
of difference in reputation between the honest group and the
collusion groups, where R1 and R2 are the average repu-
tation values of colluders and honest workers, respectively.
As P1 and P2 change, d also changes. In the cases shown
in Figs. 3 (a) and 3 (d), it is impossible to generate a mixed
group because the value of d is sufficiently large. However,
in Figs. 3 (b) and 3 (c), generating a mixed group is possible.

As shown in Fig. 3 (c), in particular, the two curves al-
most overlap, and d is very small. From these results, we
can see that no matter how high or low an honest worker’s
reputation is, the greater d is, the more unlikely it is that a
colluder will be grouped with honest workers.

For a colluder and an honest worker to belong to the
same group, they should have the same reputation value.
Since an event in which a colluder has a reputation of x,
and an event in which an honest worker has a reputation of
x, are mutually independent, the probability of both having
the same reputation of x is Pgood(x) · Pbad(x). Because all
honest workers always have the same reputation, the prob-
ability of a colluder and an honest worker belonging to the
same group is the same as a colluder and all honest workers
belonging to the same group. Therefore, as shown in Fig. 4,
when the reputation = x, the probability that a colluder is
grouped with honest workers is

f0(x) = Pgood(x) · Pbad(x) (8)
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Fig. 3 Values of Pbad(x) and Pgood(x)

Fig. 4 Example of f0 when P1 = 0.7 and P2 = 0.7

For all reputation values in the range of 0 to 1, the prob-
ability that a colluder will be grouped with honest workers
can be denoted by f0 as follows:

f0 =
∫ 1

0
Pgood(x) · Pbad(x) dx (9)

where f0 is a case in which only one colluder is grouped
with honest workers, and there are P1 · N colluders in to-
tal. Therefore, the probability that colluders will be grouped
with honest workers is denoted by F as follows:

F =
P1·N∑
i=1

(
P1 · N

i

)
· f i

0 · (1 − f0)(P1·N−i) (10)

According to Definition 2, F is the probability of a
grouping failure. We use the above equations to gener-
ate graphs for the probability of a grouping failure and the
difference in reputations between the honest and collusion
groups.

3.2.1 Determination of Threshold τ1

An evaluation of Eq. (10) was performed for a set of N =
100 workers and M = 100 tasks, where K = 100. We set the
range of P1 at 0.01 − 0.99, which means that there are one
to 99 colluders per 100 workers. The range of P2 is 0−1.

Figure 5 shows an aerial view of the grouping failure
rate obtained using Eq. (10). The shape of this figure is very
similar to that of Fig. 1. This shows that our analysis coin-
cides with experimental results of Sect. 2.3. As the figure
shows, when P2 < 0.1, the failure rate is quite high because,
after 100 votes, colluders rarely collude for each vote and
mostly act as honest workers. Therefore, colluders can be
easily grouped with honest workers, which leads to the gen-
eration of a mixed group. Such colluders are very difficult
to detect.

The area of the failure rate, < 0.1, in Fig. 5 is almost
the same as the area of the difference in reputation, > 0.2,
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Fig. 5 Aerial view of grouping failure probability

Fig. 6 Aerial view of the reputation difference between the honest group
and collusion groups

in Fig. 6. Therefore, we set threshold τ1 = 0.2 for M = 100
and N = 100 in our experiment described in Sect. 4.

Thus far, the theoretical background for the observa-
tion in Sect. 3.1, that is, if there is a big reputation difference
between groups, there must be not a mixed group but a com-
pletely honest group, and threshold τ1 have been provided.
However, if a mixed group is generated, we should check
all of the groups from the group whose size is largest until
all honest workers are found. In the next section, we show
how to determine honest workers even when a mixed group
exists.

3.3 Identifying the Honest Workers within the Mixed
Group

We propose a method to identify honest workers when a
mixed group exists. In reputation systems, the computa-
tion results of all workers for all tasks are usually stored
to calculate their reputations. We assume that this history
of computation results is maintained in a table, as shown
in Fig. 7, called a computation result table. We construct a
computation result table for each group.

Fig. 7 Computation result table and column-wise comparison

When a grouping fails, the most direct way to iden-
tify honest workers is to examine the computation results of
all workers for M tasks one by one. Looking at Table 3 in
Sect. 3.1 carefully, the group whose size is the largest is most
likely to contain honest workers. Therefore, we first check
the computation results of workers in the largest group. As
shown in Fig. 7, assume there are n workers in this group. It
is necessary to make a column-wise comparison of the com-
putation result table as indicated using the arrows in Fig. 7.
Here, Rj(wi) represents the computation result of worker wi

for task T j. The rationale behind the column-wise compar-
ison is that the column values of honest workers are always
the same.

We introduce another threshold, τ2, as follows: If the
number of workers whose column values are all the same is
more than threshold τ2, the workers in this group are hon-
est workers and the check is stopped. Otherwise, the com-
putation result tables of the other groups are continuously
checked in this manner until all honest workers are found.

To verify the accuracy of our method, we show that the
probability that colluders will be chosen over honest work-
ers is very low. First, let us consider that only one group is
generated. Naturally, this group is a mixed group. For col-
luders to be chosen, the number of colluders whose column
values are the same should be more than threshold, τ2.

For a single task, the probability that the computation
results of τ2 colluders will be the same is denoted by Psame 0.
This case will happen when either τ2 colluders collude to-
gether or do not collude together. Thus, we have

Psame 0 = Pτ2
2 + (1 − P2)τ2 (11)

For M tasks, the probability that the column values of
τ2 colluders will be the same is denoted as Psame:

Psame = [Psame 0]M (12)

We calculated Eq. (12) for some cases of P2, M and τ2.
The computation result is shown in Table 4. The probability
that the column values of τ2 colluders will be the same is
very low and decreases as M increases. When τ2 = 3 and
M = 10, the probability that colluders are badly chosen is
a little high as about 4.3%. However, the probability for
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Table 4 Calculation of Eq. (12) for some P2, M and τ2

M = 10 M = 50 M = 100
τ2 = 3 τ2 = 5 τ2 = 3 τ2 = 5 τ2 = 3 τ2 = 5

P2 = 0.5 9.54 × 10−07 9.09 × 10−13 7.89 × 10−31 6.22 × 10−61 6.22 × 10−61 3.87 × 10−121

P2 = 0.7 4.81 × 10−05 2.08 × 10−08 2.57 × 10−22 3.86 × 10−39 6.61 × 10−44 1.49 × 10−77

P2 = 0.9 0.042976 0.005155 1.47 × 10−07 3.64 × 10−12 2.15 × 10−14 1.32 × 10−23

Algorithm 1.

Step 1. ComputeReputation()
Input: N,M, {R j(wi), i = 1 to N, j = 1 to M}
/* Use the method of Bendahmane et al. [20] to compute the reputations of all workers

and obtain a set of reputation values */
1: initialize all Ri, i = 1 to N, to zero;
2: for ( j = 1; j ≤ M; j + +) {
3: sort and group {R j(w:)}; // R j(w:) is the j-th row of the computation result table
4: maj ansj = the answer of the majority group for the j-th task;
5: for (i = 1; i ≤ N; i + +)
6: if(R j(wi) == maj ansj) Ri + +;
7: }
8: return {R1, . . . ,RN };
Step 2. Grouping()

Input: {R1, . . . ,RN }
/* Use the method of [20] to assign the workers into groups according to their reputation values */

1: sort and group {Ri, i = 1 to N} to {G1, . . . ,Gk} so that the reputation of Gk is highest while that of G1 is lowest;
2: return {G1, . . . ,Gk};
Step 3. FindHonestGroup()

Input: {G1, . . . ,Gk}, {R1, . . . ,Rk}, τ1
1: if(d = |Rk − Rk−1 | ≥ τ1) return Gk; // highest reputation group
2: else if(d = |R2 − R1 | ≥ τ1) return G1; // lowest reputation group
3: else go to Step 4;
Step 4. FindHonestWorkers()

Input: {G1, . . . ,Gk}, {R j(wi), i = 1 to N, j = 1 to M}, τ2
1: S = {G1, . . . ,Gk};
2: while(S � φ){
3: select Gt from S which n = |Gt | is largest;
4: S = S − {Gt};
5: extract {R:(wi), i = 1 to n} of Gt from {R:(wi), i = 1 to N};
6: sort R:(wi), i = 1 to n; // column vector sorting in Fig. 7.

/* R:(wi) is all computation results of worker i for M tasks. This corresponds to
the ith column vector in Fig. 7. */

7: for(i = 1; i > n − τ2 + 1; i + +){ //Worker ID starts from one. If i > n − τ2 + 1, remaining workers are less than τ2.
8: Ghonest = {wi};
9: for(count = 1; i < n && R:(wi) == R:(wi+1); count++, i++)
10: Ghonest = Ghonest ∪ {wi+1}; // R:(wi) == R:(wi+1) represents column-wise comparison.
11: if(count ≥ τ2)
12: return Ghonest;
13: }
14: }
15: return φ; // no honest workers are found

other cases is very low. Usually M increases as computation
proceeds in cloud servers. Therefore, we set the value of τ2

to 3.

3.4 Algorithm

The algorithm used takes the number of workers N, the
number of tasks M, and a computation result table contain-
ing the computation history {Rj(wi), i = 1 to N, j = 1 to M}
as inputs. To determine honest workers among all workers,
the algorithm progresses as shown in Algorithm 1.

Thanks to the theoretical analysis of Sect. 3.2, Algo-
rithm 1 does not require P1 and P2 parameters. Therefore,

it can be used regardless of the number of colluders.

4. Evaluation

4.1 Accuracy

Some accuracy analyses have been separately conducted for
some fixed parameters of N, M, τ1, and τ2 in Sect. 3, that is
grouping accuracy analysis and identifying accuracy analy-
sis for honest workers in a mixed group. However, in this
section, more comprehensive evaluation for Algorithm 1
will be conducted using various parameters of N, M, τ1, and
τ2. Another definition of a failure used for this evaluation is
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Fig. 8 Failure rates with changes in N and M

given below:

Definition 4 (Identifying Failure) If the honest workers
identified are different from the original honest workers that
exist in a system, our method is considered failed.

To improve the reliability of our method, we ran our
method 100 times and measured the failure rates. First, we
fixed τ1 at 0.2, and τ2 at 3. With the changes in N and M,
the failure rates were measured as shown in Fig. 8.

Because τ2 = 3, the range of P1 was set to 0.1−0.7
for N = 10, and 0.01−0.97 for N = 100. The range of P2

was set to 0–1 for all cases. Figure 8 shows that no mat-
ter how many workers there are, if the number of tasks is
insufficient, the failure rate will be high. This can be ex-
plained through Eq. (12) because Psame will become higher
as M decreases.

As in the case of M = 10, if the number of tasks is
small, it is shown that the failure rate is more influenced by
P2 (the actual collusion probability of a colluder) than P1

(the number of colluders divided by N). In the two graphs
on the left column of Fig. 8, when P2 is greater than 0.5 it
appears a low failure rate. The failure rate becomes increas-
ingly higher when P2 is less than 0.5. If malicious workers
hide without collusion and primarily return true results, Al-
gorithm 1 misunderstands as if they were honest workers.
Therefore, they are not detected well.

P1 affects the failure rate less than P2. The higher P1

is, the region where the failure rate is high slightly increases.
This means, if P2 is constant, the more the colluders are, the
more difficult it is for all the colluders to be detected.

Toward the right column in Fig. 8, it can be seen that
the red area is significantly reduced. As the number of tasks
(votes) increases, the more elaborated the reputation values
are and the better Algorithm 1 finds colluders.

If M is large enough, e.g. 100, our method performs
well and can determine all honest workers accurately except
when P2 < 0.1. This is because if P2 < 0.1, colluders rarely
collude for each vote and mostly act as honest workers.

Next, we fix N at 50, and τ2 at 3. With the changes in
M and τ1, the failure rates are measured as shown in Fig. 9.

We compared the accuracy by varying τ1 from 0.1 to
0.3. Figure 9 shows that when the number of tasks is small,
the accuracy is slightly influenced by τ1. In particular, the
accuracy is best when τ1 = 0.3. As in the case of Fig. 8,
P2 gives more influence on the failure rate than P1. And the
higher P2 is, the higher the failure rate is.

In the case of M = 10, τ1 = 0.1, there is a hornlike
red region in the upper right area of the graph. In this re-
gion, the failure is high even though P2 is low. This is the
case that the number of colluders is more than half, which is
similar to the case of a mixed group analyzed in Sects. 3.1
and 3.2. Grouping errors were found to occur in Step 3 of
Algorithm 1 in the case of a smaller τ1.
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Fig. 9 Failure rates with the changes in M and τ1

If M is smaller, a smaller number of groups are gen-
erated and the differences in reputation between adjacent
groups will be higher. Therefore, a colluder group is some-
times mistakenly chosen as an honest group. In this case, to
judge the significance of the difference, a higher τ1 will be
necessary. τ1 = 0.2 and τ1 = 0.3 have no big difference in
failure rates.

However, if the number of tasks is large, the accuracy
is rarely influenced by τ1. If the number of task is large, i.e.,
the higher the number of votes is, the reputation values will
be more accurate, so our method will find colluders better
regardless of τ1. Therefore, the determination of τ1 depends
on the value of M. If M is sufficiently large, τ1 is set as a
small value. For example, τ1 may be set to 0.2. Otherwise,
τ1 is set to a larger value such as 0.3.

4.2 Performance

Step 1 of Algorithm 1 comprises computations for all work-
ers and all voting results. Each majority voting includes
sorting and grouping for all workers’ computation results,
and such votings are performed for M tasks. Thus it is com-
puted in O(MN log2 N), where N is the number of workers
and M is the number of tasks (votes). Since Step 2 is re-
quired to sort all workers and partition them into groups,

this step can be computed in O(N log2 N). Step 3 needs
to compute the difference between the highest and second-
highest reputations, or the difference between the lowest and
second-lowest reputations, which can be computed in O(1).
Step 4 consumes a large amount of time because it has to
examine all computation results of the workers. Column-
vector sorting is required in a group. If only one group is
generated, it can be computed in O(MN log2 N).

Usually, more than one group will be generated. In this
case, the time complexity of the biggest group is dominant.
Therefore, it can be computed in O(Mn log2 N), where n is
the number of workers in the biggest group. From the above
results, it can be concluded that the complexity of Step 4 is
much more than that of Step 3. Therefore, using Step 3, we
can reduce the execution time of our method.

For further details, we conducted experiments to com-
pare the execution time (10−4s) of Bendahmane et al.’s [20]
method with that of our own. Here, we call Bendahmane
et al.’s method the existing method for simplicity. The
experimental environment is as the same as described in
Sect. 4.1.

The red values in Table 5 represent the time cost when
our method is executed until Step 4. From Table 5, for a
larger M and/or N, the required time also increases for both
the existing method and our method, correspondingly. If
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Table 5 Execution times of Bendahmane et al.’s [20] method and our own (10−4s).
(a) N = 10, M = 10, τ1 = 0.3 and τ2 = 3

P1 = 0.2 P1 = 0.4 P1 = 0.7
Existing Method Our Method Existing Method Our Method Existing Method Our Method

P2 = 0.9 1.1249 1.5828 1.4111 1.6432 1.6550 1.8539
P2 = 0.7 1.0188 1.5926 1.4071 1.7531 1.5230 4.5206
P2 = 0.5 1.0199 1.5829 1.3306 1.7129 1.6092 4.1180
P2 = 0.2 1.1051 2.9189 1.4281 3.0207 1.5199 3.5209

(b) N = 10, M = 100, τ1 = 0.2 and τ2 = 3

P1 = 0.2 P1 = 0.4 P1 = 0.7
Existing Method Our Method Existing Method Our Method Existing Method Our Method

P2 = 0.9 4.0288 4.1129 4.3139 4.2132 4.4935 4.8138
P2 = 0.7 3.9514 4.1126 4.2201 4.4131 4.3532 8.1216
P2 = 0.5 4.2852 4.5129 4.3621 4.7129 4.5301 8.6180
P2 = 0.2 4.1235 4.3129 4.3022 4.6130 4.5110 4.9133

(c) N = 100, M = 10, τ1 = 0.2 and τ2 = 3

P1 = 0.2 P1 = 0.4 P1 = 0.7 P1 = 0.9
Existing
Method

Our Method
Existing
Method

Our Method
Existing
Method

Our Method
Existing
Method

Our Method

P2 = 0.9 5.0797 5.7135 5.6130 5.7133 5.7933 6.0138 5.8166 6.0139
P2 = 0.7 5.2901 6.1136 5.49179 6.3129 6.2948 12.0188 6.0158 6.2139
P2 = 0.5 5.5190 5.8153 5.6078 6.8159 6.3034 12.0218 6.1986 17.0238
P2 = 0.2 5.2858 12.2208 5.6880 12.4202 5.8766 11.5194 5.7321 11.0196

(d) N = 100, M = 100, τ1 = 0.2 and τ2 = 3

P1 = 0.2 P1 = 0.4 P1 = 0.7 P1 = 0.9
Existing
Method

Our Method
Existing
Method

Our Method
Existing
Method

Our Method
Existing
Method

Our Method

P2 = 0.9 11.6490 11.2153 11.9141 12.0150 13.0135 12.8154 13.0137 12.9148
P2 = 0.7 12.1136 12.0147 12.9137 13.3143 14.0137 23.0298 14.8142 15.0156
P2 = 0.5 12.3137 12.2148 13.8145 13.2144 14.3146 14.4147 14.7149 23.5306
P2 = 0.2 11.7137 11.1143 13.3147 13.4147 13.1142 13.0143 13.7140 13.5233

no mixed group exists, such as P1 = 0.2 and P2 = 0.9,
or P1 = 0.4 and P2 = 0.7, the time cost of our method is
almost the same as that of the existing method. If a mixed
group does exist, such as P1 = 0.7 and P2 = 0.7, or P1 = 0.9
and P2 = 0.5, the time cost increases considerably because
our method has to run to Step 4. As shown in Figs. 1 and 2,
in many cases, no mixed groups are generated. Therefore,
the time cost and complexity of our method are almost the
same as those of the existing method for many cases.

5. Conclusion

The traditional reputation-based method was proposed
based on the assumption that the number of colluders is less
than half of all workers. Our study enabled to weaken this
assumption by investigating the accuracy of the grouping
method. The study discovered that the grouping accuracy
is indeterminate and changes with the number of colluders
and their collusion probability. The most valuable result of
the study is: If a group has a significantly different reputa-
tion value from other groups, the group is the honest group.
Even a group with the lowest reputation value can be the
honest group if the number of colluders is much more than
that of honest workers.

Based on this study, we proposed a new method to
identify honest workers from a mix of colluders and hon-

est workers. When no mixed groups are generated, we can
determine the honest group quickly by computing the dif-
ference in reputation between groups and set threshold, τ1.
Otherwise, to determine honest workers, we check the vot-
ing results of all groups one by one and set another thresh-
old, τ2. Thanks to a rigorous mathematical analysis, our al-
gorithm can detect colluders without prior knowledge about
the number of colluders and their collusion probability.

Our experiment and analysis results show that our pro-
posed method can be used to efficiently identify honest
workers and guarantees high accuracy even without restric-
tions under the assumption that the number of colluders is
less than half of all workers. To improve the accuracy, we
may attempt to increase the number of tasks and vary the
values of thresholds τ1 and τ2. Our method also performs
well when these values vary sufficiently, even under extreme
conditions in which few or a large number of colluders exist.
As a way to find honest workers, it would be interesting to
integrate our proposed method into an existing cloud com-
puting system.
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