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PAPER

Distributed Compressed Video Sensing with Joint Optimization of
Dictionary Learning and l1-Analysis Based Reconstruction

Fang TIAN†, Jie GUO†, Nonmembers, Bin SONG†a), Member, Haixiao LIU†, and Hao QIN†, Nonmembers

SUMMARY Distributed compressed video sensing (DCVS), combin-
ing advantages of compressed sensing and distributed video coding, is
developed as a novel and powerful system to get an encoder with low
complexity. Nevertheless, it is still unclear how to explore the method to
achieve an effective video recovery through utilizing realistic signal charac-
teristics as much as possible. Based on this, we present a novel spatiotem-
poral dictionary learning (DL) based reconstruction method for DCVS,
where both the DL model and the l1-analysis based recovery with corre-
lation constraints are included in the minimization problem to achieve the
joint optimization of sparse representation and signal reconstruction. Be-
sides, an alternating direction method with multipliers (ADMM) based nu-
merical algorithm is outlined for solving the underlying optimization prob-
lem. Simulation results demonstrate that the proposed method outperforms
other methods, with 0.03-4.14 dB increases in PSNR and a 0.13-15.31 dB
gain for non-key frames.
key words: compressed video sensing, realistic signal characteristics, dic-
tionary learning, alternating direction method with multipliers

1. Introduction

Conventional video coding schemes, such as H.264/AVC
and HEVC, often require much more computation for the
encoder than the decoder. This asymmetry is well suited
for broadcasting or for steaming video-on-demand systems
where video is compressed once and decoded many times.
However, in many application scenarios, e.g., video surveil-
lance, and camera phones, a video codec with simple en-
coder and complex decoder is desired. Distributed video
coding (DVC) [1] is such a solution for scenarios described
above. For a video sequence, frames are independently
encoded and then decoded collectively [2], [3], and con-
sequently, we can shift the significant computational bur-
den from the encoder to the decoder. More recently, com-
pressed sensing (CS) theory [4], [5] has become widely pop-
ular since it offers a novel approach to gather data, which
combines signal sampling and compression into one step
and thus lowers the needed quantity of measurements. In
this sense, the CS framework is suitable for DVC because
of the low cost of power consumption and computation.

Recently, distributed compressed video sensing
(DCVS) [6]–[13] has arisen as a novel method to acquire
video by using random measurements at the encoder and
undertaking joint recovery in the decoding process. The
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key issue of DCVS is about the method to employ the spa-
tial/temporal redundancy existing in videos to obtain effi-
cient reconstruction in the decoding end. In 2009, Prades-
Nebot et al. [6] firstly presented a typical DCVS architec-
ture, where a video sequence is split into two groups, namely
the key frames and non-key (NK) ones. Key frames are in-
dependently coded; while NK frames are encoded using a
CS based encoder. In [7], a novel two-phase measurement
acquisition scheme with the inter-frame sparsity model was
proposed for DCVS. However, in these methods, a large
amount of raw video data is still required for key frames
encoding employing conventional compression algorithms,
which then wastes valuable resources.

Another DCVS framework was previously pre-
sented [8], [9], where sparse representation was achieved
through the K-SVD dictionary learning algorithm [12]. Spe-
cially, in combination with the side information, a dictionary
is learned using samples extracted from the former recon-
structed frames. After obtaining the trained dictionary, we
use the traditional CS reconstruction algorithm to recovery
the NK frames. However, in the above papers, signal re-
construction and sparse representation are designed as in-
dependent tasks [8], [9], and then there is much space to
improve in the field of resources consuming, for the rea-
son that sparse representation has been embedded in the dic-
tionary learning process. Meanwhile, there are some other
papers about video coding based on CS [14]–[21]. For ex-
ample, a motion-aware decoding method for compressively
sampled videos and a maximum frame rate video acqui-
sition framework were proposed in [14] and [15] respec-
tively. In [16], the challenges involved in the transmission of
CS-based video over wireless multimedia sensor networks
were discussed by Pudlewski et al., and a cross-layer system
that jointly controls the video encoding rate, the transmis-
sion rate. Additionally, a method to generate dictionary for
video sampling based on CS was proposed in our previous
work [17], an adaptive alternating direction method of mul-
tipliers (ADMM) with its application to compressed video
sensing was presented in [18], [19], and more recently, a
joint sampling rate and bit-depth optimization framework
was proposed in [20]. Nevertheless, how to use the redun-
dant information of temporal and spatial relations by means
of side information (SI) at the decoding end to get efficient
sparse dictionary, and signal recovery from limited numbers
of measurements, is substantially unexplored.

Based on this situation, we present a spatiotemporal
dictionary learning (DL) based restore method for DCVS.
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The target is to enhance performance through the joint opti-
mization of sparse representation and signal reconstruction
at the decoder, and reserving the relatively low complex-
ity in computation at the encoding end at the same time.
On this point, we develop a novel DL based reconstruction
method, wherein both the DL model and the signal recovery
with correlation constraint are included in the optimization
problem. Specially, in our method, the dictionary is learned
from overlapping blocks of the video sequence along both
the spatial and temporal directions, and thus providing a
sparser representation over the fixed analytical transforms.
The correlation noise between the current frame and its SI
is also considered in the video signal recovery from under-
sampled measurements, in order to avoid over-sparse solu-
tions which could lead to lower visual quality. Furthermore,
our proposal is an l1-analysis based reconstruction method
which finds the estimated signal in the pixel domain directly,
instead of firstly finding the sparse coefficients with respect
to the sparsifying basis and then recovering the frame via a
synthesis operator as in the conventional methods [8], [9].

Another contribution of this paper is an iterative algo-
rithm to solve the underlying optimization problem. The
idea behind it is to examine an efficient and adaptive re-
covery method that could exploit more signal characteristics
that go beyond simple sparsity, and while being rich enough
to capture the complexity of modern big data and scalable
enough to process huge datasets in a parallelized fashion. In
this way, we present an ADMM [22], [23] based numerical
algorithm, wherein DL is included in the iteration process as
one single step, and consequently, achieving the joint opti-
mization of sparse representation and signal reconstruction.

Finally, it is noteworthy that we mainly concentrate on
exploring an efficient DCVS scheme with joint optimization
of sparse representation and signal reconstruction, which
offers a new simple video acquisition (and compression)
framework and an alternative algorithm fit for the scenario
in which original video signal cannot be obtained, not to
compete the compression performance against the current
video compression standards, which require original data to
perform encoding. The remainder of this paper is organized
as follows. Background information is provided in Sect. 2.
The presented joint DL and signal recovery optimization
problem and the ADMM-based numerical algorithm are de-
scribed in Sect. 3. Section 4 presents the DCVS decoder
architecture with DL based reconstruction. Experimental
results are presented in Sect. 5. Conclusions are given in
Sect. 6.

2. Background

2.1 Compressed Sensing

The concept of CS is firstly presented by Candes, Tao [4]
and Donoho [5]. The new theory enables to efficiently and
directly acquire signals with (random) linear projections and
reconstruct them by settling a convex optimization prob-
lem. More precisely, given a discrete signal f with length

N, and its coefficients Ψ with respect to the orthonormal ba-
sis Ψ ∈ RN×N , we say signal f is K -sparse with respect to
Ψ if only K coefficients are non-zero. In this way, we could
effortlessly compress the signal through encoding the values
and positions of these non-zero coefficients. However, this
process is extremely inefficient, since only K coefficients are
delivered by the encoder system while N signals samples
have to be acquired. The CS theory claims that the signal
f could be collected using the following linear random pro-
jections:

y = Φ f (1)

in which y ∈ RM is the sampled measurement (M < N),
Φ ∈ RM×N is the measurement matrix, and the ratio between
the height and width of the measurement matrix is defined
as the measurement rate (MR), i.e,

MR =
M
N

(2)

Thus the recovery of the sparse coefficients (with re-
spect to Ψ) can be done by finding the set of coefficients
that agrees with the measurements, and especially, with the
minimum l0 norm i.e.:

min ||x||0 s.t. y = ΦΨx (3)

where x is the sparse coefficients of f with respect to Ψ.
Intractable as the problem is NP-hard for typical values

of N, it is still solvable if the product of Φ and Ψ, denoting
A = ΦΨ, obeys the Restricted Isometry Property (RIP) of
order K [5], that is (1 − δK)||s||22 ≤ ||As||22 ≤ (1 + δK)||s||22,
which holds for all K-sparse vectors s for a small isometry
constant 0 < δK < 1. And then the signal can be recovered
by solving the following unconstrained optimization prob-
lem Eq. (4).

min ||x||1 s.t. y = ΦΨx (4)

This convex optimization problem, namely basis pur-
suit, can be recast as a linear program to be efficiently
solved with the available optimization algorithms. How-
ever, the complexity of Eq. (4) still makes it impractical
for many practical applications. In this way, many iter-
ative greedy techniques have also been proposed to solve
the above problem in the literature, e.g., matching pursuit
(MP). It has been proven that MP could successfully recon-
struct the compressively sampled signal with high probabil-
ity. The other greedy algorithms such as orthogonal match-
ing pursuit (OMP), stage-wise orthogonal matching pursuit
(StOMP), and Subspace Pursuit have also been shown to at-
tain similar guarantees to those of their optimization-based
counterparts. Besides, it should be noted that many sig-
nals of interest in practice are often “approximately” sparse
rather than “exactly” sparse, i.e., the transforming coeffi-
cients are generally different to zero and only few of them
have significant values. In this case, the solution to Eq. (4)
could still reconstruct the most sparse coefficients as re-
vealed in the CS theory [4], [5], and hence, provide a good
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approximation of the original signal.

2.2 Distributed Video Coding

DVC is based on two theorems that are Slepian-Wolf and
Wyner-Ziv of the information theory. In a classical DVC
framework, the video sequence is divided into several
groups of pictures (GOP), and each GOP has been made
up by one key frame and multiple Wyner-Ziv (WZ) frames.
Besides, key frames are encoded and decoded using con-
ventional video compression standards such as H.264/AVC.
Meanwhile, the compressed version of a WZ frame fWZ is
derived by transferring the parity bits which comes from the
channel-encoded version of fWZ without performing motion
estimation. At the decoding end, the side information fS I

is created by motion compensation in advance, and then the
decoding end utilizes the received parity bits and fS I to re-
cover fWZ . By exploiting the temporal and spatial redun-
dancy of videos at the decoding end, the major computa-
tional complexity of DVC in the encoding end is transferred
to the decoder.

This paper concentrates on DCVS that integrates
strengths of both CS and DVC. We put forward to jointly
optimize dictionary learning and signal recovery, as well as
capture the inter-frame correlation existed in video. At this
point, we propose a spatiotemporal DL based reconstruction
scheme for DCVS, and develop an ADMM based numerical
algorithm to figure out the underlying optimization problem.

3. Joint Optimization of Dictionary Learning and Re-
construction

3.1 Joint Optimization Problem

The typical DCVS system is used in this paper (to be shown
in Fig. 1). The key frame fK is projected and recovered em-
ploying the orthonormal basis Ψ and the conventional CS
reconstruction algorithm Eq. (4). The NK frame fNK is seg-
mented into some non-overlapping blocks. The ith block is
vectorized as fNK,i ∈ RN (i = 1, 2, . . . , B and B is the num-
ber of blocks) and projected using the random measurement
matrix Φ ∈ RM×N , i.e., yNK,i = Φ fNK,i. Then, the global NK
frame acquisition process can be formulated as follows:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

yNK,1

yNK,2
...
yNK,B

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Φ

Φ

. . .

Φ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

fNK,1

fNK,2
...

fNK,B

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(5)

or yNK = ΦNK fNK

where yNK = [yT
NK,1, y

T
NK,2, . . . , y

T
NK,B]T , fNK = [ f T

NK,1, f T
NK,2,

. . . , f T
NK,B]T and ΦNK = diag{Φ,Φ, . . . ,Φ}.
Inspired by the work of Wang et al. for medical reso-

nance imaging [24], we first investigate the dictionary learn-
ing model for DCVS reconstruction. Let Ri be the opera-
tor that extracts a block from the video frame, i.e., fNK,i =

Ri fNK . Then the DL problem is expressed as follows

min
D,{xi}

1
2

∑
i

||Ri fNK − Dxi||22+μ
∑

i

||xi||0 (6)

in which D is the “global” dictionary for all the blocks in
fNK .

Then, based on the aforementioned DL model, we for-
mulate the joint optimization problem for DCVS reconstruc-
tion as

min
fNK ,D,{xi}

1
2
||ΦNK fNK − yNK ||22 +

λ1

2

∑
i

||Ri fNK − Dxi||22

+μ
∑

i

||xi||0 + λ2h( fNK) (7)

where λ1 and λ2 are tuning parameters, and h( f ) is an ad-
ditional regularizer. The first term in Eq. (7) enforces the
data fidelity in the measurement domain. The second and
third terms correspond to the DL model. The selection of
h( f ) can be any suitable sparsifying transforms, such as dis-
crete wavelet transform (DWT) or discrete cosine transform
(DCT). Nevertheless, in the DVC framework, it is known
that the correlation between fNK and its SI fS I can be mod-
eled as the correlation noise model (CNM) that follows the
Laplacian distribution [1]. The similar sparse distribution
can also be found in the DCVS framework [10]. Conse-
quently, in this paper, we choose the frequency correlation
noise model to characterize h( f ):

h( f ) = ||ΨT ( f − fS I)||1 (8)

In other words, the sparsity requirement of CS is
achieved under the video correlation constraint in Eq. (8),
and thus more signal structures are leveraged in the DCVS
framework to improve the reconstruction visual quality. Fur-
thermore, it should be noted that the proposed optimization
problem Eq. (7) is actually an analysis-based method, which
finds the estimated f̂NK directly from Eq. (7). It is quite
different from the conventional synthesis-based schemes
Eq. (4) in literatures, wherein one first finds the sparsest pos-
sible coefficient x̂ and then the solution to f̂NK is derived via
a synthesis operation (i.e., f̂NK = Dx̂).

3.2 ADMM-Based Numerical Algorithm

It is challenging to simultaneously find all unknown vari-
ables in the objective function Eq. (7) which is not differen-
tiable due to the l0 and l1 term. In this section, we focus
on the variable splitting and augmented Lagrangian meth-
ods, and develop an ADMM based iterative algorithm for
solving the optimization problem Eq. (7). Although ADMM
was originally proposed in the mid-1970s by Glowinski et
al. [22] and Gabay et al. [23], it has been widely known un-
til recently with the development of large-scale distributed
computing systems and massive optimization problems, es-
pecially for problems arising in sparse recovery. For exam-
ple, a split augmented Lagrangian shrinkage algorithm was
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proposed in [25]. It aims to transform the unconstrained
problem into a constrained one via variable splitting trick,
and then attack this constrained problem using ADMM. Be-
sides, a fast algorithm was presented for total variation-
based image deblurring in [26] and an adaptive-ADMM al-
gorithm with support and signal value detection was pre-
sented in [18], [19].

Here, we first introduce an auxiliary variable d =
ΨT ( f − fS I) to decouple the l1 term from other parts and
obtain the following equivalent problem (here we use f to
denote the NK frame for the sake of brevity):

min
f ,D,{xi}

1
2
||ΦNK f − y||22 +

λ1

2

∑
i

||Ri f − Dxi||22

+μ
∑

i

||xi||0 + λ2||d||1 (9)

subject to d − ΨT ( f − fS I) = 0

The scaled augmented Lagrangian function of (9) is:

Lp( f ,D, xi, d, u) =
1
2
||ΦNK f − y||22 +

λ1

2

∑
i

||Ri f − Dxi||22

+μ
∑

i

||xi||0 + λ2||d||1 + ρ2 ||d − Ψ
T ( f − fS I) + u||22 (10)

where u is called the scaled dual variable of the Lagrangian
multiplier and ρ is the penalty parameter. Based on ADMM,
we derive the following iteration scheme:

{Dk+1, xk+1
i }=arg min

D,xi

λ1

2

∑
i

||Ri f k − Dxi||22+μ
∑

i

||xi||0 (11)

f k+1 = arg min
f

1
2
||ΦNK f − y||22 +

λ1

2

∑
i

||Ri f − Dk+1xk+1
i ||22

+
ρ

2
||dk − ΨT ( f − fS I) + uk ||22 (12)

dk+1 = arg min
d
λ2||d||1 + ρ2 ||d − Ψ

T ( f k+1 − fS I) + uk ||22 (13)

uk+1 = uk + dk+1 − ΨT ( f k+1 − fS I) (14)

It is worth noting that each frame in the video se-
quences is projected in a block-by-block fashion Eq. (5).
The variable f is then separable, which means that the f -
minimization step can be carried out via a number of scalar
minimizations. Similarly, the variables d and u have also
the component separability property. In other words, the
subproblems Eq. (12) - Eq. (14) can be easily achieved by
solving the corresponding component of each block (i = 1
to B), while the dictionary D is learned in a frame level to
provide sparse representation for all blocks. Therefore, we
could obtain

{Dk+1, xk+1
i }=arg min

D,xi

λ1

2

∑
i

||Ri f k−Dxi||22+μ
∑

i

||xi||0 (15)

f or i = 1 to B

f k+1
i = arg min

fi

1
2
||Φ fi − y||22 +

λ1

2
|| fi − Dk+1xk+1

i ||22

+
ρ

2
||dk

i − ΨT ( fi − fS I,i) + uk
i ||22

dk+1
i = arg min

di

λ2||di||1 + ρ2 ||di − ΨT ( f k+1
i − fS I,i) + uk

i ||22
uk+1

i = uk
i + dk+1

i − ΨT ( f k+1
i − fS I,i)

end

In the following, we discuss the way of solving each
subproblem.

1) {D, x}-subproblem
First of all, the problem Eq. (11) could be efficiently

solved by the K-SVD algorithm. It can be worked out by
the iteration between two procedures [22], [23]. In the first
procedure, D is fixed and the sparsest coefficients are found
to agree with the data fidelity. This process is the CS recov-
ery in essence. The second procedure is dictionary learn-
ing, which maintains the coefficients fixed while updating
D column by column through a rank-one approximation of
a residual matrix by singular value decomposition (SVD).
Although the K-SVD algorithm cannot guarantee to reach
a global minimum, it still shows excellent performances in
many applications [23].

In the DCVS framework, the temporal redundancy ex-
isted in video signals is mainly revealed by means of the
correlation between the frame and its SI, which is generated
by motion-compensated interpolation at the decoder. Con-
sequently, we first extract N training patches from fS I (along
the temporal direction) in our scheme, where SI is divided
into several overlapping blocks (along the spatial direction)
and each block is vectorized as a column. Note that fS I

is regarded as the initial value of fNK (to be shown in the
initialization procedure of Algorithm 1). Then, we apply K-
SVD algorithm to these patches to learn the dictionary D for
the current NK frame. Once D is obtained from the training
patches, we apply OMP to compute the sparse coefficient
vector xi for each block.

2) f -subproblem
In the fi-minimization step, as ΦTΦ + λ1I + ρΨΨT is a

positive definite coefficient matrix and invertible, f k+1
i is an

affine function given by

f k+1
i = (ΦTΦ + λ1I + ρΨΨT )−1(ΦTy + λ1Dk+1xk+1

i

+ρΨ(dk
i + Ψ

T fS I,i + uk
i )) (16)

Furthermore, the Eq. (16) can be easily solved by em-
ploying a direct method [19]. This method for solving a
linear system Fx = b are based on first factoring F =
F1F2 · · · Fk into a product of simpler matrices, and then
computing x = F−1b by solving a sequence of problems of
the form Fizi = zi−1 where z1 = F−1

1 b and x = zk. The solv-
ing step is sometimes also called a back-solve. The com-
putational cost of factorization and back-solve operations
depends on the sparsity pattern and other properties of F.
The cost of solving Fx = b is the sum of the cost of factor-
ing F and the cost of the back-solve. In our case, we use the
Cholesky factorization to obtainΦTΦ+λ1I+ρΨΨT = L∗LT

with a lower triangular matrix L, and then f k+1
i could be

computed as
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f k+1
i = (LT )−1L−1(ΦTy + λ1Dk+1xk+1

i

+ ρΨ(dk
i + Ψ

T fS I,i + uk
i )) (17)

3) d-subproblem
In the di-minimization step, even though di in (15) is

not differentiable, we can easily compute a simple closed-
form solution to this problem by using subdifferential calcu-
lus. Explicitly, dk+1

i can be solved by the soft thresholding
operator

dk+1
i = Threshold

(
ΨT ( f k+1

i − fS I,i) − uk
i ,
λ2

ρ

)
(18)

wherein Threshold(m, n) := max{m−n, 0}−max{−m−n, 0}.
In summary, our proposed DL based reconstruction al-

gorithm is outlined as follows.

Algorithm 1
Input: y-received measurements which can be separated into blocks
y = [yT1 , y

T
2 , . . . , y

T
B]T

λ1, λ2, ρ-regularization parameters
fS I -side information, Ψ-DCT transform basis, Φ-(block-based) mea-
surement matrix
tol- stopping threshold, num-maximum iterations

Output: f -reconstructed NK frame
1: Initialization: f 0 = fS I , d0 = 0, u0 = 0

Cholesky factorization ΦTΦ + λ1I + ρΨΨT = L ∗ LT

2: While k < num and | f k+1 − f k ||2/|| f k ||2 < tol do
Learn dictionary Dk+1 from a subset of f k blocks patches using K-

SVD algorithm.
For each block (i = 1, 2, . . . , B)

a) Compute xk+1
i using OMP.

b) Compute f k+1
i using Eq. (17).

c) Compute dk+1
i using Eq. (18).

d) Update uk+1
i .

Increase k.
3: End while

4. DCVS with Dictionary Learning Based Reconstruc-
tion

As shown in Fig. 1 (a), the architecture of DCVS with DL
based reconstruction is presented. First of all, the video se-
quence is divided into groups of pictures (GOP), wherein the
first frame in each GOP (i.e., the key frame) is “INTRA” re-
covered in order to avoid error accumulation and the other
NK frames are “INTER” reconstructed using SI. It can then
be implied that a significant low-complexity video encoder
can be easily available, for the reason that only the projec-
tion process is required at the encoder, wherein all frames
are compressively (and independently) projected and trans-
mitted. The reconstruction process of frames at the decoder
of DCVS is represented below. Besides, in Fig. 1 (b), We
also show the DL-REC algorithm which performs the dic-
tionary learning and reconstruction separately.

4.1 Key Frames

Similarly to the traditional DVC scheme, the first frames

Fig. 1 DCVS algorithms, (a) proposed DCVS decoder architecture with
DL based reconstruction, (b) DL-REC

in each GOP are often encoded and decoded independently.
In other words, the key frames fK are projected and recon-
structed with the conventional CS scheme, by exploiting the
signal sparsity property and solving the traditional l1 mini-
mization problem.

min
x

1
2
||yK − ΦKΨx||22 + μ||x||1 (19)

where Ψ is the fixed sparsifying basis, e.g., DWT or DCT,
x is the sparse coefficient vector under the basis of Ψ, ΦK is
the measurement matrix for the measurement yK and μ is a
non-negative parameter. Consequently, the recovered frame
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can be obtained via f̂K = Ψx̂K , in which x̂K is the solution
of Eq. (19).

4.2 Non-Key Frames

In this algorithm, NK frames fNK are projected block by
block so as to retain local information as much as possi-
ble and further improve the recovery effect, namely, yNK =

ΦNK fNK , where ΦNK is the diagonal measurement matrix as
defined in Eq. (5).

At the decoder, for each fNK , its SI is obtained by
motion-compensated interpolation (MCI) of its previous and
next reconstructed key frames. MCI technique has been suc-
cessfully used for side information generation in DVC [1].
Then, we use the SI frame fS I to learn the dictionary for
the current frame fNK as follows. i) fS I is divided into
several non-overlapping blocks. For each block in the SI
frame, we extract the five training patches, including the
nearest four blocks overlapping this block and this block it-
self, where each extracted patch can be viewed as a column
vector Di ∈ RN where N represents the size of the block.
ii) The proposed DL based reconstruction method is then
applied to recover the NK frame from limited numbers of
measurements, wherein the sparse representation and sig-
nal recovery are jointly optimized. At each step of our pre-
sented iterative algorithm, we firstly apply the K-SVD al-
gorithm [11] to the training patches Di to learn the frame-
level dictionary D ∈ RN×dsize along both the temporal and
spatial directions, in which D is a redundant dictionary con-
taining dsize atoms. Using the learned dictionary can usu-
ally provide sparser representation for fNK than using a fixed
DCT or DWT basis. Second, the subproblems, {x, f , d, u}-
minimizations, are solved respectively. As revealed in Al-
gorithm 1, the dictionary is learned in a frame level, while
the variables {x, f , d, u} are updated by solving the corre-
sponding component of each block. In other words, once
the dictionary is learned using K-SVD, the current frame is
then reconstructed in a block-by-block fashion.

5. Simulation Results

We test the performance of our proposed framework on two
video sequences: Foreman and Mobile. The frame size is
set to 176×144 (QCIF) and 352×288 (CIF), and only the lu-
minance components are processed in our simulations. At
the encoder, the size of GOP is set to 2, and both frames are
split into non-overlapping blocks of size 16×16. (Note that
the sizes of non-overlapping blocks and that of dictionaries
also correspond to N and N×dsize respectively as mentioned
in the former Section. Here we set both of N and dsize to
be 256). Each block is projected using the random Gaussian
matrix with various sampling rates. At the decoder, the re-
covery of key frame in Eq. (19) is performed by employing
the conventional ADMM algorithm, and the recovery of NK
frame is solved by utilizing Algorithm 1, wherein the empir-
ical parameters, λ1, λ2, ρ and μ, are set to 1 for simplicity.
Note that the study of the values of the parameters is beyond

the scope of this paper.
The proposed method is compared with two alterna-

tives, i) the traditional basis pursuit (BP) method Eq. (4)
and ii) the reconstruction method with K-SVD dictionary
learning [8], [9]. Compared to our proposal, the conven-
tional ADMM algorithm is utilized to achieve sparse re-
covery in the BP scheme wherein the DCT transform pro-
vides the sparsifying basis. In the Refs. [8], [9], the K-SVD
algorithm is firstly employed to train the dictionary using
blocks from the two adjacent key frames and SI, and then the
frame recovery is achieved via sparse reconstruction Eq. (4).
Thus, this method [8], [9] is denoted as the dictionary-
learning-and-then-reconstruction scheme (DL-REC) in our
work, since it requires the trained dictionary ahead of the
reconstruction process. For a fair comparison, the same DL
method is used in our proposal and DL-REC, i.e., only the
patches obtained from SI are utilized to train the dictionary.
Besides, the same test conditions are used for key frames,
including the same Gaussian measurement matrix, the DCT
sparsifying basis and the default ADMM sparse recovery al-
gorithm.

In our simulations, the peak signal-to-noise ratio
(PSNR) (as well as the perceptual quality) of the recon-
structed video sequences are utilized to evaluate the re-
construction performance. Specially, different measurement
rates (MR varying from 0.1 to 0.5) are used for key frames
and NK ones. Here, it should be noted that, in most papers
related to video coding based on CS, frames are undersam-
pled with identical MR, that is MR of key frames (MRK) is
equivalent to that of NK frames (MRNK). However, from
the perspective of distributed CS [27], the performance of
joint reconstruction can be achieved better by using smaller
MRNK and larger MRK , if the temporal redundancy between
frames could be exploited at the decoder. Consequently, in
the DCVS framework, key frames can be undersampled at
an increased MRK in relation to MRNK [8], [11], [17]. Thus,
we use the similar conditions described in [15], [16] in our
experiment, taking the following two cases MRK = MRNK

and MRK > MRNK into consideration. In the case of the lat-
ter situation, the average PSNR results are calculated only
for NK frames, since the DL based recovery method we
proposed is designed for NK frames (as demonstrated in
Fig. 1 (a)). The total results of the two cases are demon-
strated in Table 1-2, for QCIF and CIF video sequences sep-
arately.

As shown in Table 1, when MRK = MRNK (varying
from 0.1 to 0.5), our proposal increases about 0.92-4.14
dB over the BP scheme for QCIF sequences in the average
PSNR, approximately 1.55-4.14 dB for Foreman, 1.07-2.3
dB for Mobile. When MRK > MRNK , MRK is set to 0.5 and
MRNK changes with the range of 0.1 to 0.5. Under such cir-
cumstances, we could have a 2.33-15.31 dB gain in PSNR
of NK frames in average (3.26-15.31 dB for Foreman, 2.33-
7.58 dB for Mobile). For CIF sequences, we could obtain a
0.7-4.74 dB increase over the BP scheme when, and a 1.39-
15.65 dB improvement when MRK = MRNK , as illustrated
in Table 2. Furthermore, in comparison to the DL-REC
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Table 1 The performance comparison of QCIF sequences

Average PSNR of all frames(dB)

MRK MRNK
Foreman Mobile

BP DL-REC Proposed BP DL-REC Proposed
0.1 0.1 10.34 14.22 14.48 10.91 12.59 13.21
0.2 0.2 19.74 21.30 21.51 15.88 16.15 16.98
0.3 0.3 24.21 25.06 25.76 17.75 17.69 18.82
0.4 0.4 27.09 27.71 28.74 19.54 19.27 20.68
0.5 0.5 29.37 29.74 30.99 21.10 20.61 22.26

Average PSNR of all NK frames(dB)

MRK MRNK
Foreman Mobile

BP DL-REC Proposed BP DL-REC Proposed
0.5 0.1 10.35 22.52 25.65 10.97 17.30 18.55
0.5 0.2 20.35 27.03 29.25 16.10 18.20 20.86
0.5 0.3 24.47 28.09 30.39 17.93 18.94 21.78
0.5 0.4 27.06 29.17 31.54 19.60 19.55 22.66
0.5 0.5 29.40 30.13 30.66 21.18 20.20 23.51

Table 2 The performance comparison of CIF sequences

Average PSNR of all frames(dB)

MRK MRNK
Foreman Mobile

BP DL-REC Proposed BP DL-REC Proposed
0.1 0.1 10.59 15.30 15.33 10.76 12.70 13.26
0.2 0.2 19.74 21.63 22.82 23.15 15.81 16.40
0.3 0.3 25.99 26.59 27.06 17.83 18.23 19.22
0.4 0.4 28.61 28.89 29.52 19.73 20.03 21.30
0.5 0.5 30.70 30.64 31.40 21.48 21.64 23.24

Average PSNR of all NK frames(dB)

MRK MRNK
Foreman Mobile

BP DL-REC Proposed BP DL-REC Proposed
0.5 0.1 10.59 25.32 26.24 10.8 17.39 19.21
0.5 0.2 22.36 27.10 29.06 16.06 18.70 21.27
0.5 0.3 26.29 28.28 30.10 17.99 19.78 22.45
0.5 0.4 28.57 29.46 31.02 19.79 20.83 23.74
0.5 0.5 30.68 30.56 32.07 21.55 21.88 25.10

scheme, our proposed scheme with the joint optimization
of DL and signal recovery offers a PSNR gain of around
0.03-2.16 dB and 0.13-3.45 dB, in the following two cases
MRK = MRNK and MRK > MRNK respectively. As indi-
cated in the tables, a large PSNR gain could be easily got
through the DL-REC mechanism than BP, in that more sig-
nal inter-frame correlation structures are exploited at the de-
coder. Besides, superior performance can be achieved using
our presented method, since the sparse representation and
frame recovery are jointly optimized in our proposal while
the two processes are independently considered in DL-REC.
Besides, it can also be seen that when MRK > MRNK ,
better PSNR results of NK frames could be obtained with
key frames being undersampled at an increased sampling
rate, since the more information could be extracted from SI
with higher quality. For example, when MRK = 0.5 and
MRNK = 0.1, PSNR of NK frames in the video sequence of
Foremen QCIF is about 25.65dB using our proposal, while
the PSNR result is only 18.63dB for NK frames in the case
that both MRK and MRK are set to 0.1.

As shown in Figs. 2-3, the PSNR results of each NK
frame when MRK = 0.5 and MRNK = 0.1 are demon-
strated for the Foreman, Mobile sequences respectively. We
can conclude that almost each frame is recovered with a
PSNR gain by using our proposal than the BP and DL-REC

Fig. 2 The performance comparison of each NK frame for Foreman
(QCIF) when MRK = 0.5 and MRNK = 0.1

scheme. It should be noted the quality outcomes of some
frames experience a dramatic decrease, e.g., the 95th and
102th NK frames in the Foreman QCIF. The leading cause
lies that the context transformations of these frames are rel-
atively bigger, which results in the side information of infe-
rior quality which fails to offer sound atoms to learn dictio-
naries. The performance contrasts for CIF video sequences
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Fig. 3 The performance comparison of each NK frame for Mobile
(QCIF) when MRK = 0.5 and MRNK = 0.1

Fig. 4 The performance comparison of each NK frame for Foreman
(CIF) when MRK = 0.5 and MRNK = 0.1

Fig. 5 The performance comparison of each NK frame for Mobile (CIF)
when MRK = 0.5 and MRNK = 0.1

are shown in Figs. 4-5. We can conclude that PSNR results
of nearly every NK frame recovered employing our method
are better than those using DL-REC and BP, with the aver-
age PSNR improvement of 9.21-15.65 dB and 0.92-1.82 dB

Fig. 6 Recovered 52nd frame of Foreman (QCIF) when MRK = 0.3 and
MRNK = 0.3. (Top left) The original frame. (Top right) BP, 24.01dB;
(Bottom left) DL-REC, 25.6dB; (Bottom right) our proposal, 27.33 dB.

Fig. 7 Recovered 52nd frame of Mobile (CIF) when MRK = 0.5 and
MRNK = 0.2. (Top left) The original frame. (Top right) BP, 16.07dB;
(Bottom left) DL-REC, 18.87dB; (Bottom right) our proposal, 21.4dB.

respectively. Additionally, Fig. 6 shows an instance of the
reconstructed 52nd NK frames in the Foreman QCIF em-
ploying the three algorithms when both MRK and MRK are
equal to 0.3. The recovered 52nd NK frames in the video
sequence of Mobile CIF are also presented in Fig. 7 when
MRK = 0.5 and MRNK = 0.2. It could be seen that bet-
ter subjective image quality could be achieved by using our
presented DL based recovery method.

Lastly, the convergence of our method is shown as an
example by using a seven-time-iteration. To make it clear,
we use the first 100 frames of the Foreman QCIF to per-
form the simulation. In specific, the key frames are recon-
structed using DCT with different MR; NK frames are re-
constructed using our proposal as the number of iterations
varies from 1 to 7. The recovery results in terms of PSNR of
NK frames are demonstrated in Fig. 8. It can be easily illus-
trated from the figure that more numbers of iterations could
lead to higher-quality reconstruction. A favourable recovery
effect can be reached via three-four iterations.
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Fig. 8 Variation of average PSNR value with the number of iterations for
Foreman (QCIF).

6. Conclusion

We present a spatiotemporal dictionary learning based re-
construction method for DCVS, in which we attempt to en-
hance the reconstruction effect by jointly optimizing sparse
reconstruction and signal recovery. In our work, we develop
a novel joint optimization model, wherein the dictionary
learning is included into the iterative algorithm as one sin-
gle step and the frame recovery is achieved in an -analysis
fashion under the correlation constraint. Furthermore, an
ADMM based algorithm is also outlined to solve the under-
lying optimization problem. Experimental results show that
the proposed method offers improved MR-distortion trade-
off and better reconstruction quality compared with the tra-
ditional methods. In order to further enhance the recov-
ery performance using fewer measurements, some signifi-
cant problems should be studied in the future: (1) efficient
side information extraction methods; (2) more accurate cor-
relation noise model; and (3) fast dictionary learning algo-
rithms.
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