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PAPER

Integrating Multiple Global and Local Features by Product Sparse
Coding for Image Retrieval

Li TIAN†a), Member, Qi JIA†b), Nonmember, and Sei-ichiro KAMATA††c), Member

SUMMARY In this study, we propose a simple, yet general and power-
ful framework of integrating multiple global and local features by Product
Sparse Coding (PSC) for image retrieval. In our framework, multiple global
and local features are extracted from images and then are transformed to
Trimmed-Root (TR)-features. After that, the features are encoded into
compact codes by PSC. Finally, a two-stage ranking strategy is proposed
for indexing in retrieval. We make three major contributions in this study.
First, we propose TR representation of multiple image features and show
that the TR representation offers better performance than the original fea-
tures. Second, the integrated features by PSC is very compact and effective
with lower complexity than by the standard sparse coding. Finally, the
two-stage ranking strategy can balance the efficiency and memory usage in
storage. Experiments demonstrate that our compact image representation
is superior to the state-of-the-art alternatives for large-scale image retrieval.
key words: image retrieval, image representation, Trimmed-Root (TR)-
feature, Product Sparse Coding (PSC), ranking strategy

1. Introduction

An essential issue in content-based image retrieval (CBIR),
object recognition and image classification is how to rep-
resent images by numeric values, called features or de-
scriptors. Many image features have been developed for
the applications in image retrieval and computer vision
fields. Roughly speaking, image features can be grouped
into global types and local types based on whether they
use global or local description for image representation [1].
Nowadays, large-scale image-retrieval systems require a
strong image representation and efficient storage systems
capable of storing billions of images. There exists a trade-
off between the precision of image representation and its
size. Local features store multiple local invariant features
in an image and often offer better performance in repre-
sentation, but they need larger storage than global ones.
Global features usually have more compact representations
and smaller storage requirements than local ones. Thus,
both global and local features have their advantages and
drawbacks in image representation.
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Commonly used global features include color his-
tograms [2]–[4], texture descriptors [5] and recently a gradi-
ent descriptor named GIST [6]. GIST has widely been used
for image retrieval for years and small codes based on GIST
have also been proposed for efficient retrieval in billion im-
age database [7].

Existing local features include SIFT [8] and many oth-
ers [9]–[11]. Because image representation by local fea-
tures often suffers from the efficiency and memory usage
for large-scale image retrieval, some alternative approaches
aggregating local features in one image into a single vec-
tor have been developed. Among them, the bag-of-features
(BOF) [12]–[15] is the most popular one. Fisher Vector [16]
or Vector of Local Aggregated Descriptor (VLAD) [17] are
two alternative approaches to BOF. Various approaches have
also been proposed to address the retrieval efficiency and the
memory usage problem for local features [18]–[21].

The performance of global features and local features
for large-scale image retrieval have been compared [22].
It is reported that local features obtain significantly bet-
ter results for object and location recognition. However,
global features provide higher accuracy than local features
in near-duplicate detection and global features also have
much higher efficiency and smaller memory usage, allow-
ing very large data sets to be processed.

Given that global features and local features are com-
plementary in image retrieval, it is reasonable to consider
integrating them to obtain higher efficiency and better re-
trieval results. In this paper, we propose to use Product
Sparse Coding (PSC) to integrate global and local features
for image retrieval to achieve better performance under three
joint constraints: search accuracy, efficiency and memory
usage. In our framework, multiple kinds of global and local
features are extracted from an image and are transformed to
Trimmed-Root (TR)-features. Then, they are encoded into
compact codes by PSC. Finally, a two-stage ranking strat-
egy is used: global part is first used as the filtering step to
reduce the number of images assumed to be relevant and the
remainder is used to select the final retrievals. Our contribu-
tions are:

1. multiple global and local feature integration catches
image features both in entire image level and local ob-
ject level;

2. TR-features have better performance than original ones
in image retrieval. Because they are computed as an
element wise trimmed square root, they do not require
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any additional storage space;
3. concatenation approach by PSC obtains a compact yet

discriminative image representation that significantly
outperforms the state-of-the-art and PSC also has lower
complexity than standard Sparse Coding (SC);

4. two-stage ranking strategy makes the retrieval more ef-
ficient and flexible.

Several other deep learning approaches [23] have been
proposed in image retrieval, but we mainly target at im-
proving hand-crafted features rather than fully-learnable ap-
proaches and focus on SC approaches in this study. There
are already some works devoted to image categorization
and retrieval through SC on raw image patches [24]–[26].
And some works use both local and global features for im-
age retrieval or class classification [27]–[29]. However, our
framework is different from them in many ways. In some
works [24]–[26], they still focus on local features and do
not take account into global ones. In other works [27]–[29],
although both local and global features are used, our frame-
work differs in using TR-features and PSC for coding and
also the two-stage ranking strategy is more flexible.

The rest of our paper is organized as follows. We be-
gin by reviewing related work in Sect. 2. Then, we describe
the proposed framework in detail in Sect. 3. Different ex-
periments of image retrieval demonstrate the performance
of our framework in Sect. 4. The last section concludes our
study.

2. Related Work

In this section, we first review some classic global features
including GIST and others. Then we discuss some classic
local features including SIFT SIFT, its variants, and their
aggregation approaches. Finally, we give a brief introduc-
tion to SC and PSC.

2.1 Global Features

GIST was originally proposed [6] to represent a scene by
a low dimensional vector for real world scene recognition.
The idea is to develop a low dimensional representation of
the scene. An image is first decomposed by a bank of multi-
scale oriented filters (tuned to 8 orientations and 4 scales)
to catch the scene structure in image. An image is simply
divided by a 4-by-4 grid and orientation histograms are ex-
tracted. The resulting image representation is a 4× 8× 16 =
512 dimensional vector. This representation can be thought
of as using a single SIFT descriptor [8] to describe the entire
image. This approach has recently shown good results for
landmark classification [30], scene parsing [31], image com-
pletion [32], and image searching [22], [33]. A typical GIST
has 512 dimensions and different strategies [7], [34], [35]
have been proposed to further compress the size.

Color histograms [2]–[4] and texture descriptors [5] are
also commonly used global features in image retrieval. A
color histogram is a representation of the distribution of col-

ors in an image and it is simple but useful. The main draw-
back of histograms is that the representation is dependent
of the color of the image being studied, ignoring its shape
and texture. Texture descriptors use image texture which is
one important characteristics used in identifying objects or
regions of interest in an image, but it does not work well for
natural images without texture.

2.2 Local Features and Aggregation

SIFT feature was first developed by Lowe [8] and has been
approved as the most useful local image features in com-
puter vision fields. Original SIFT is computed on a small
patch, i.e., 32-by-32 pixels, 8 orientations and 4-by-4 grid
are used to compute orientation histogram, which results in
a 8× 4× 4 = 128 dimensional vector. Many variants includ-
ing PCA-SIFT [36], GLOH [9], SURF [11] and DAISY [10]
been proposed based on SIFT. They match small patches
of images and is robust to image transformations. Because
more than hundreds of local features may be extracted from
a single image to represent it, it is not suitable for ob-
ject recognition and image retrieval in large-scale image
database. Thus, Bag-of-Features (BOF) [12] is proposed to
solve the problem.

The BOF representation is based on local descriptors
such as SIFT extracted at invariant regions of interest. First,
interest regions are detected by some detectors such as
Hessian-Affine, and SIFT descriptors for those interest re-
gions are computed. Then, each local descriptor is assigned
to the closest “visual words” by using a codebook of k “vi-
sual words” pre-constructed by k-means clustering. Finally,
an image can be represented as a histogram of the assign-
ment of all image descriptors to visual words in the im-
age. The codebook often contains a large number of visual
words. Therefore, it produces a k-dimensional vector and is
very sparse, making queries in the inverted file efficient.

Fisher Vector [16] or Vector of Local Aggregated De-
scriptor (VLAD) [17] are two alternatives to BOF. For
Fisher Vector, local descriptors are coded as the average of
probabilities that feature belongs to the each Gaussian com-
ponent of a codebook which is a pre-learned GMM model.
And for VLAD, the differential (residual) of vector and its
k-means centroid is used.

2.3 SC and PSC

Given a potentially large set of input patterns, SC attempts
to automatically find a small number of representative pat-
terns which, when combined in the right proportions, can
reproduce the original input patterns. The sparse coding
for the input then consists of those representative patterns.
Most models of sparse coding are based on the linear gen-
erative model [37], in which the symbols are combined in a
linear fashion to approximate the input. Sparse coding of
image patches has been successfully applied to tasks such
as image and video denoising [38], restoration [39], super-
resolution [40], segmentation [41] and face recognition [42].
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Because SC is computational expensive, PSC is pro-
posed to solve the complexity issue [43]. PSC shares the
same encoding model as SC, but requires the codebook to be
a Cartesian product of two smaller subcodebooks. PSC can
reduce the time complexity of normal sparse coding from
O(K) to O(

√
K) in the codebook size K. We will give more

details of PSC in introducing our framework later.

3. Proposed Framework

In this section, we describe how to transform features to
Trimmed Root (TR)-features by using GIST and SIFT as
representatives at first. Then, we introduce how to use PSC
to integrate multiple global and local features to obtain com-
pact image representation. After that, we demonstrate a two-
stage ranking strategy and show how to use it to balance the
accuracy and efficiency in image retrieval. Finally, we give
some explanations why we integrate global and local fea-
tures for large-scale image retrieval.

3.1 TR-Features

It is shown that using a square root (Hellinger) kernel instead
of the standard Euclidean distance to measure the similarity
between SIFT descriptors leads to a dramatic performance
boost in image retrieval [18]. In this study, we transform
SIFT to TR-SIFT. TR-SIFT is computed as an element wise
square root of the L1 normalized SIFT vectors. If the value
of the feature is larger than a predefined threshold we set it
to zero. Then we replace SIFT with the proposed TR-SIFT
at every point in retrieval pipeline. Thus, we can obtain fea-
tures including more zero values and it is preferred in PSC.

Because GIST can be reviewed as computing SIFT de-
scriptor on the entire image, it is expected that TR-GIST,
which is computed as an element wise trimmed square root
of GIST, can give a performance boost comparing to GIST.

The improvement is simple but powerful. We apply it
to different global and local features in image retrieval in
this study. We show that our TR-features makes a dramatic
performance improvement in the experiments.

3.2 Integrating Features by PSC

Figure 1 illustrates the flowchart of how to integrate multiple
global and local features. It usually contains two steps: en-
coding multiple global and local features by PSC, and nor-
malization and weighting. PSC encodes multiple kinds of
global and local features from an image into a sparse vector.
Our approach consists of the following major parts:
Part 1: Encoding Global Features. If we have multiple
kinds of global features from an image, for each kind of
global feature x, it can be encoded into a d-dimensional vec-
tor y = [y1, y2, . . . , yd] by fitting a linear model with sparsity
(L1) constraint:

min
y
‖x − Ay‖2 + λ|y|, (1)

Fig. 1 Flowchart of integrating multiple global and local features by
PSC.

subject to y � 0

andA = A1 × A2

where × denotes the Cartesian product. A1 and A2 are two
subcodebooks of a size 1/2d×k learned in advance by PSC.
Any codeword in A is the concatenation of a subcodeword
in A1 and a subcodeword in A2. So A is a d × K matrix with
K = k2. Here y � 0 means that all the elements of y are
nonnegative. Thus, the time complexity of each subproblem
becomes linear in

√
K. Finally, a coded feature is normal-

ized by

y :=
y
‖ y ‖ 2

. (2)

Part 2: Encoding Local Features. If we have multiple
kinds of local features from an image, for each kind of local
features X′, let X′ be a set of m dimensional local descriptors
with n local features, i.e. X′ = [x′1, x

′
2, . . . , x

′
n]T . We can

obtain their corresponding sparse codes [u′1,u
′
2, . . . ,u

′
n]T as

in encoding global features previously for each descriptor
by PSC.

Then, we pool them into a single m dimensional vector
u = [u1, u2, . . . , um]. Two pooling methods may be used in
this step–average pooling and max pooling:

average pooling: ui =

n∑

t=1

u′it; (3)

max pooling: ui = max {u′it | t = 1, 2, . . . , n}. (4)

The pooled vector u is normalized by

u :=
u
‖ u ‖ 2

. (5)

In most cases, average pooling is better than max pooling
and we choose it in this study.
Part 3: Integration. After encoding p kinds of global
features and q kinds of local features, we can obtain a set
of coded global features Y = [y1, y2, . . . , yp] with d × p-
dimensional vector and a set of coded local feature U =
[u1,u2, . . . ,uq] with m × q-dimensional vector. The final
image representation d × p + m × q dimensional vector Z is
a combination of Y and U by a weighting parameter w:
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Z = [wY, (1 − w)U]. (6)

In two extreme cases,w = 1 or w = 0, Z equals to using only
global features or local features, respectively. Note that the
features may be concatenated before PSC, but it is necessary
to constructing concatenation feature codebooks in learning
phase. Thus, we choose to code it by PSC before concate-
nation in this study for convenience and flexibility.

3.3 Two-Stage Ranking Strategy

For large-scale image database, i.e., a billion image dataset,
we have to scan dozens of millions of images in the database
by directly using the coded features above. Hence, we pro-
pose a two-stage ranking strategy in this study. It can be
used to refine the ranking result both in accuracy and effi-
ciency.

Figure 2 shows the process of the two-stage ranking
strategy. We use the global part in the first ranking stage
to filter a subset of the full retrieval set and use the local
part in the second ranking stage to find the final similar im-
ages. Without loss of generality, we also use TR-GIST and
TR-SIFT as the global and local feature representatives to
demonstrate the strategy here.

The first ranking is based on the comparison of the
encoded TR-GIST descriptors to produce a list of images
ranked according to the Euclidean distance. That means
only a part of images whose similarity S are smaller than
a threshold S 0 are ranked and enter into the second stage.
Alternatively, we can specify a percentage of selected im-
ages that can enter the next stage here, i.e., 50% top ranked
images are selected into the second stage. Then, the selected
images are compared again by using the local part of the de-
scriptors y in the second stage. In the second stage, images
whose similarity S 1 are smaller than a threshold S 10 are
treated as the final similar images. We also can specify a
percentage of selected images as the final similar images in
this stage.

For different retrieval purposes, we may use local part
in first ranking stage and use global part in the second stage
or use global part in first ranking stage and use the whole
feature in the second stage. Because global descriptors such
as TR-GIST can capture the spatial structure better, we will
choose it when we want to select similar images in global
view; and we will use local descriptors such as TR-SIFT
when we want to select similar images conclude similar ob-
jects since it can capture local features better. Based on
many experimental results, we find that global-local strat-
egy is more effective.

3.4 Reason for Integrating Global and Local Features

Figure 3 shows three groups of similar images from the IN-
RIA Holidays dataset [22], which is usually used as a bench-
mark database in similar image retrieval. Probably every-
one would agree that the images in the first row, are similar
because they look nearly the same. Many would probably

Fig. 2 Flowchart of two-stage ranking strategy.

Fig. 3 Similar images in different meaning levels. (a) Duplicate level.
(b) Near-duplicate level. (c) Near-semantic level.

say that the images in the second row are also similar since
they contain the same object taken from different views. The
third row containing images relating to sail is the most am-
biguous one, and it is not easy to give a yes or no answer as
to whether they are similar. This illustrates our main con-
cern: what people consider to be similar images.

We now return to our concern what people consider to
be “similar” images in similar image retrieval. In general,
similar image retrieval is only meaningful in its service to
people [44], so we prepared a questionnaire about the def-
inition of similar images for several objects and used the
answers to it to determine similarity at three meaning lev-
els:

Duplicate level Duplicate is used here to distinguish it
from the near-duplicate approach [45] commonly used
in image retrieval. Unlike near-duplicate images, du-
plicate similar images here are considered as those



TIAN et al.: INTEGRATING MULTIPLE GLOBAL AND LOCAL FEATURES BY PRODUCT SPARSE CODING FOR IMAGE RETRIEVAL
735

taken from the same location with small transforma-
tions as shown in Fig. 3 (a).

Near-duplicate level As used here, near-duplicate mostly
refers to the images containing the same object taken
from different viewpoints with certain transformations
as shown in Fig. 3 (b).

Near-semantic level Images are defined as “similar” based
on semantically-meaningful information from the im-
age content as shown in Fig. 3 (c).

As mentioned previously, both global and local ap-
proaches have their advantages and drawbacks in image re-
trieval since similar image has different meaning levels, it is
reasonable to integrating global and local features for image
retrieval to obtain flexibility in this study. By adjusting the
weights of local and global feature parts, our integrated fea-
ture can handle with different meaning levels. It is better to
use larger weight of global part if the images are near dupli-
cate level while larger weight of local part should be used
when the images are near semantic level.

4. Experiments

In order to illustrate the performance of our framework, we
set up several different experiments in this study. We first
evaluate TR-features; We then provide comparisons to show
the effect of integrating global and local features by PSC;
We finally illustrate the two-stage ranking strategy.

4.1 Experiments on TR-Features

Without loss of generality, we choose TR-GIST and TR-
SIFT as the global and local feature representatives to
demonstrate the improvement in this experiment. Because
the dramatic improvement in performance by using a square
root (Hellinger) kernel in SIFT named RootSIFT on Ox-
ford 105k dataset (tf-idf only) is shown in [18], we choose
to use Oxford 105k dataset to compare them with our TR-
SIFT. It contains 5062 Oxford building images and defines
55 queries with another 100k Flickr images to test large-
scale retrieval. The first image of each group is the query
image and the correct retrieval results are the other images of
the group. The accuracy is measured by mean Average Pre-
cision (mAP), where the mean is taken over all queries [14].
The threshold for trimming in TR-SIFT is 0.0005. The re-
trieval results are as in Table 1. We can see that our TR-SIFT
obtain better performance than two others in Table 1. The
improvement is from 0.515 to 0.581 by RootSIFT and fur-
ther to 0.593 by our TR-SIFT.

Also, because the performance of GIST in image re-
trieval on standard datasets INRIA Holiday has been re-
ported in [22], we use the standard datasets INRIA Holiday
to evaluate the performances for fair. The dataset contains
500 image groups, each of which represents a distinct scene
or object and 991 corresponding relevant images. We com-
pared GIST, RootGIST and our TR-GIST in the retrieval.
The accuracy is also measured by mAP. The threshold for

Table 1 Retrieval results by SIFT, RootSIFT and TR-SIFT.

mAP
SIFT 0.515

RootSIFT 0.581
TR-SIFT 0.593

Table 2 Retrieval results by GIST, RootGIST and TR-GIST.

mAP
GIST 0.376

RootGIST 0.414
TR-GIST 0.428

trimming in TR-GIST is 0.0002. The retrieval result is as in
Table 2. The improvement is from 0.376 to 0.414 by Root-
GIST and further to 0.428 by our TR-GIST.

It is shown that the performance improvements of our
TR-features are obtained by root and trimming modifica-
tions comparing to original SIFT and GIST. As mentioned
previously, a square root modification can change the simi-
larity kernel. Trimming modification can ignore the features
with small gradient in the image, which can be viewed as a
filter may help to improve the performance. These improve-
ments come at virtually no additional cost, and no additional
storage since GIST and SIFT can be converted online to TR-
GIST and TR-SIFT with a negligible processing overhead.

4.2 Experiments on Integrated Features by PSC

Here, we will compare our integrated feature with the-state-
of-art such as Fisher Kernel, VLAD in image retrieval. We
use the INRIA Holidays+ 1m dataset for large-scale ex-
periment. The dataset contains the Holiday dataset with 1
million distracter images downloaded from Flickr which is
called Holidays+1m dataset. The accuracy is also measured
by mAP.

For the dimensions of integrated TR-GIST and TR-
SIFT, we choose d = 4096 and m = 4096 in a 8192 di-
mensional vector. We set the weighting parameter w = 0
and w = 0.5. Note that when w = 0, it means that we
only use TRD-SIFT in the integrated feature. Thresholds for
trimming in TR-SIFT and TR-GIST are 0.0005 and 0.0002,
respectively. The features are detected by the Harris detec-
tor and a 128-D SIFT descriptor is computed for each fea-
ture for Fisher Kernel and VLAD. Then the descriptors are
aggregated by Fisher Kernel and VLAD, respectively. The
codebook sizes are k = 64 for both Fisher and VLAD, re-
sulting in a 128×64 = 8192 dimensional aggregated vectors
for comparison. In order to show the effectiveness of PSC,
we added SIFT+PSC for comparison. All the above features
are also compressed from 8192 dimension to 128, 64 and 32
dimensions by PCA here.

The retrieval results are shown in Table 3. As we can
see, PSC performs better than Fisher Kernel and VLAD.
Comparing with Fisher Kernel and VLAD, the improvement
is from 0.492 and 0.525 to 0.534 by using PSC at 8192 di-
mension. And the result is further improved to 0.542 (w = 0)
and 0.546 (w = 0.5) by integrating TR-SIFT and TR-GIST.
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Table 3 Retrieval results by different features.

strain
mAP

D=8192 D=128 D=64 D=32
Fisher 0.492 0.490 0.460 0.424
VLAD 0.525 0.511 0.473 0.422

original SIFT+PSC 0.534 0.526 0.483 0.428
PSC(w=0) 0.542 0.530 0.484 0.432

PSC(w=0.5) 0.546 0.542 0.496 0.434

Table 4 Retrieval results by SC and PSC.

strain
mAP

D=8192 D=128 D=64 D=32
SC(w=0.5) 0.552 0.548 0.492 0.428
SC(w=0) 0.534 0.515 0.467 0.410

PSC(w=0.5) 0.546 0.542 0.496 0.434

Table 5 Retrieval results by different weights.

the weighting parameter w mAP
w=0.1 0.542
w=0.3 0.548
w=0.5 0.546
w=0.7 0.534
w=0.9 0.512

Note that when w = 0, it equals to use TR-SIFT only. And
PSC also performs better than others at reduced dimensions
by PCA.

Then, we compare the performances of the integrated
features by SC and PSC in Table 4. w = 0 means using only
local features as [26]. From the table, we can see that SC
is slightly better than PSC at 8192 dimension but performs
equally or worse than PSC at reduced dimensions by PCA.
On a computer with 3.4GHz CPU and 8 GB memories, the
computational times for SC, PSC, VLAD are 9.5, 0.55, 0.98
seconds for encoding one image, respectively. Considering
the computational complexity, we believe that PSC is more
suitable in large-scale image retrieval.

Third, we evaluate how the weighting parameter w
works here. We set the w from 0.1 to 0.9 at 0.2 interval
and repeat the retrieval experiment above. The results are
shown in Table 5. From the table, we find that the weight-
ing parameter w affect the retrieval results slightly and all
the results are better than Fisher Kernel and VLAD methods
excepting w = 0.9.

Finally, we tried to integrate more different kinds of
features. We add DAISY [10], or color histogram [2], or
both of them in local and global parts. The weighting pa-
rameters are 1/3 for each part when integrating three fea-
tures and 1/4 for each part when integrating four features.
We make the dimensions are 128 for all cases by PCA for
fair comparison. The retrieval results are shown in Table 6.
We can conclude that using more features can further im-
prove the retrieval performance. Considering the computa-
tional cost, we may choose TR-GIST and TR-SIFT as the
two representatives in most cases.

Table 6 Retrieval results by integrating different kinds of features.

mAP
TR-GIST+TR-SIFT 0.542

TR-GIST+TR-SIFT+DAISY 0.548
TR-GIST+TR-SIFT+color histogram 0.534

TR-GIST+TR-SIFT+DAISY+color histogram 0.560

Table 7 Retrieval results using different percentages in the first ranking
stage.

Selected percentage in the first stage mAP
10% 0.428
30% 0.506
50% 0.514
70% 0.544
90% 0.538

4.3 Experiments on Two-Stage Ranking Strategy

In this experiment, we will evaluate the proposed two-stage
ranking method in our framework for image retrieval. As
mentioned previously, we may choose a threshold or spec-
ify a percentage to produce a list of ranked images in the
first ranking stage. In this experiment, we use a percentage
from 10% to 90% at an interval 20% to evaluate the strategy.
We used the TR-GIST+TR-SIFT as the integrated feature.
The first ranking is based on the comparison of the encoded
TR-GIST descriptors u to produce a list of ranked images
according to the Euclidean distance. Then, the ranked im-
ages are compared again by using the local descriptor part
TR-SIFT.

The retrieval results using different percentages in the
first ranking stage are shown in Table 7. From the table, we
find that the retrieval results changes slightly when using
different percentage in the first ranking stage. Comparing
with the mAP = 0.542 by using the same feature without
ranking strategy, the results are comparable in most cases.
Especially, when the percentage is 70%, the result is 0.544,
which is even better than 0.542 which is without ranking
strategy. That is because some confusing images which are
similar globally but not locally are filtered in the first stage.
The whole process times for different percentages are nearly
proportional to the percentages. Considering the time sav-
ing in searching, the results are very satisfying and the two-
stage ranking strategy gives flexibility between the retrieval
accuracy and speed.

5. Conclusions and Future Work

This study presents a framework for integrating global and
local features based on Product Sparse Coding (PSC) with
a two-stage ranking strategy. We also transform features
to Trimmed-Root (TR)-features and it is shown that TR-
features offer better performance than original versions and
do not require any additional storage space. Compared with
other state-of-the-art systems, our framework shows its su-
periorities in large-scale image retrieval accuracy and PSC
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has lower computational complexity than standard Sparse
Coding. Moreover, our framework can give the flexibility
in retrieval speed and accuracy by using a two-stage rank-
ing strategy. Future work will aim at extending our frame-
work to ingrate more different kinds of features, automat-
ically optimize weighting parameter w against the dataset,
and explore real applications in large-scale image retrieval
system.
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