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PAPER

Effective and Efficient Image Copy Detection with Resistance to
Arbitrary Rotation

Zhili ZHOU†a), Ching-Nung YANG††b), Beijing CHEN†c), Xingming SUN†d), Nonmembers, Qi LIU†e), Member,
and Q.M. Jonathan WU†††f), Nonmember

SUMMARY For detecting the image copies of a given original image
generated by arbitrary rotation, the existing image copy detection meth-
ods can not simultaneously achieve desirable performances in the aspects
of both accuracy and efficiency. To address this challenge, a novel effec-
tive and efficient image copy detection method is proposed based on two
global features extracted from rotation invariant partitions. Firstly, candi-
date images are preprocessed by an averaging operation to suppress noise.
Secondly, the rotation invariant partitions of the preprocessed images are
constructed based on pixel intensity orders. Thirdly, two global features
are extracted from these partitions by utilizing image gradient magnitudes
and orientations, respectively. Finally, the extracted features of images are
compared to implement copy detection. Promising experimental results
demonstrate our proposed method can effectively and efficiently resist ro-
tations with arbitrary degrees. Furthermore, the performances of the pro-
posed method are also desirable for resisting other typical copy attacks,
such as flipping, rescaling, illumination and contrast change, as well as
Gaussian noising.
key words: image copy detection, copy attacks, arbitrary rotation, rotation
invariant, intensity orders

1. Introduction

With the rapid development of Internet communication tech-
nologies and the emergence of various image processing
tools such as Photoshop and ACDSee, digital images can
be easily replicated, modified and transmitted on the inter-
net [1], [2]. Therefore, the copyright protection of legal dig-
ital images has become a crucial issue. Detecting illegal
image copies is the key step of image copyright protection.

Generally, there are two technologies for detecting im-
age copies: digital watermarking and content-based copy

Manuscript received August 25, 2015.
Manuscript revised January 30, 2016.
Manuscript publicized March 18, 2016.
†The authors are with the School of Computer and Software &

Jiangsu Engineering Centre of Network Monitoring, Nanjing Uni-
versity of Information Science and Technology, Nanjing, 210044,
China.
††The author is with Department of Computer Science and In-

formation Engineering, National Dong Hwa University, Shoufeng,
Hualien 974, Taiwan.
†††The author is with the Department of Electrical and Computer

Engineering, University of Windsor, Windsor, Ontario, N9B 3P4,
Canada.

a) E-mail: zhou zhili@163.com (Corresponding author)
b) E-mail: cnyang@mail.ndhu.edu.tw
c) E-mail: nbutimage@126.com
d) E-mail: sunnudt@163.com
e) E-mail: qrankl@163.com
f) E-mail: jwu@uwindsor.ca

DOI: 10.1587/transinf.2015EDP7341

detection [3]–[5]. The digital watermarking technology [6],
[7] can be regarded as an active approach. It embeds the im-
perceptible copyright information, namely watermark, into
the protected images. Thus all copies of the marked image
will contain the same watermark, which can be extracted
later to verify the ownership. However, since the informa-
tion should be embedded prior to distribution, the technol-
ogy has a limitation in practical applications. Moreover, the
embedded watermark can be easily destroyed or removed
by illegal users using various malicious attacks, and thus it
also suffers from the problem of robustness [8]. Recently,
content-based copy detection has been studied as a passive
approach to detect illegal copies. Different from watermark-
ing which embeds additional information into images, the
content-based copy detection technology only utilizes the
image itself to implement copy detection. A content-based
copy detection system usually works as follows. It first ex-
tracts content-based feature of a given original (query) im-
age and those of the images distributed on the networks, and
then compares them to determine whether illegal copies of
the original are available on the networks. Compared with
watermarking, the main advantages of content-based copy
detection are that it does not need any additional informa-
tion but only image itself, and the copy detection can be
implemented after the image distribution. Due to the above
advantages, the technique of content-based copy detection
is studied in this paper.

The copies of an original image are not only the ex-
act duplicates, but also the modified versions of the origi-
nal generated by various copy attacks in most cases [3], [9].
These copy attacks usually include various geometric trans-
formations such as rotation, rescaling and flipping, signal
manipulations such as illumination and contrast changes,
and image noising attacks such as Gaussian noising, water-
coloring and mosaic tiling. In these copy attacks, rotation
is a normal image processing in our daily life [10]. Through
various image processing tools such as Photoshop and ACD-
See, a large number of image copies can be generated by ro-
tating the original images by arbitrary degrees. In this study,
we mainly deal with arbitrary rotation, which has an impor-
tant significance for image copyright protection.

In the literatures, many content-based image copy de-
tection methods have been proposed. To detect illegal im-
age copies of a given original image, they usually extract
proper features from the original image and all the candi-
date images, and then match these features for evaluation
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of the similarity between them. According to the natures
of their extracted features, these methods can be roughly
classified into two groups: global feature-based and local
feature-based methods.

The global feature-based methods [3], [4], [11]–[14]
extract global features from the whole image region for copy
detection. To the best of our knowledge, the work of Change
et al. [11] was the first study in the field of content-based
image copy detection. It proposed a near-replica search en-
gine called RIME (Replicated Image Detector), in which
the global image features based on wavelets and C1C2C3

color space are extracted to detect unauthorized copies of
images on the Internet. Although the method is effec-
tive to detect slightly modified images, it fails to identify
seriously distorted images. Image histogram-based meth-
ods [15], [16] have been widely used in image retrieval.
However, since the color histograms are the global features
which do not encode the spatial information, many irrel-
evant images may be falsely detected as copies. In ad-
dition, the histograms are sensitive to the noising attacks.
Therefore, these methods are not suitable for coy detec-
tion. To address the above issues, some global feature-based
copy detection methods [3], [4], [14] applied image division
strategies to extract the features. Kim [3] proposed the ordi-
nal measure of AC coefficients of discrete cosine transform
(DCT) by using rectangular block division for image copy
detection. More specially, images were firstly divided into
64 (8 × 8) equal-sized rectangular blocks and their average
intensities were derived, and then some important AC coeffi-
cients of these blocks were ranked by the ordinal measure to
generate the image features. However, when an image suf-
fers rotation transformations, some pixels of one block may
shift to another block. It will cause the average intensities of
the blocks to be different before and after rotations. Conse-
quently, Kim’s method can only resist the 180 degree rota-
tion, but it fails to detect those copies transformed by minor
rotations such as 2 and 5 degrees. To improve the robust-
ness to rotation, Wu et al. [12] and Zou et al. [14] extracted
image features based on the division of elliptical or circu-
lar tracks. In these methods, images were divided into N
elliptical or circular tracks, and then the features were gen-
erated by computing the average intensities of these tracks.
Although the two methods can deal with minor rotations at a
certain extent, they are also sensitive to large rotations. That
is because the image content in those tracks will be quite
different before and after rotation with larger degrees.

Figure 1(a)–(c) show the different image division
strategies used in these methods. From the Fig. 1(d)–(f), the
content in those blocks or tracks of a given original image
is quite different before and after rotation with 20 degree, so
that the features extracted from these blocks are sensitive to
large rotation. As a result, these methods fail to detect the
copies transformed by the rotation.

To address the problem of the robustness to rotation
and some other geometric transformations, recently, some
local feature-based image copy detection methods have been
proposed [17]–[22]. They have achieved desirable perfor-

Fig. 1 The image division strategies used in different methods.

mances for image copy detection because of the good ro-
bustness of local features. However, the robustness comes
with the expense of extensive computation. These meth-
ods are usually based on Scale Invariant Feature Transform
(SIFT) [23] or its variants such as principle components
analysis on SIFT (PCA-SIFT) [24] and speeded up robust
feature (SURF) [25]. All of these features are generated by
detecting hundreds of interest points for each image in scale-
space and then capturing the high dimensional descriptors
of the surrounding region of each interest point. Thus, these
methods usually require a huge amount of computation in
the step of feature extraction for large databases. Moreover,
for judging the image copy relationship, the matching of
these features is also a time-consuming process. As a re-
sult, the computational problem makes them less appealing
in copy detection [26].

From the above analysis, the existing image copy de-
tection methods can not simultaneously achieve desirable
performances in the aspects of both accuracy and efficiency
for resisting rotations with arbitrary degrees. The local
feature-based methods usually have computational prob-
lem. To avoid the extensive computation, we investigate the
global features in this study. However, the existing global
feature-based methods are not robust enough against arbi-
trary rotation. The main reason is that the image division
strategies used in these methods are not invariant to rota-
tion. Therefore, to address this problem, we are motivated
to construct rotation invariant image partitions and then ex-
tract features from these partitions for copy detection. In
this paper, a novel effective and efficient image copy de-
tection method is proposed to resist arbitrary rotation. Our
main contributions are: (1) An averaging operation is used
to effectively suppress image noise in preprocessing; (2) To
resolve the defects of the division strategies used in the ex-
isting global feature-based methods, by using pixel inten-
sity orders, each preprocessed image is divided into several
rotation invariant partitions, which are the basis and guar-
antee of resisting arbitrary rotation; (3) By utilizing image
gradient magnitudes and orientations, two robust global fea-
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tures, gradient magnitude-based and gradient orientation-
based features, are extracted from these partitions; (4) The
effectiveness and efficiency of our method for resisting arbi-
trary rotation are proved by theoretical analysis and experi-
mental results. Meanwhile, the performances of our method
for resisting other typical copy attacks are also proved to be
desirable.

The rest of the paper is organized as follows. Section 2
introduces the proposed image copy detection method in de-
tails. The robustness and time complexity of the proposed
method are analyzed in Sect. 3. The experimental results are
presented in Sect. 4. Conclusions are drawn in Sect. 5.

2. Proposed Method

2.1 Design Concept

According to the above section, the local feature-based
copy detection methods usually have computational prob-
lem. Since both the extraction and matching of global fea-
tures are more efficient to compute, the global feature-based
methods can avoid the computational problem and thus they
are more suitable for efficient copy detection. Unfortunately,
the traditional global feature-based methods are not robust
enough to arbitrary rotation. The main reason is that their
image division strategies used for global feature extraction
are not rotation invariant.

To achieve robustness to arbitrary rotation while main-
taining high efficiency for copy detection, the key idea of
our method is to extract robust global features by using a
rotation invariant image division strategy based on pixel in-
tensity orders. Instead of geometrically dividing images
into regular regions, we construct several irregular partitions
based on pixel intensity orders, and then extract the robust
global features from these partitions. Since the intensity or-
ders of pixel points are rotation invariant, these partitions are
also rotation invariant and thus the global features extracted
from these partitions can be invariant to arbitrary rotation.

The details of our proposed method will be described
in the following sections.

2.2 Preprocessing

The image copies distributed on the internet may be derived
from the original images by some noising attacks, such as
Gaussian noising. To decrease the effects of nosing attacks,
we employ an averaging operation in the preprocessing.

For a given image of size w × h, we first transform the
image into the gray-level image, since our image features
are extracted by utilizing the gradient magnitudes and ori-
entations in gray-levels. Then, we divide the gray-level im-
age into some nonoverlapping blocks of size b × b. Next,
for each block, we compute the average intensity of its b× b
pixels. Finally, a lower resolution image of size m×n can be
obtained, where m = [w/b], n = [h/b], and [x] is the nearest
integer to x.

Note that the image and its copies generated by certain

transformations such as rescaling will have different scales.
If the block size b is set to a certain value, it will cause the
content of the corresponding blocks between the image and
these copies is quite different so that the robustness of our
method will be significantly affected. To conquer this weak-
ness, we use an adaptive block size

b =
[ √

(w × h − n0)/C
]

(1)

where C is a constant and n0 is the number of redundant pix-
els. The definition of redundant pixels is given as follows.
As we know, when the image suffers rotation transforma-
tions, it will be padded with some black pixels. As shown in
Fig. 1(d)–(f), the black pixels are called as redundant pixels.

If the image does not suffer rotation transformations,
the number of redundant pixels n0 equals to 0 and the block
size b is relative to the image size w × h. Thus, by using
the adaptive block size, the image and its copies generated
by rescaling can be preprocessed to the same scale. When
the image is transformed by rotation, its scale remains the
same, but its size will be larger since the redundant pix-
els are padded and n0 is greater than 0. By using Eq. (1),
the number of redundant pixels is subtracted to compute the
block size, which can ensure the block size of the image and
its rotated versions will be consistent. As a result, after the
preprocessing, the image and its rotated versions are also at
the same scale.

Small b leads to lower robustness to noising attacks,
while large b results in loss of fine details. In this paper,
for the images of size 384 × 256 or 256 × 384 used in our
experiment part, we choose the block size b = 4 as an ap-
propriate trade-off by setting C = 6144. It’s worth noting
that, the averaging operation can not only decrease the ef-
fects of nosing attacks, but also cause less image pixels to
be processed in the following steps, which can apparently
enhance the efficiency of our method.

2.3 The Construction of Rotation Invariant Partitions

In this subsection, we will introduce the construction of ro-
tation invariant image partitions. For a given image, one
can divide it into several regular regions such as rectangu-
lar blocks, elliptical tracks and circular tracks. However,
these regions are not rotation invariant so that the features
extracted from them will be sensitive to arbitrary rotation.
Therefore, a rotation invariant division strategy is the basis
and guarantee of resisting arbitrary rotation. In [27], the lo-
cal patch partition method based on intensity orders of sam-
ple points was proposed to divide each local patch into sev-
eral rotation invariant partitions for generating robust local
descriptors. In this paper, instead of geometrically dividing
images into regular regions, similar with [27], we employ
the intensity order-based image division strategy to divide
images into several rotation invariant partitions. The details
are given as follows.

Let function F = {p1, p2, . . . , pn} denotes a prepro-
cessed image with n pixels, and I(px) the intensity of the
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pixel px. As mentioned in the above subsection, if the im-
age is a copy of an original image generated by rotation with
a certain degree, it will be padded with some redundant pix-
els. That will significantly affect the result of the following
intensity order-based image division. Thus, if the prepro-
cessed image is the rotated one, we first remove those re-
dundant pixels of the preprocessed image, which with same
intensities are located at the boundary region. The number
of remaining pixels is denoted by n′, and the preprocessed
image with n′ remaining pixels by F′ = {p1, p2, . . . , pn′ }. If
it is not the rotated one, there are no redundant pixels and
thus the number n′ = n.

Then, the remaining pixels of the preprocessed image
are divided into k groups according to their intensity orders.
More specially, the intensities of all the pixels are sorted
in nondescending order and then a set of sorted pixels is
derived as

{p f (1), p f (2), . . . , p f (n′) : I(p f (1)) ≤ I(p f (2)) ≤ · · · ≤ I(p f (n′))}
(2)

Where p f (1), p f (2), . . . , p f (n′) is a permutation of 1, 2, . . . , n′.
Next, k+1 intensities can be generated from them as follows:

ti = I(p f (si)) : t0 ≤ t1 ≤ · · · ≤ tk (3)

where

si =


⌈
n′

k
i

⌉
, i = 1, 2, . . . , k

1, i = 0
(4)

Finally, the n′ pixels are divided into k groups represented
as follows

Pi = {p j ∈ F′ : ti−1 ≤ I(p j) ≤ ti}, i = 1, 2, . . . , k (5)

Where, Pi is the i-th partition of the preprocessed image.
Each group corresponds to a partition and thus k partitions of
an image are generated. Figure 2 shows the intensity order-
based division for a preprocessed image when the number
of partitions k equals to 4. It is worth noting that, since
the intensity orders of image pixels cannot be changed by
various rotations, these partitions are rotation invariant. In
this paper, the number of partitions k is set as 10.

2.4 Feature Extraction

After constructing the image partitions, we propose two
global features, which are called the gradient magnitude-
based and gradient orientation-based features, respectively.
The gradient magnitudes and orientations of the prepro-
cessed image are precomputed in a rotation invariant coor-
dinate system. Then, the two global features are extracted
from those image partitions. The procedure of our feature
extraction can be divided into three steps as follows.

Step 1): The precomputation of the gradient magni-
tudes and orientations in a rotation invariant coordinate sys-
tem. For each pixel px, we first construct a rectangular coor-
dinate system. As shown in Fig. 3, suppose o is the central

Fig. 2 The intensity order-based division for a preprocessed image (k =
4).

Fig. 3 The rotation invariant coordinate system used for computing the
gradient of pixel px.

point of the preprocessed image and px is a pixel point. The
rectangular coordinate system can be established by setting
−−→opx as the positive y-axis for the point px. Then, the gra-
dient magnitude m(px) and orientation o(px) of px are pre-
computed in the coordinate system by:

m(px) =
√

(I(p1
x) − I(p5

x))2 + (I(p3
x) − I(p7

x))2 (6)

o(px) = tan−1((I(p1
x) − I(p5

x))/(I(p3
x) − I(p7

x))) (7)

where p j
x, j = 1, 2, . . . , 8, are the neighboring pixels of pi,

as shown in Fig. 3, and I(p j
x) is the intensity of p j

x. Since the
coordinates of px and other pixels will be invariant when the
image is rotated, the rectangular coordinate system is rota-
tion invariant and thus the precomputed gradient magnitudes
and orientations are also rotation invariant.

Step 2): The extraction of gradient magnitude-based
feature. From the above, the precomputed gradient mag-
nitudes are rotation invariant. In this step, we utilize the
average magnitudes to form the gradient magnitude-based
feature of the preprocessed image in the rotation invariant
coordinate system. For each partition Pi, we first compute
the average magnitude of all of the pixels in the partition by

M(Pi) =

∑
px∈Pi

m(px)

ni
(8)

where ni is the number of pixels of partition Pi. Then, all
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the average magnitudes are concatenated to generate a k di-
mensional vector (M(P1),M(P2), . . . ,M(Pk)). Finally, all
elements of the feature vector are normalized by

MF(Pi) =
M(Pi)

k∑
i=1

M(Pi)

(9)

As a result, the gradient magnitude-based feature, denoted
as MF = (MF(P1),MF(P2), . . . ,MF(Pk)), are generated,
where all of its element values are in the range of [0, 1].

Step 3): The extraction of gradient orientation-based
feature. As we know, if the precomputed gradient orienta-
tions are rotation invariant, the average deviation of orien-
tations of all pixels in a partition is also rotation invariant.
In this step, the average deviations of orientations are uti-
lized to extract the gradient orientation-based feature. Sim-
ilar with Step (2), for each partition Pi, we first compute the
average orientation of the pixels in the partition by

O(Pi) =

∑
px∈Pi

o(px)

ni
(10)

Then, instead of computing the normalized value of the av-
erage orientation, we compute the average deviation of ori-
entations of Pi by

OF(Pi) =

∑
px∈Pi

|o(px) − O(Pi)|

ni
(11)

where O(Pi) is the average orientation of all pixels in Pi. Fi-
nally, all average deviations of orientations are concatenated
to form the gradient orientation-based feature, denoted as
OF = (OF(P1),OF(P2), . . . ,OF(Pk)).

From the above procedure, the image partitions and
rectangular coordinate system are rotation invariant, and
thus the gradient magnitude-based and gradient orientation-
based features are robust to arbitrary rotation.

2.5 Copy Detection

In this subsection, we will discuss how to detect copies of
a query image from an image database. Figure 4 shows
the flowchart of our copy detection method. From Fig. 4,
the procedure of the method can be broken down into two
phases: offline processing and online processing. In the of-
fline processing, the gradient magnitude-based and gradi-
ent orientation-based features of each test image from the
database are extracted by using the above feature extrac-
tion algorithm. Then, these features are stored in the feature
database for future use. In the online processing, for each
query image, its two features are also extracted by using the
same feature extraction algorithm. Then, the two features of
the query image are compared with those features stored in
the feature database by the following comparison method.

Let the gradient magnitude-based and gradient

Fig. 4 The flowchart of our copy detection method.

orientation-based features of a query (original) image
Q, be MFQ = [MFQ(P1), MFQ(P2), . . . ,MFQ(Pk)]
and OFQ = [OFQ(P1), OFQ(P2), . . . ,OFQ(Pk)] respec-
tively, and those of a test image T , MFT = [MFT (P1),
MFT (P2), . . . ,MFT (Pk)] and OFT = [OFT (P1), OFT (P2),
. . . ,OFT (Pk)]. Then the distance between the two images
D(Q,T ) can be computed by

D(Q, T ) = α × dM + (1 − α) × dO (12)

Where dM and dO can be computed by the Jaccard coeffi-
cient:

dM =

k∑
i=1

min(MFQ(Pi),MFT (Pi))

k∑
i=1

max(MFQ(Pi),MFT (Pi))

(13)

dO =

k∑
i=1

min(OFQ(Pi),OFT (Pi))

k∑
i=1

max(OFQ(Pi),OFT (Pi))

(14)

In Eq. (13) and (14), dM and dO mean the gradient
magnitude-based feature distance and gradient orientation-
based feature distance between the two images, respectively,
and α is a weighting factor ranging from 0 to 1. The com-
puted distance between the query image and the test image
is denoted as D(Q, T ), whose range is from 0 to 1, can be
compared with a preset threshold to determine whether the
test image is a copy of the query image. The smaller value of
D(Q,T ) implies greater similarity between the two images.
Given a preset threshold τ, if the condition D(Q,T ) ≤ τ is
true, we can determine that the test image from the database
is the copy version of the original, or else it is not.

3. Robustness and Time Complexity Analysis

In this section, the robustness and time complexity of the
proposed method will be analyzed to illustrate the effective-
ness and efficiency.

3.1 Robustness Analysis

In this subsection, we will analyze the robustness of the
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proposed method to the arbitrary rotation, and other typical
copy attacks such as rescaling, flipping and Gaussian nois-
ing.

Arbitrary Rotation: From Sect. 2.2 and Sect. 2.3, since
the image partitions and the coordinate system are con-
structed in a rotation invariant way, the extracted gradient
magnitude-based and gradient orientation-based features are
rotation invariant. Therefore, our method is robust to rota-
tions with arbitrary degrees, which is also demonstrated by
our experimental results.

Flipping and Rescaling: Our method is robust to flip-
ping transformation, because the image partitions, average
magnitudes and average deviations of orientations will not
be changed by flipping transformation and thus our features
are invariant to this type of attack. Rescaling transforma-
tions will change the original image resolution, but will not
significantly change that of the preprocessed image since the
preprocessed one is generated by using the adaptive block
size in the averaging operation. For this reason, our method
is insensitive to rescaling.

Rotation with central cropping, shifting and cropping:
These attacks, which can be regarded as partial region-
discarded attacks, will cause some image content to be lost.
Thus our features will be changed. However, the experimen-
tal results in Sect. 4 show that our method can successfully
detect the copies slightly modified by these attacks. How-
ever, for dealing with the copies seriously modified by these
attacks, the robustness of our method will be limited.

Illumination and contrast changes: An illumination
change will cause a constant to be added to each image
pixel, but it will not affect the gradient magnitudes and ori-
entations since they are computed by utilizing pixel differ-
ences. A contrast change will cause each pixel value to be
multiplied by a constant, and thus the gradient magnitudes
will be multiplied by the same constant, but the effects of
contrast will be removed by using the normalizing opera-
tion in Eq. (9). Meanwhile, the gradient orientations will not
be changed by contrast change due to the division operation
during their computation. Therefore, the extracted gradient
magnitude-based and gradient orientation-based features are
invariant to these attacks, and our method is robust to illu-
mination and contrast changes.

Noising attacks: The typical noising attacks include
Gaussian noising, watercoloring, mosaic tiling and so on.
These noising attacks can significantly change the individ-
ual pixels. However, in the preprocessing, the averaging op-
eration also can effectively decrease such effects [28]. Thus,
our method is robust to these attacks to some extent.

All of the above analysis illustrates that, our method
can effectively resist arbitrary rotation, and it also has the
effectiveness to other typical attacks. These will be further
demonstrated by experimental results.

3.2 Time Complexity Analysis

The computation time of copy detection usually consists
of offline processing time and online processing time [29].

Therefore, we analyze the time complexities of offline pro-
cessing for test images from an image database and online
processing for query images. For these images, suppose that
all of them have n pixels. Note that the time complexity
of our feature extraction (including the preprocessing and
construction of image partition) for a given image is propor-
tional to the number of image pixels n. Therefore, in offline
processing, the time complexity of the feature extraction for
a test image is O(n). If there are l images in the database, the
time complexity is O(n × l). In online processing, the time
complexity of feature extraction for a query image is also
O(n). Due to the two extracted features of each image are
k dimensional, the time complexity of feature comparison
between the query image and the test images is O(2× k × l),
where k = 10 in this paper. Thus, the average time complex-
ity of online processing for searching for per query image in
the database can be represented as O(n) + O(20 × l). It’s
worth noting that the offline processing can be realized be-
forehand. Therefore, for searching for per query image in a
database with l images, the average time complexity of our
method only includes that of the online processing, which is
only O(n) + O(20 × l). The above time complexity analysis
illustrates that our method is simple and efficient, which is
also demonstrated in the following experimental part.

4. Experimental Results

In this section, first, we describe the data set and evaluation
criteria applied in our experiments. Second, according to
the accuracy performances with different values of weight-
ing factor α, we determine the value of α for our method.
Third, we test accuracy performances of our method for re-
sisting arbitrary rotation and other copy attacks, and com-
pare them with those of Kim’s [3], Wu’s [4], Ling’s [22] and
Fan’s [27] methods. Where, Ling’s method is based on the
sparse representation of SIFT features for copy detection.
We also use the improved SIFT features proposed by Fan’s
method [27], called as multisupport region order-based gra-
dient histogram (MROGH) features, for copy detection. Fi-
nally, the computation time of these methods are test and
compared. All experiments are run on a standard PC (Core2
Duo E7500 CPU, 2G RAM) with Matlab7.0 program.

4.1 Data Set and Evaluation Criteria

In the experiments, we use the image database downloaded
from [30]. The image database includes 1,000 images of
size of 384 × 256 or 256 × 384, which are saved in JPEG
format. Firstly, 30 images are randomly chosen from the
image database. Then, each chosen image has modified by
35 image attacks by Adobe Photoshop 7.0. Thus, 1050 im-
age copies are generated for our experiments. The 35 copy
attacks are listed as follows:
1) Rotation: The rotation angles are 2, 5, 10, 20, 40, 90 and
180 degrees.
2) Flipping: Horizontal and vertical flipping.
3) Rescaling: The rescaling factor are 0.5, 2, and 4.
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4) Rotation with central cropping: The rotation angles are
2, 5, 10, and 20 degrees, and the rotated image are then
cropped to the original size.
5) Shifting: Horizontal and vertical shifting with the loss of
2%, 5%, 10%, and 20% image content.
6) Cropping: The cropping percentages are 2%, 5%, 10%,
and 20%.
7) Illumination change: The constants added to the illumi-
nation of each pixel are −10 and 10.
8) Contrast change: The change ratios are 0.8 and 1.2.
9) Nosing: The nosing attacks include Gaussian noising,
watercoloring, mosaic tiling, mosaic, sponge, ocean ripple
and crayon. The default setting of Adobe Photoshop 7.0 is
used for these attacks.

To evaluate the accuracy performances of those meth-
ods, in our experiments, we adopt the precision and recall
curve (P-R curve), which is a plot of the precision rate ver-
sus the recall rate. When the distance threshold τ equals
to a certain value, the precision rate and the recall rate can
be defined as follow. Let NT be the number of total de-
tected images which are below the threshold, where the de-
tected images may include non-copies, and Nc the number
of total copies. The number of correct positives (number of
copy images that are successfully detected) is denoted by
CP. The precision rate and the recall rate are denoted by

precision(τ) = CP/NT (15)

recall(τ) = CP/Nc (16)

Where τ can range from 0 to 1. We can plot points repre-
senting these rates on a two dimensional graph with varying
the threshold value τ from 0 to 1 to generate P-R curves.
Where, the X-axis and Y-axis of the graph denote the recall
and precision, respectively. The ideal P-R curve should pass
through (1, 1), namely 100% recall rate and 100% precision
rate.

4.2 Parameter Determination

The parameter α plays an important role in our proposed
method. A low value of α means the distance of gradient
orientation-based features dO plays a lager role on copy de-
tection, whereas a large value of α indicates the distance of
gradient magnitude-based features dM has more impact on
copy detection. We test the proposed method with five dif-
ferent α values: 0.0, 0.25, 0.5, 0.75, and 1.0. For the test, the
1050 generated copies are inserted to the database, and thus
there are 2050 test images in the database. The 30 chosen
images sever as the query images. Then, we search for the
query images in the image database one by one. Figure 5
presents the P-R curves of our method with different α val-
ues. As shown in Fig. 5, when α = 0.5, our method achieves
best precision for all recall rates. This implies that the de-
tection performance is the peak when gradient magnitude-
based feature and gradient orientation-based feature play a
balanceable effect for copy detection. In the following ex-
periments, we set α = 0.5 for our method.

4.3 Accuracy Performances

This subsection reports the accuracy performances of our
method for arbitrary rotation and other typical copy attacks,
and compares them with those of Kim’s, Wu’s, Ling’s and
Fan’s methods. Two experiments are conducted to measure
1) P-R curves of these methods for all the 35 copy attacks
and 2) the number of successfully detected copies generated
by arbitrary rotation and other typical copy attacks. In the
experiments, the 30 randomly chosen images are treated as
query images. The 1050 image copies generated from the
chosen images are inserted into the database and there are
2050 test images in the database.

The first experiment is conducted to observe the accu-
racy performances of those methods for all the 35 copy at-
tacks. Figure 6 presents the P-R curves of those methods for
all the 35 copy attacks. From Fig. 6, we can see that the pre-
cision and recall rates of our method are up to about 92%,
while the four other methods can achieve about 66%, 68%,
89% and 90%, respectively. The accuracy performance of
our method is significantly higher than those of Kim’s and
Wu’s methods, and slightly higher than those of Ling’s and
Fan’s methods.

In the second experiment, we will observe the effec-

Fig. 5 The performances of our method with the different α values.

Fig. 6 P-R curves of different methods for all of the 35 copy attacks.
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tiveness of our method and the four other methods for each
attack in details. To facilitate the observation, for each
copy attack, we count the numbers of successfully detected
copies by using these methods. As we know, to detect im-
age copies, we need a certain distance threshold to judge
whether an image is a copy of another. Here, the threshold
of each method is set according to its P-R curve obtained in
the first experiment. In particular, when the detection preci-
sion is 90%, the according threshold of each method is used
as its own threshold. Table 1 lists all of the 35 copy attacks,
and the number of detected copies for each attack. Because
we chose 30 original images to undergo 35 copy attacks,
there are 30 copies for each attack and 1050 copies in total.
The row values of Table 1 are the numbers of copies which
are successfully detected by using their original images as
queries for each copy attack.

As Table 1 shows, Ling’s, Fan’s and our methods can
successfully detect all of the 210 copies transformed by ar-
bitrary rotation, while Kim’s and Wu’s methods can only
detect 60 and 73 respectively. Our method performs excel-
lently for dealing with arbitrary rotation, and outperforms
Kim’s and Wu’s methods.

For the partial region-discarded attacks such as rotation
with central cropping, copping and shifting, the number of
successfully detected copies of our method is higher that
those of Kim’s and Wu’ methods, but lower than Ling’s and
Fan’s methods. It is clear that our method is more robust
than Kim’s and Wu’s methods for resisting these attacks.
However, our method is limited for detecting the copies se-
riously modified by these attacks. That is because our fea-
tures are extracted from the whole image region and the loss
of image content caused by the partial region-discarded at-
tacks will significantly affect the performance of our method
for dealing with these attacks. From Table 1, we can see that
when the images are suffered more serious versions of these
attacks, the performance of our method will significantly de-
crease.

Once the query images are modified by nosing attacks
such as Gaussian nosing, water coloring and sponge, the
numbers of successfully detected copies of Wu’s, Ling’s and
Fan’s methods are significantly decreased, while our method
can detect most of the copies generated by these nosing at-
tacks.

The total number (percentage) of successfully detected
copies of our method is 977 (93%), While those of Kim’s,
Wu’s, Ling’s and Fan’s methods are 655 (62%), 672 (64%),
924 (88%) and 940 (90%), respectively. The result shows
that our method is much better than Kim’s and Wu’s meth-
ods for dealing with various copy attacks, and slightly supe-
rior to Ling’s and Fan’s methods. The experimental results
show that our method can achieve desirable performances
for resisting arbitrary rotation and other typical copy attacks.

4.4 Computation Time

As copy detection usually consists of offline processing and
online processing, we test and compare the computation

Table 1 The number of successfully detected copies for 35 different
copy attacks.

time of our method and the four other methods in an analytic
way. Table 2 lists the computation time of offline process-
ing for the image database and average computation time
of online processing for searching for per query image in
the database by using different methods. As shown in Ta-
ble 2, the computation time of offline and online process-
ing of Kim’s, Wu’s and our methods is much less than that
of Ling’s and Fan’s methods. In other words, Kim’s, Wu’s
and our methods are much more efficient than Ling’s and
Fan’s methods, which are time-consuming. The computa-
tion time of offline and online processing of our method is
only 116.24 seconds and 0.06 seconds, respectively.

From all of the above experiments, we can see that the
performances of our method for resisting arbitrary rotation
and other typical attacks are desirable in the aspects of both
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Table 2 Computation time of different methods.

accuracy and efficiency.

5. Conclusion and Future Work

In this study, a novel image copy detection method has been
presented. Experimental results show that our method can
achieve desirable performances for resisting arbitrary rota-
tion and other typical copy attacks in the aspects of both ac-
curacy and efficiency. There are two reasons, which can be
summarized as follows. The first one is that because of the
rotation invariance of the constructed image partitions and
coordinate system, the extracted gradient magnitude-based
and gradient orientation-based features are robust to the ro-
tations with arbitrary degrees. Meanwhile, they are also
robust to other typical attacks. The second is that the two
features, which are only 10 dimensional, can be extracted
and compared efficiently for copy detection. In future, by
using the indexing method, we will further improve the effi-
ciency of our method to implement efficient copy detection
in a very large image database without decreasing the effec-
tiveness.
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