
708
IEICE TRANS. INF. & SYST., VOL.E99–D, NO.3 MARCH 2016

PAPER

Node-to-Set Disjoint Paths Problem in a Möbius Cube∗

David KOCIK†, Yuki HIRAI††, Nonmembers, and Keiichi KANEKO††a), Member

SUMMARY This paper proposes an algorithm that solves the node-to-
set disjoint paths problem in an n-Möbius cube in polynomial-order time
of n. It also gives a proof of correctness of the algorithm as well as esti-
mating the time complexity, O(n4), and the maximum path length, 2n − 1.
A computer experiment is conducted for n = 1, 2, . . . , 31 to measure the
average performance of the algorithm. The results show that the average
time complexity is gradually approaching to O(n3) and that the maximum
path lengths cannot be attained easily over the range of n in the experiment.
key words: hypercube, multicomputer, interconnection network, parallel
processing, dependable computing

1. Introduction

Recently, because the clock frequency has shown signs
of leveling off, parallel processing systems, especially
massively parallel systems are gathering much attention.
Though the hypercube [21] was enthusiastically studied in
1980’s as a topology for parallel processing systems, it
has been seen over the last two decades as obsolete. Re-
cent massively parallel systems adopt the hierarchical topol-
ogy instead of the conventional simple topologies such as
a mesh, a torus, and so on to connect several tens of thou-
sands of processors efficiently. Some massively parallel sys-
tems such as NASA Pleiades [19] and ACC Cyfronet AGH
Zeus [2], [20] have adopted a hypercube as a higher-layer
topology of their hierarchical topologies. Therefore, a hy-
percube and its variants have returned to the center of atten-
tion. A Möbius cube [6] is one such variant of a hypercube.

A Möbius cube can connect the same number of nodes
as a hypercube while keeping its diameter about half of
that of the hypercube. Hence, it has attracted much at-
tention [8], [14], [23]–[25]. The unsolved problems in
Möbius cubes include the node-to-set disjoint paths prob-
lem: given a source node s and a set of destination nodes
D = {d1,d2, . . . ,dk} in a k-connected graph G = (V, E),
find k paths s � di (1 ≤ i ≤ k) between s and each ele-
ment of D that are node-disjoint except for s. Note that in
this paper the notations u � v and u → v for two nodes

Manuscript received August 21, 2015.
Manuscript revised November 10, 2015.
Manuscript publicized December 14, 2015.
†The author is with Faculty of Information Technology,

Czech Technical University in Prague, Thákurova, Prague, Czech
Republic.
††The authors are with Institute of Engineering, Tokyo Univer-

sity of Agriculture and Technology, Koganei-shi, 184–8588 Japan.
∗This paper is an extended version based on a conference pa-

per [17].
a) E-mail: k1kaneko@cc.tuat.ac.jp (Corresponding author)

DOI: 10.1587/transinf.2015EDP7331

u and v represent a path from u to v and an edge from u
and v, respectively. The node-to-set disjoint paths problem
is an important issue in parallel and distributed computa-
tion [5], [10], [15], [16] as well as the node-to-node disjoint
paths problem [7], [12], [18], [22] and the set-to-set disjoint
paths problem [3], [4], [9], [11].

In general, we can solve the node-to-set disjoint paths
problem in polynomial-order time of |V | by using the max-
imum flow algorithm. However, the complexity of the al-
gorithm is too large for an n-dimensional Möbius cube Mn

because it has 2n nodes. For an n-dimensional hypercube,
there is an algorithm that solves the node-to-set disjoint
paths problem in O(n2) time [5]. The maximum length of
the paths generated by the algorithm is n + 1. However,
this algorithm is not applicable to Möbius cubes because
they do not have some properties that hold in hypercubes.
Therefore, it is necessary to invent an applicable algorithm
by investigating properties of an Mn. In this paper, we pro-
pose an algorithm N2S (node-to-set) with polynomial-order
time of n instead of 2n. Algorithm N2S is comprised of two
cases depending on the distribution of the source node and
the destination nodes. The algorithm constructs n disjoint
paths from the source node to n destination nodes where n
is equal to the connectivity of Mn’s. We also present the re-
sults of an average performance evaluation by a computer
experiment.

The rest of this paper is organized as follows. A defini-
tion of a Möbius cube as well as other requisite definitions
are introduced in Sect. 2. Section 3 explains our algorithm
N2S in detail. Section 4 describes a proof of correctness and
the theoretical complexities of N2S. Average performance
of N2S is reported in Sect. 5. We conclude and give future
works in Sect. 6.

2. Preliminaries

A definition of a Möbius cube and three lemmas are intro-
duced in this section.

Definition 1: An n-dimensional Möbius cube Mn has 2n

nodes. A unique n-bit address is assigned to each node. Two
nodes u = (u1, u2, . . . , un) and v are connected if and only
if one of the following conditions is satisfied:

v =

{
(u1, u2, . . . , ui−1, ūi, ui+1, . . . , un) (ui−1 = 0),
(u1, u2, . . . , ui−1, ūi, ūi+1, . . . , ūn) (ui−1 = 1).

where ūi represents a bit obtained by reverting ui. Note that

Copyright c© 2016 The Institute of Electronics, Information and Communication Engineers

KOCIK et al.: NODE-TO-SET DISJOINT PATHS PROBLEM IN A MÖBIUS CUBE
709

Table 1 Comparison of a 0-Mn and a 1-Mn with other topologies.

#nodes degree diameter average distance
0-Mn 2n n �(n + 2)/2� †
1-Mn 2n n �(n + 1)/2� †

Hn 2n n n n/2
Tn 2n n �(n + 1)/2� → 3n/8 (n→ ∞) [1]

†: ≤ n/3 + [1 − (−1/2)n] /9 + 1 [6]

Fig. 1 Examples of a 0-M4 and a 1-M4.

u0 is undefined. Hence, we can assume that u0 = 0 or u0 = 1.
The topologies induced by assuming u0 = 0 or u0 = 1 are
called a 0-Mn or a 1-Mn, respectively.

If two nodes u and v are connected by one of the condi-
tions in Definition 1, v is denoted by u(i) or u is denoted by
v(i). Moreover, if u1 = u0

(i1), u2 = u1
(i2), . . . ,un = un−1

(in)

hold, un is denoted by u0
(i1,i2,...,in).

Figure 1 shows examples of a 0-M4 and a 1-M4. Note
that a 0-Mn and a 1-Mn provide different topologies. For
example, the average distance for a 0-M4 is equal to 1.81
while that for a 1-M4 is equal to 1.75. An Mn is comprised
of two disjoint subgraphs M0

n and M1
n where Mi

n (i ∈ {0, 1})
is induced by the set of nodes {u = (u1, u2, . . . , un) | u1 = i}.
Note also that an M0

n and an M1
n are isomorphic to a 0-Mn−1

and a 1-Mn−1, respectively. In addition, neighborhood is not
preserved between M0

n and M1
n in an Mn while it is preserved

between two subcubes in a hypercube. That is, for example,
two nodes 0110 and 0010 are adjacent in the M0

4 in a 0-M4.
The nodes are adjacent to the node 1110 and 1010 in the
M1

4, but they are not adjacent. The lack of this property is
the major reason why the algorithm proposed by Bossard
and Kaneko for hypercubes [5] is not applicable to Möbius
cubes.

Table 1 shows a comparison of properties of an n-
dimensional 0-Möbius cube, 0-Mn, and an n-dimensional 1-
Möbius cube, 1-Mn, with an n-dimensional hypercube, Hn,
and an n-dimensional twisted hypercube, Tn, [13]. With re-
spect to the diameter, a Tn has slightly better performance
than a 0-Mn. However, a Tn is inferior to a 0-Mn and a 1-Mn

Fig. 2 Disjoint paths between M j
n and M j̄

n.

regarding the average distance.
There is a shortest-path routing algorithm for an arbi-

trary pair of nodes in an Mn and it takes O(n) time [6]. In
the rest of this paper, we refer the algorithm spr.

Lemma 1: In an Mn, for an arbitrary node u ∈ M j
n (j ∈

{0, 1}), there is exactly one edge u→ v(∈ M j̄
n).

(Proof) Assume u ∈ M j
n (j ∈ {0, 1}). Then, u(i) ∈ M j

n (2 ≤
i ≤ n). While u(1) ∈ M j̄

n. Hence, there is exactly one edge
u→ u(1)(∈ M j̄

n).

Lemma 2: In an Mn, for an arbitrary node u ∈ M j
n (j ∈

{0, 1}), there are n paths of length at most 2 from u to nodes
in the M j̄

n that are disjoint except for u.
(Proof) Let us consider n paths from u to nodes in the M j̄

n:

Ui :

⎧⎪⎪⎨⎪⎪⎩
u→ u(i) (i = 1),

u→ u(i) → u(i,1) (2 ≤ i ≤ n).

Then, from Lemma 1, u(1) � u(i,1) (2 ≤ i ≤ n). Hence,
U1 is disjoint with other paths Ui (2 ≤ i ≤ n) except for
u. In addition, for two paths Ui and U j (2 ≤ i < j ≤ n),
from u(i) � u(j) and Lemma 1, these paths are also disjoint
except for u (Fig. 2). From above discussion, the n paths Ui

(1 ≤ i ≤ n) of length at most 2 are disjoint except for u.

Lemma 3: There is no cycle whose length is 3 in an Mn.
(Proof) We prove this lemma by induction on n. Clearly, an
M2 does not have a such cycle. Then, we assume that n ≥ 3
and the lemma holds for an arbitrary Mn−1. If an Mn has a
cycle of C of length 3, C has at least two edges between the
M0

n and the M1
n . Then, from Lemma 1, the terminal nodes

of these two edges are all different. Therefore, this fact con-
tradicts that the length of C is 3.

3. Algorithm N2S

In this section, for a source node s and a set of destination
nodes D = {d1,d2, . . . ,dn} in an Mn where s � D, we show
an algorithm N2S that finds n paths Ri: s � di (1 ≤ i ≤ n)
that are disjoint except for s.

710
IEICE TRANS. INF. & SYST., VOL.E99–D, NO.3 MARCH 2016

Fig. 3 Case 1, dn is included in Rh in Step 2 in Algorithm N2S.

Fig. 4 Case 1, after Step 2 in Algorithm N2S.

Fig. 5 Case 1, after Step 4 in Algorithm N2S.

Since a 0-M1 and a 1-M1 are isomorphic and they con-
sist of two nodes and an edge between them, the solution in
a 0-M1 or a 1-M1 is trivially s → d1. Hence, in the rest of
the paper, we assume that n ≥ 2.

3.1 Procedure 1

In case that all destination nodes are included in an M j
n

(s ∈ M j
n, D ⊂ M j

n), we construct n paths from s to each
destination node in D that are disjoint except for s by the
following Procedure 1.

Step 1 In the M j
n, apply Algorithm N2S recursively to con-

struct (n − 1) paths Ri: s� di (1 ≤ i ≤ n − 1) that are
disjoint except for s.

Step 2 If the node dn is included in one of the (n − 1)
disjoint paths constructed in Step 1, say Rh: s � dh

(Fig. 3), discard the subpath dn � dh, and exchange
the indices of dh and dn. See Fig. 4.

Step 3 Select edges s→ s(1) and dn → d(1)
n .

Step 4 In the M j̄
n, construct a path s(1) � d(1)

n by using
Algorithm spr.

Finally, n paths Pi: s� di (1 ≤ i ≤ n) that are disjoint
except for s are constructed as follows:

Pi :

⎧⎪⎪⎨⎪⎪⎩s
Ri� di (1 ≤ i ≤ n − 1),

s→ s(1) spr� d(1)
n → dn (i = n).

See Fig. 5.

Fig. 6 Case 2, after Step 4 in Algorithm N2S.

Fig. 7 Case 2, after Step 6 in Algorithm N2S.

3.2 Procedure 2

In case that some destination nodes are included in the M j̄
n

(s ∈ M j
n, D ∩ M j̄

n � ∅), we construct n paths from s to each
destination node in D that are disjoint except for s by the
following Procedure 2.

Step 1 Without loss of generality, we can assume
that D ∩ M j

n = {d1,d2, . . . ,dk} and D ∩ M j̄
n =

{dk+1,dk+2, . . . ,dn}. For dk+1, dk+2, . . . ,dn, from
Lemma 2 construct (n − k) mutually disjoint paths Qi:
di � d′i (k + 1 ≤ i ≤ n) of length at most 2 between

M j
n and M j̄

n that do not include d1, d2, . . . ,dk. In par-
ticular, for each di of dk+1,dk+2, . . . ,dn in this order,
select a path Qi: di � d′i among n paths by Lemma
2 that does not include any node on the other paths
Qk+1,Qk+2, . . . ,Qi−1 or the nodes d1, d2, . . . ,dk.

Step 2 Select an edge s→ s(1).
Step 3 In the M j̄

n, construct a path s(1) � dn by using
Algorithm spr.

Step 4 If the path constructed in Step 3 includes any nodes
on the paths except for Qn constructed in Step 1, let d′′h
be the node on the path Qh that is closest to s(1), discard
the subpath d′′h � dn, and exchange the indices of dh

and dn. See Fig. 6.
Step 5 Discard the subpaths of Qn except for the subpath

constructed in Steps 3 and 4.
Step 6 In the M j

n, apply Algorithm N2S recursively to con-
struct (n−1) paths Ri: s� di (2≤ i≤k) and Ri: s� d′i
(k + 1 ≤ i ≤ n − 1) that are disjoint except for s.

Finally, n paths Pi: s� di (1 ≤ i ≤ n) that are disjoint
except for s are constructed as follows:

Pi :

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
s

Ri� di (1 ≤ i ≤ k),

s
Ri� d′i

Qi
� di (k + 1 ≤ i ≤ n − 1),

s→ s(1) spr� dn (i = n).

See Fig. 7.

KOCIK et al.: NODE-TO-SET DISJOINT PATHS PROBLEM IN A MÖBIUS CUBE
711

4. Proof of Correctness and Estimation of Complexities

In this section, we prove the correctness of our algorithm
and we give the estimates of the time complexity T (n) and
the maximum path length L(n) for an n-dimensional Möbius
cube Mn. Proofs are based on induction on n.

We assume that each node can be stored in a machine
word, and construction of an edge by obtaining u(i) for any
node u requires O(1) time. On the other hand, for any pair
of nodes in an Mn, Algorithm spr takes O(n) execution time
to construct a shortest path between them whose length is at
most �(n + 2)/2� [6].

Lemma 4: In an Mn, the paths Pi (1 ≤ i ≤ n) constructed
by Procedure 1 are disjoint except for s. The time complex-
ity of Procedure 1 is T (n − 1) +O(nL(n)) and the maximum
length of the paths constructed is max{L(n − 1), �n/2� + 3}.
(Proof) The paths Pi (1 ≤ i ≤ n − 1) constructed in Steps
1 and 2 are disjoint except for s by hypothesis of induction.
The path Pn constructed in Steps 3 and 4 is outside of M j

n

except for s and dn. Hence, Pn cannot share any common
node with Pi (1 ≤ i ≤ n − 1) except for s, that is, Pn is
disjoint with Pi (1 ≤ i ≤ n − 1) except for s. Step 1 takes
T (n − 1) time to construct (n − 1) paths and the maximum
length of them is L(n− 1). Step 2 takes O(nL(n− 1)) time to
check whether dn is included in one of the paths constructed
in Step 1. Pn consists of two edges and a subpath by spr.
Therefore, Steps 2 and 3 take O(n) time to construct a path
whose length is at most 2 + �(n + 1)/2� = �n/2� + 3. Hence,
the time complexity of Procedure 1 is T (n−1)+O(nL(n−1))
and the maximum path length is max{L(n − 1), �n/2� + 3}.
Lemma 5: In an Mn, the paths Pi (1 ≤ i ≤ n) constructed
by Procedure 2 are disjoint except for s. The time com-
plexity of Procedure 2 is T (n−1)+O(n3) and the maximum
length of the paths constructed is max{L(n−1)+2, �n/2�+2}.
(Proof) In Step 1, from Lemma 2, for each di of the nodes
dk+1,dk+2, . . . ,dn, n paths can be constructed. Each of
the nodes d1,d2, . . . ,dk is included at most one of the
paths. In addition, from Lemma 3, each of other paths
Qk+1,Qk+2, . . . ,Qi−1 shares nodes with at most one of the
paths given by Lemma 2 for di. Therefore, at least one of the
n paths given by Lemma 2 does not include d1,d2, . . . ,dk or
any node on the paths Qk+1,Qk+2, . . . ,Qi−1. Hence, in Step
1, (n− k) disjoint paths Qi (k + 1 ≤ i ≤ n) of lengths at most
2 can be constructed in O(n3) time from Lemma 2. The path
Pn constructed in Steps 2 to 5 is disjoint with other paths and
the length is at most 1 + �(n + 1)/2� = �n/2� + 2. The time
complexity for construction is O(1)+O(n)+O(n2)+O(n) =
O(n2). The (n−1) paths Ri (1 ≤ i ≤ n−1) of lengths at most
L(n−1) can be constructed in T (n−1) time in Step 6 and they
are disjoint except for s from induction hypothesis. Then,
with above discussion, the n paths Pi (1 ≤ i ≤ n) are disjoint
except for s. They can be constructed in T (n) + O(n3) time
and their maximum length is max{L(n − 1) + 2, �n/2� + 2}.
Theorem 1: For a node s and a set of n nodes D =

{d1,d2, . . . ,dn} in an Mn, Algorithm N2S finds n paths from
s to di (1 ≤ i ≤ n) that are disjoint except for s in O(n4)
time, and their maximum length is 2n − 1.
(Proof) From L(1) = 1 and Lemmas 4 and 5, the constructed
paths are disjoint except for s and L(n) = 2n − 1. Then,
T (n) = O(n4).

5. Performance Evaluation

We carried out a computer experiment to evaluate average
performance of Algorithm N2S. In the experiment, we re-
peated following steps at least 10, 000 times for random
pairs of the source s and the set of destination nodes D =
{d1,d2, . . . ,dn} in a 0-Mn and a 1-Mn for each n between 1
and 31.

1. Select a set of n destination nodes D = {d1,d2, . . . ,dn}
randomly.

2. Select a source node s randomly other than D.
3. For s and D, apply Algorithm N2S and measure the

execution time and the maximum path length.

We implemented Algorithm N2S by using the pro-
gramming language C++. The program was compiled with
the GNU G++ compiler g++ with a -O option. The target
machine is equipped with an Intel Core i5-3230M CPU 2.60
GHz and 4GB RAM. The program was running at Oracle
VM VirtualBox with 1GB RAM.

Figures 8 and 9 show the average execution time to
construct a node-to-set disjoint paths and their maximum
lengths, respectively. Figure 8 shows that the average exe-
cution time is gradually approaching to O(n3) over the range
of n in the experiment. From Fig. 9, we can see that the theo-
retical maximum path length, 2n−1, is not easily attainable.

Next, we compared difference of performance of Algo-
rithm N2S in a 0-Mn and a 1-Mn. We took the average ex-
ecution times and the maximum path lengths in a 0-Mn and
a 1-Mn for each n shown in Figs. 8 and 9 as samples, and
conducted a Wilcoxon rank-sum test. As a result, we could
not find any statistically significant difference between them

Fig. 8 Average execution time of Algorithm N2S.

712
IEICE TRANS. INF. & SYST., VOL.E99–D, NO.3 MARCH 2016

Fig. 9 Maximum lengths of paths constructed by Algorithm N2S.

regarding both of the average execution time (W = 483,
p = 0.98) and the maximum path length (W = 484.5,
p = 0.96). From these results, we can conclude that Algo-
rithm N2S is applicable to a 0-Mn and a 1-Mn equivalently.

6. Conclusions

In this paper, we proposed an algorithm that solves the node-
to-set disjoint paths problem in n-Möbius cubes. Theoreti-
cal analysis has shown that its time complexity is O(n4) and
the maximum path length is 2n − 1. We also conducted a
computer experiment and showed that the average execution
time is gradually approaching to O(n3) and the maximum
path length 2n − 1 is not easily attainable over the range of
n in the experiment.

Future works include theoretical analysis of average
performance of the algorithm and improvement of the algo-
rithm to construct shorter paths in smaller execution time.

Acknowledgments

We really appreciate the reviewers for their insightful com-
ments and suggestions. This study is partly supported by
a Grant-in-Aid for Scientific Research (C) of the Japan
Society for the Promotion of Science (JSPS) under Grant
No. 25330079.

References

[1] S. Abraham and K. Padmanabhan, “An analysis of the twisted cube
topology,” Proceedings of the International Conference on Parallel
Processing, pp.116–120, Pennsylvania State Press, Aug. 1989.

[2] Academic Computer Center Cyfronet AGH, “Prometheus and Zeus
both on TOP500.” http://www.cyfronet.krakow.pl/en/
15366,artykul,p.html

[3] A. Bossard, “A set-to-set disjoint paths routing algorithm in hyper-
star graphs,” ISCA International Journal of Computers and Their
Applications, vol.21, no.1, pp.76–82, March 2014.

[4] A. Bossard and K. Kaneko, “The set-to-set disjoint-path problem
in perfect hierarchical hypercubes,” The Computer Journal, vol.55,
no.6, pp.769–775, June 2012.

[5] A. Bossard and K. Kaneko, “Time optimal node-to-set disjoint paths

routing in hypercubes,” Journal of Information Science and Engi-
neering, vol.30, no.4, pp.1087–1093, July 2014.

[6] P. Cull and S.M. Larson, “The möbius cubes,” IEEE Transactions on
Computers, vol.44, no.5, pp.647–659, May 1995.

[7] M. Dietzfelbinger, S. Madhavapeddy, and I.H. Sudborough, “Three
disjoint path paradigms in star networks,” Proceedings of the IEEE
Symposium on Parallel and Distributed Processing, pp.400–406,
Dec. 1991.

[8] J. Fan, “Hamilton-connectivity and cycle-embedding of the möbius
cubes,” Information Processing Letters, vol.82, no.2, pp.113–117,
April 2002.

[9] Q.-P. Gu and S. Peng, “Set-to-set fault tolerant routing in star
graphs,” IEICE Trans. Inf. & Syst., vol.E79-D, no.4, pp.282–289,
April 1996.

[10] Q.-P. Gu and S. Peng, “Node-to-set disjoint paths problem in star
graphs,” Information Processing Letters, vol.62, no.4, pp.201–207,
April 1997.

[11] Q.-P. Gu and S. Peng, “Node-to-set and set-to-set cluster fault tol-
erant routing in hypercubes,” Parallel Computing, vol.24, no.8,
pp.1245–1261, 1998.

[12] Y. Hamada, F. Bao, A. Mei, and Y. Igarashi, “Nonadaptive fault-
tolerant file transmission in rotator graphs,” IEICE Trans. Funda-
mentals, vol.E79-A, no.4, pp.477–482, April 1996.

[13] P.A.J. Hilbers, M.R.J. Koopman, and J.L.A. van de Snepscheut,
“The twisted cube,” Volume I: Parallel Architectures on PARLE:
Parallel Architectures and Languages Europe, London, UK, vol.258,
pp.152–159, Springer-Verlag, 1987.

[14] S.-Y. Hsieh and C.-H. Chen, “Pancyclicity on möbius cubes
with maximal edge faults,” Parallel Computing, vol.30, no.3,
pp.407–421, 2004.

[15] K. Kaneko, “An algorithm for node-to-set disjoint paths problem in
burnt pancake graphs,” IEICE Trans. Inf. & Syst., vol.E86-D, no.12,
pp.2588–2594, Dec. 2003.

[16] K. Kaneko and Y. Suzuki, “An algorithm for node-to-set disjoint
paths problem in rotator graphs,” IEICE Trans. Inf. & Syst., vol.E84-
D, no.9, pp.1155–1163, Sept. 2001.

[17] D. Kocı́k, Y. Hirai, and K. Kaneko, “An algorithm for node-to-set
disjoint paths problem in a möbius cube,” Proceedings of the 2015
4th International Student Project Conference, 3B-2, May 2015.

[18] S. Madhavapeddy and I.H. Sudborough, “A topological property of
hypercubes: node disjoint paths,” Proceedings of the Second IEEE
Symposium on Parallel and Distributed Processing, pp.532–539,
Dec. 1990.

[19] NASA, “Pleiades supercomputer.” http://www.nas.nasa.gov/hecc/
resources/pleiades.html.

[20] NOAA, “ESRL GSD media center headlines: New NOAA super-
computer Goes operational.” http://esrl.noaa.gov/gsd/media/
hotitems/2012/12Apr23.html

[21] C.L. Seitz, “The cosmic cube,” Communications of the ACM,
vol.28, no.1, pp.22–33, Jan. 1985.

[22] Y. Suzuki and K. Kaneko, “An algorithm for node-disjoint paths
in pancake graphs,” IEICE Trans. Inf. & Syst., vol.E86-D, no.3,
pp.610–615, March 2003.

[23] C.-H. Tsai, “Embedding of meshes in möbius cubes,” Theoretical
Computer Science, vol.401, no.1-3, pp.181–190, July 2008.

[24] J.-M. Xu, M. Ma, and M. Lü, “Paths in möbius cubes and crossed
cubes,” Information Processing Letters, vol.97, no.3, pp.94–97, Feb.
2006.

[25] X. Yang, G.M. Megson, and D.J. Evans, “Pancyclicity of möbius
cubes with faulty nodes,” Microprocessors and Microsystems,
vol.30, no.3, pp.165–172, May 2006.

http://dx.doi.org/10.1093/comjnl/bxr135
http://dx.doi.org/10.1109/12.381950
http://dx.doi.org/10.1109/spdp.1991.218213
http://dx.doi.org/10.1016/s0020-0190(01)00256-3
http://dx.doi.org/10.1016/s0020-0190(97)00059-8
http://dx.doi.org/10.1016/s0167-8191(98)00050-7
http://dx.doi.org/10.1007/3-540-17943-7_126
http://dx.doi.org/10.1016/j.parco.2003.12.003
http://dx.doi.org/10.1109/spdp.1990.143599
http://dx.doi.org/10.1145/2465.2467
http://dx.doi.org/10.1016/j.tcs.2008.04.023
http://dx.doi.org/10.1016/j.ipl.2005.09.015
http://dx.doi.org/10.1016/j.micpro.2005.11.001

KOCIK et al.: NODE-TO-SET DISJOINT PATHS PROBLEM IN A MÖBIUS CUBE
713

David Kocik is a master program student
of Faculty of Information Technology at Czech
Technical University in Prague in Czech Repub-
lic. His main research areas are graph theory,
dependable computing, and fault-tolerant sys-
tems. He received the B.E. degree from Czech
Technical University in Prague in 2013.

Yuki Hirai is an Assistant Professor at
Tokyo University of Agriculture and Technol-
ogy in Japan. His main research areas are educa-
tional technologies and computer-supported col-
laborative learning. He received the B.L.A. and
M.Ed. degrees from Tokyo Gakugei University
in 2007 and 2009, respectively. He also received
the Ph.D. degree from University of Tsukuba in
2012. He is a member of IPSJ and JSAI.

Keiichi Kaneko is a Professor at Tokyo Uni-
versity of Agriculture and Technology in Japan.
His main research areas are functional program-
ming, parallel and distributed computation, par-
tial evaluation and fault-tolerant systems. He re-
ceived the B.E., M.E. and Ph.D. degrees from
the University of Tokyo in 1985, 1987 and 1994,
respectively. He is a member of ACM, IEEE CS,
IPSJ and JSSST.

