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Threshold-Based Distributed Continuous Top-k Query Processing
for Minimizing Communication Overhead

Kamalas UDOMLAMLERT†a), Nonmember, Takahiro HARA†, Member, and Shojiro NISHIO†, Fellow

SUMMARY In this paper, we propose a communication-efficient top-k
continuous query processing method on distributed local nodes where data
are horizontally partitioned. A designated coordinator server takes the role
of issuing queries from users to local nodes and delivering the results to
users. The final results are requested via a top-k subscription which lets
local nodes know which data and updates need to be returned to users.
Our proposed method makes use of the active previously posed queries to
identify a small set of needed top-k subscriptions. In addition, with the pre-
indexed nodes’ skylines, the number of local nodes to be subscribed can
be significantly reduced. As a result, only a small number of subscriptions
are informed to a small number of local nodes resulting in lower commu-
nication overhead. Furthermore, according to dynamic data updates, we
also propose a method that prevents nodes from reporting needless up-
dates and also maintenance procedures to preserve the consistency. The
results of experiments that measure the volume of transferred data show
that our proposed method significantly outperforms the previously pro-
posed methods.
key words: top-k queries, skyline queries, continuous queries, multidimen-
sional databases, distributed systems

1. Introduction

Nowadays, massive data are continuously generated mostly
in distributed fashion such as sensor data. These data can be
associated with multiple dimensions of nominal, ordinal or
numeric (interval) attributes. Apart from the large volume of
data, these data are quite fast, i.e., some generated data can
be replaced with newer generated data or can be expired.

A monitoring system that executes continuous queries
plays an important role to detect and capture important in-
cidents analyzed by those data especially in applications of
environmental monitoring and disaster monitoring. Despite
the massive amount of data, the monitoring system needs to
display only some attentive data in real time because users
or experts would be interested in only a few best data ob-
jects (say k objects) at a time, i.e., continuous top-k query
processing. Basically, the ranks of data objects can be deter-
mined by their scores calculated by a scoring function (user
preference) on numeric quantitative attributes

In this paper, we assume a general monitoring system
depicted in Fig.1. Multiple users can register their top-k
queries with different preferences into a single coordina-
tor server (BS ). The distributed nodes (Mi) consequentially
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Fig. 1 An example of the assumed monitoring system

generates a data object consisting of multiple numerical at-
tributes or invalidates the previously generated data object.
The coordinator server, acting as the interface between users
and many distributed nodes, processes multiple continuous
queries on behalf of many users and keeps delivering the
latest top-k answers to those users according to the data
changes (insertion or deletion). The components in BS and
Mi will be explained in detail in the latter section.

However, the problem in this scenario is that, to cor-
rectly deliver or notify the final top-k answers to end-users,
the coordinator server must aggregate sufficient data objects
from the distributed nodes. A naive method is to let the coor-
dinator server periodically issue many traditional distributed
top-k snapshot queries at every time tick (proactive scheme).
However, it is difficult to define an appropriate query fre-
quency, i.e., the duration between time ticks. Setting too
high frequency can lead to many redundant data objects re-
turned while setting too low frequency can make some users
miss out important up-to-date data. Another naive method is
to aggregate all local data objects at the initialization phase
as well as every data update to the coordinator server (re-
active scheme). This guarantees that, for any queries, the
aggregated data objects giving the k-highest scores are top-k
answers, but this approach possibly transfers a lot of unused
data objects, i.e., non-top-k objects.

From the viewpoint of green IT, it is also highly impor-
tant to reduce the energy consumption according to com-
munication cost which refers to the total amount of trans-
ferred query messages and data objects especially in sensi-
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tive battery-constrained systems like sensor networks.
To solve the above problems, our proposed method

adopts threshold-based top-k query processing in a reactive
scheme and introduces techniques which help saving com-
munication overhead as follows; (1) The coordinator server
constructs a top-k subscription denoted by a scoring func-
tion and an estimated score as a threshold for each query.
These top-k subscriptions are sent to local nodes to inform
them of the scope of promising data objects, so they are able
to send only some necessary data back to the coordinator
server. (2) When handling a large number of continuous
queries, it is inefficient to rigorously pass to every node a
large list of all requests or subscriptions. We make use of
the maintained queries as materialized views at the coordi-
nator server to identify a small set of dominating queries
to be informed to nodes. Moreover, some queries can pos-
sibly be answered by using those views (previously posed
queries), so the coordinator server does not need to pay ad-
ditional communication cost for issuing queries or retrieving
top-k answers that incur wasteful transmission. (3) Our pro-
posed method can avoid sending some subscriptions to local
nodes whose promising data are still unlikely to be included
in the top-k answers. This results in saving cost of issuing
subscriptions.

In summary, the contributions of this paper are as fol-
low:

• We formulate the requirements of multidimensional con-
tinuous top-k query processing in distributed environ-
ments. Then, we propose an efficient method that satisfies
the requirements and takes the actual user’s preference
into account.

• We design a mechanism to minimize unnecessary data
traffic and the maintenance cost of the proposed method
in response to data and query updates.

• We conduct some experiments in various settings to show
that our proposed method has lower communication over-
head than competitive methods.

2. Related Work

Top-k query processing has been widely researched and
gained a lot of attentions in research of databases. Ini-
tially there have been many studies on snapshot top-k pro-
cessing in centralized databases [1]–[4]. Besides, in the re-
search field of distributed systems, there have also been a
number of proposed techniques which are favorable for var-
ious assumptions and requirements. For the assumption of
data models, the first category is called vertically partitioned
datasets which can be seen in [5]–[7], and another category
is called horizontally partitioned datasets. The latter cate-
gory is matched with our assumed environment. In [8], the
authors proposed a method to acquire the top-k results in a
P2P network where the dataset is vertically partitioned, and
super-peers take roles of processing and indexing. However
this method is not efficient when directly deploying on our

constraints where we focus on more complicated multidi-
mensional top-k query processing.

One technique for efficient top-k query processing is
to answer top-k queries by using materialized views. In
the case of centralized processing, to access a massive raw
database is considered too costly. Instead of accessing the
entire database relations every time, in [9], the authors pro-
posed LPTA utilizing the answers of previous-posed top-k
queries called views. LPTA based on linear programming
determines whether the existing views are sufficient to re-
spond to a new top-k query. In [10], the authors proposed
algorithms of maintenance of a large number of top-k mate-
rialized views for 2-dimensional data. The existing views
are indexed in hierarchy paths for efficient view updates,
and views to be updated are judged by using those hier-
archy paths. However, the hierarchy paths must be recon-
structed on every update. In the case of distributed process-
ing, ARTO [11] is a cached-based distributed top-k query
processing method. Due to the existence of cache of the
previous results, ARTO constructs a remainder query to
fetch only the remaining data from horizontally partitioned
databases. In our work, we also deploy this concept to iden-
tify whether the available data objects at the coordinator
server is sufficient enough to answer some queries imme-
diately.

In Wireless Sensor Networks (WSNs) where data are
sent by multi-hop relays to the sink or the server, the goal
is to minimize the communication cost for data transmis-
sion and prolong the network lifetime. In [12], the au-
thors basically presented an in-network aggregation tech-
nique by sending only top-k answers from every node for
each epoch. In [13], the algorithm called FILA constructs
filters for nodes and binds those filters to nodes. Data which
are filtered by a filter will not be sent to a sink. Most of these
works assumed only single dimensional data and one sensor
reading at a time. In [14], the authors proposed a method
to aggregate top-k answers in WSNs by constructing a top-
k filter utilizing a dominant graph which was discussed in
[3] as a data structure. Even though our research focuses on
general distributed systems, this work proposed in WSNs is
comparable to our work because both focus on multidimen-
sional and continuous top-k queries. However, this method
does not take the actual scoring function into account, and it
assumes each data object’s expiration time is known (time-
frame model) (See Sect. 5.1.2).

Continuous top-k query processing is also found in
[15]–[18]. In [15], they firstly introduced the concept of
distributed top-k monitoring supporting a sum of a sin-
gle attribute monitoring query across vertically partitioned
databases. [16] addresses multiple continuous top-k queries
over data streams in centralized databases by aiming at re-
ducing CPU cost. In [17], the authors proposed a real-time
publish/subscribe model to perform continuous top-k query
processing, while our problem is to reduce the commu-
nication cost of monitoring top-k answers on high-update
horizontally partitioned databases. The works above are dif-
ferent from ours because they assume continuous queries on
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data streams over sliding windows or time-frame models.
Our work is much closer to [18] according to the problem
definition, but this work focuses on centralized databases
which the performance is measured by execution time.

Apart from a top-k query, a skyline query has been ex-
tensively researched both in centralized [19] and distributed
fashions [20]. Because this type of query is related to the
study of data dominance in multidimensional space, the uti-
lization of skylines is also known as effective for top-k query
processing. Specifically, skylines can be indexed and uti-
lized as effective routing metrics. In [21], the authors as-
sumed a super-peer architecture and make use of K-skyband
cached at super-peers, and super-peers decide the best se-
quence of other super-peers to be requested. K-skyband is
a set of data objects that are dominated by at most K − 1
other objects. Basically, the data that belong to K-skyband
can sufficiently answer all monotonic top-k queries where
k ≤ K. In [22], the proposed method called DiTo designates
a server to aggregate skylines of other servers in a P2P net-
work and derives benefits from that knowledge to iteratively
send top-k query requests to the most promising nodes first.
As a result, the number of disturbed nodes is minimized, but
the number of iterations to finish the processing in the worst
case is up to k, and this approach does not take continuous
queries into account.

3. Preliminaries

3.1 Environment and Data Model

The distributed network consists of N + 1 nodes including
one base station (BS ) and N local nodes (M1,M2, . . . ,MN)
called nodes for short. BS takes the role of query issuing
and data aggregation. BS can be seen as a centralized co-
ordinator server to relay and deliver the final result to end-
users. Each node logically connects and collaborates with
BS only. Hence, among local nodes, they share nothing.
In this work, without loss of generality, we assume that the
topology is unchanged and reliable. Figure 1 shows an ex-
ample of a topology consisting of 3 nodes deployed in the
network. A data object d j ∈ Di(1 ≤ i ≤ N, 1 ≤ j ≤ |Di|) held
by a node i has a fixed size associated with its identifier (m-
dimensional numerical attributes) which can be represented
as a data tuple d j = (d j[1], d j[2], . . . , d j[m]). The data ob-
jects are horizontally partitioned among nodes, i.e. a node
holds only a partial set Di of entire data objects in the sys-
tem D (Di ⊆ D). The data objects are arbitrarily inserted
and removed at nodes as time passes.

3.2 Multidimensional Top-k Query

A multidimensional top-k query qk = (s f , k) from a user
is defined by a scoring function s f which is a monotonic
function, and a parameter k. In this paper we focus on linear
combination functions such that the score of a data item di

is s f (di) =
∑ j=m

j=1 w j · di[ j] where w j stands for a positive
weighting at j-th dimension, i.e., the degree of attention of a

user over j-th dimension. A vector of weightings is denoted
by w = ⟨w1, w2, . . . , wm⟩. The summation of weighting of
all dimensions should be equal to 1, but in fact, represented
as a vector, only its direction affects the consequent result.
A scoring function is monotonic that is if da[i] ≤ db[i] for
all 1 ≤ i ≤ m, then s f (da) ≤ s f (db). The value k defines the
number of desired data objects.

It is noted that our query model does not include a
user’s location as one of the system’s input, so the attribute
must be user-independent, i.e., every user recognize the
same values of attributes for each data object. In addition,
we assume that the attribute must be quantitative attributes.
For attributes of locations, either latitude or longitude may
not be appropriate to be used solely as an attribute because
they are not quantitative attributes. However, these attributes
(latitude or longitude) can be used for calculating distances
instead. Nevertheless, the distance from each user to the ob-
jects is not eligible while user-independent distances, e.g.,
distance to the nearest emergency dispatcher (which is static
for evaluating the risks), distance to the nearest train station
(which is static for evaluating properties) can be used. In
this work, we assume that users prefer higher values, so in
the case of distances, we may use 1/distance as an attribute
instead.

In fact, top-k answers and non-top-k answers are easily
divided by giving the query and the actual threshold. The
actual threshold is k-th highest score of entire data objects
distributed in the network (D). However, the actual thresh-
old is difficult to know, because BS does not have entire data
to rank all data objects. The threshold which is estimated
is referred to the threshold whether it is actual. A query
which is already attached with the threshold is represented
as q = (qk, ths) = (s f , k, ths).

Top-k answers of query q denoted by TOPq is a set of
data objects which contains only k data objects having best
scores among data objects according to the scoring func-
tion q.s f such that TOPq ⊆ D and |TOPq| = k. Therefore,
∀di∀q(di ∈ TOPq → (q.s f (di) ≥ q.ths)).

In Fig.2a, the final answers of the top-4 query q1 ranked
by their scores are d1, d2, d3 and d4 respectively, and the
threshold q1.ths = q1.s f (d4). Similarly, the answers of top-
4 query q2 ranked by their scores include d3, d1, d5 and d6

Fig. 2 Example of two top-4 queries including q1 and q2
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respectively while the threshold q2.ths = q2.s f (d6). We de-
fine the area where the points have scores higher than the
threshold (q.s f ≥ q.ths) as the affected area, because any
data that fall in this area definitely affect the query’s thresh-
old, and also define the line between those two areas as the
threshold line (q.s f = q.ths). The example in Fig.2b shows
the affected area and the threshold lines which are formed
by 2 queries in Fig.2a. Only data updates that occur inside
the affected area will affect the final results and the changes
of the thresholds.

3.3 Continuous Top-k Query

A continuous query is different from a snapshot query that
a user wishes to continuously monitor on the latest final
answers of the query. The naive solution for this require-
ment is to periodically query for answers, but it is not ef-
ficient because a lot of redundant data objects will be re-
trieved each time. For this aim, the reactive method, in-
forming a potential update as necessary, is more promising.
Our proposed method assumes two important components
stored at BS ; the query list (QL) and the data pool (DP).
QL records active queries from users, and DP maintains
previously retrieved valid data objects at BS . We try to pre-
serve that available data objects in DP must sufficiently sat-
isfy all queries in QL.

3.4 Top-k Subscription

The top-k subscription of a query q (S q for short) is denoted
by 2 components of query q; a scoring function (q.s f ) and
a threshold (q.ths). S q = (s f , ths) is issued to local nodes
in order to request the data objects whose scores surpass
the threshold regarding to the scoring function back to BS .
Nodes Mi also store received subscriptions in their own sub-
scription list S Li. In order to deliver the precise top-k an-
swers of a continuous query q to end-users, the threshold
indicated in the subscription must guarantee that the total
number of data objects whose scores surpass the threshold
is not less than q.k (|{di ∈ D|S q.s f (di) ≥ S q.ths}| ≥ q.k). BS
requests all those data objects to be stored in DP. As a re-
sult, the aggregated data objects in DP giving k best scores
are the answers of the top-k query.

Due to the horizontally partitioned dataset, BS does
not know the complete view of global data distribution. As
a result, to acquire the actual threshold (k-th score of en-
tire data objects D) is difficult. In this paper, we proposed
the threshold estimation algorithm to achieve the near actual
threshold.

Due to data updates, these thresholds possibly change
and break the consistency. The maintenance of DP and QL
as well as S L is required. We will describe this in Sect. 4.

3.5 Skylines and Their Utilization

Skyline operator was first proposed in [19] which became a
type of queries and was extended to apply to many purposes.

In our proposed method, we utilize the characteristics of the
skyline operator for several benefits. Inspired by the sky-
line utilization in [22], indexing local nodes’ skylines at BS
enables BS to selectively request the data from the minimal
number of nodes for distributed top-k query processing. Due
to the threshold-based procedures, apart from the initializa-
tion of aggregating local skyline, we can avoid flooding that
causes a huge amount of traffic in the large scale (explained
in Sect. 4). It is noted that a skyline cardinality increases
exponentially with dimensionality; however, the initializa-
tion is done once and it can be used in the long term, so we
maintain the skyline in response to updates (less frequent).

Definition 1: Given a set of data points P, a skyline query
of P returns data points skyline(P), such that p ∈ skyline(P)
is not dominated by any other data points in P. Data point
p1 is said to dominate a data point p2 if and only if p1 is not
worse than p2 in any dimension and better than p2 at least
one dimension. In this paper, we define the higher value on
each attribute, the better.

The skyline of local data objects of Mi (Di) is denoted
by S Ki = skyline(Di). In addition, we define a useful func-
tion which tests whether a given weighting vector and a
given score c cross S Ki.

crossS Ki (s f , c) =

true ∃d (d ∈ S Ki ∧ s f (d) ≥ c)

f alse otherwise

3.6 A Set of Dominating Queries

The query list (QL) at BS must be able to handle a large
number of queries. However, the affected area of some
queries are possibly fully contained in the affected area of
another set of queries called a set of dominating queries
(DQ). To identify DQ, we solve the axis intercepts of the
linear equations (the scoring functions with their thresholds
in Fig.3a), then those axis intercepts are plotted in the new
space called the intercept space as shown Fig.3b. We define
DQ as the queries lying on the skyline (the lower the better)
in the intercept space. Therefore, preserving the integrity of
DQ ({q2, q3, q4}) also ensures the integrity of top-k answers
for remaining queries QL\DQ ({q1}) in the query list.

Definition 2: A set of dominating queries DQ contains all
the queries that belong to the skyline in the intercept space.

Fig. 3 Example of representing 4 queries
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Theorem 1: If q1 dominates q2 in the intercept space, then
TOPq2 ⊆ TOPq1 .

Proof : Assume there exists d ∈ TOPq2 but d < TOPq1 .
This means d falls in the affected area of q2 but not q1. Since
q1 dominates q2 in the intercept space, the affected area of
q2 is fully contained in the affected area of q1. This leads
the contradiction.

Theorem 2: Any q < DQ, there exists at least one query
dominating q in the intercept space.

Proof : Assume that q < DQ and there is no query dom-
inating q in the intercept space. This cannot happen because
by Definitions 1 and 2, q must belong to DQ.

3.7 Answering Top-k Queries Using Views

BS preserves entire active previously posed continuous
queries with their valid answers. In the presence of this
knowledge, we can use that to determine whether the data
objects in DP are sufficient to satisfy the new coming query.
By the concept of answering top-k queries using views in
[9], [11], given a set of views and a top-k query, these al-
gorithms solve the linear programming optimization on a
convex region of the set of views to find the minimum score
of the top-k query that can be guaranteed by these views.
However, the set of the views (previously posed queries) to
be used in the execution in our proposed method are DQ
(DQ ⊆ QL). It is noted that a new query q which does not
belong to DQ can be definitely answered by using the views
of the dominating queries that dominates q, but the converse
is not always true. Due to the limitation of the space, the
algorithm details can be found in [9], [11].

4. Proposed Algorithms

4.1 Outline of the Proposed Method

There are many local nodes which are holding different sets
of data objects in the system. Without any technique, for
each single query, BS cannot help asking every node to
send back all possible final answers back to BS . To pre-
vent that situation, given a first query q1, BS requests the
score summary information by using small-sized histograms
to roughly decide the score threshold. This may take multi-
ple iterations to be finished. BS uses the estimated threshold
to request only a small number of data objects whose scores
surpass the given threshold back to BS . Apart from cost
of transferring desired data objects to BS , the number of
messages also consumes a large cost of communication es-
pecially when flooding query messages to irrelevant nodes.
Together with the given threshold, all local nodes’ skylines
aggregated at BS in the initialization, called skyline indexes,
can identify a small number of nodes which are involved
with query processing while ensuring the completeness of
final answers.

Given existing queries q1, q2 and another new coming
query qn, it is possible that BS can immediately answer qn

since BS already has some data objects retrieved so far from
q1 and q2. To check this, it can be categorized into 3 cases
as follows:

• The answer space of qn is covered by either q1 or q2

(DOM). This happens when qn is not included in a set
of dominating queries. Therefore, final answers of either
q1 or q2 can sufficiently answer qn.

• The answer space of qn is covered by together q1 and q2

(VIEWS). This means the final answers of some material-
ized views (q1 and q2) can sufficiently answer qn. This can
be identified by the method discussed in Sect. 3.7. This
kind of queries is included in a set of dominating queries.

• Otherwise (HIST), existing data objects at BS are not the-
oretically guaranteed to be enough to answer qn. Here, qn

has to be executed by estimating the threshold as same as
the first query (q1). This is the most expensive case. How-
ever, due to existence of some potential data objects at
BS , more appropriate range of histograms can be decided
resulting that it takes very few iterations to be finished.

The local nodes must be able to monitor the changes of
data and identify which one is involved or affects the final
answers of active queries in QL. For this aim, our method
disseminates a top-k subscription S q, which contains the in-
formation about the affected area of q, to local nodes from
BS , and local nodes keep all received subscriptions in its
own subscription list (S L). Local nodes have the respon-
sibility to keep an eye on local data objects matched with
the subscription. If an existing data object or an incoming
update matched with the subscription but it has never been
sent to BS so far, this data object must be sent to BS be-
cause it potentially affects the final answers of the queries in
QL. The benefit is that a local node monitors only a small
affected area from an entire data space, so a large number of
unnecessary data objects and data updates can be pruned. In
practice, a data request, which BS asks local nodes to send
the data objects to BS for the first time, is also proceeded
via subscriptions.

It can be expensive to construct the subscriptions of
all active queries in QL and to flood those subscriptions to
all local nodes (|QL| ∗ N messages). Therefore, we bind
the top-k subscription if and only if that query is in DQ.
Because of skyline indexes, BS uses them together with
the threshold line from S q to identify the nodes that do
not certainly contribute any final answers by using function
crossS Ki (q.s f , q.ths). These subscriptions will be bound to
a small and different group of local nodes. As a result, BS
can save cost by avoiding making any requests to those ir-
relevant nodes.

In conclusion, for a new query qn, in the case of HIST,
it must pay communication cost for both threshold estima-
tion and issuing subscriptions. In the case of VIEWS, BS
needs to pay only the cost of issuing subscriptions, while
DOM requires nothing.
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Algorithm 1 Base station’s procedures
A new query qk = (s f , k) inserted at BS

1: ths← k-th highest score of qk.s f (DP)
2: q← (s f , k, ths)
3: if q is not a dominating query then
4: QL.put(q)
5: else if q can be answered by using views then
6: BindS ubscription(q) // Algorithm 4
7: QL.put(q′)
8: Update DQ
9: else

10: scoremin ← q.ths
11: scoremax ← max

{
q.s f (di)|di ∈

∪N
i=1 S Ki

}
12: q← ThsEst(q, scoremin, scoremax) // Algorithm 3
13: BindS ubscription(q) // Algorithm 4
14: QL.put(q′)
15: Update DQ

An old query q = (s f , k, ths) deleted from BS
16: QL.remove(q) and announce to nodes keeping q
17: if q ∈ DQ then
18: Inform nodes to invalidate S q

19: Update DQ
20: Bind some additional subscriptions if necessary

BS receives data update d′’s information
21: Add or remove d′ from DP
22: Update answers and thresholds of affected queries
23: Update DQ
24: Bind some additional subscriptions if necessary

BS receives skyline updates from Mi

25: Invalidate the existing skyline of Mi which is dominated by this update
26: Store new skyline tuples

4.2 Initialization

The initialization phase is done once at every node. In order
for BS to be able to decide effective query requesting, each
node has to contribute some information to BS . That is the
associated data tuples of the skyline of the local data objects
called skyline indexes (S Ki). It is noted that exchanged data
are only associated data tuples (numerical attributes), not
data objects, which are smaller in size. When BS receives
these skyline indexes from the local nodes, it constructs a
table to store this information.

4.3 Handling a New Query

The algorithm of this phase is shown in Algorithm 1, lines
1-15. When there is a new query injected by a user at BS ,
firstly the initial threshold of the query is set as the k-th score
of valid data objects in DP corresponding to the query’s
scoring function q.s f . Afterward, our method preliminarily
analyzes the query with its initial threshold. In the case that
q is included in DQ, our method simply stores this query
in QL, because this query can be answered from the domi-
nating query which dominates it, and the initial threshold is
actual. In the case that q is not included in DQ, our method
later examines whether q is answerable by a combination of
views. If answerable, BS does not require to retrieve further
data objects, because all data objects in DP are sufficient
and the initial threshold is also actual. Besides, this query

Algorithm 2 Threshold Estimation (ThsEst)
Histogram request at BS

Input: Query q = (s f , k, ths), scoremin, scoremax

Output: Query q = (s f , k, ths) // threshold ths changed
1: nb ←

⌈ √
q.k
⌉

2: r ← ( scoremax−scoremin
nb

)
3: repeat
4: pths = scoremin

5: Construct equi-width histograms H
⟨
H1,H2, . . . ,Hnb

⟩
on the range

[scoremin, scoremax]
6: Histograms request on Mi if crossS Ki (q.s f , scoremin)
7: H ← Combine the histograms from nodes
8: CF ← 0
9: for i = nb → 0 do

10: CF ← CF + Hi

11: if CF ≥ q.k then
12: scoremin ← max(scoremin, scoremax − ir)
13: until scoremin ≤ pths ∨CF ≤ (1 + γ)q.k
14: q.ths← scoremin

Histograms request at node Mi

Input: Query q, Histograms H, scoremin, scoremax

Output: H
⟨
H1,H2, . . . ,Hnb

⟩
15: for all d j ∈ Di do
16: if scoremin ≤ q.s f (d j) ≤ scoremax then

17: p =
⌊

(q.s f (d j)−scoremin)·q.k
scoremax−scoremin

⌋
18: Hp ← Hp + 1

becomes a new dominating query, so DQ is needed to be
updated, and a subscription of a new dominating query in
DQ must be constructed and bound (Algorithm 3). If unan-
swerable, this means the initial threshold is not actual, and
the data objects in DP is insufficient to answer the query. To
construct the top-k subscription and request the data objects
by using this initial threshold can incur a lot of unnecessary
transferred data objects, since this initial threshold is possi-
bly far from the actual one.

To solve this problem, BS calls the procedure to esti-
mate the threshold by using 1-dimensional equi-width his-
tograms in Algorithm 2, lines 1-14. We choose the number
of bins of histograms equal to

⌈ √
q.k
⌉

because this param-
eter should depend on k but must be smaller than k. Be-
cause there is no best number of bins for every data dis-
tribution, without the knowledge of the real data distribu-
tion, a good rule of thumb is to use the square-root choice
for the number of bins. BS knows the skyline points of all
nodes, all possible top-1 answers, so the maximum score
(scoremax) can be definitely known by selecting the great-
est score in skyline indexes. The minimum score of his-
tograms (scoremin) is a known and latest estimated thresh-
old. Initially, scoremin is set as equal to the initial threshold
q.ths. BS sends a request the histograms from some rel-
evant nodes Mi where crossS Ki (q.s f , scoremin) returns true
(line 6). Each requested local node constructs histograms
by counting the frequencies of local data objects’ scores on
each bin (denoted by a score range of a bin). As a result, the
merged histograms H at BS (line 7) represent the frequency
of the global scores of each score range. We count cumu-
lative frequencies (CF) from the bin which has the highest
score range to lower ones, and we stop at the bin that gives
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Fig. 4 Overview procedures for a new query qn

Algorithm 3 Bind Subscription
On bind subscription of q at BS

1: Construct subscription S q

2: Bind S q to Mi if crossS Ki (S q.s f , S q.ths)
On receive subscription S q at Mi

3: Store S q in S Li

4: Send d j ∈ Di which S q.s f (d j) ≥ S q.ths and is not yet sent to BS

CF ≥ q.k. We set new scoremin, i.e., the latest threshold as
the lower bound score of that bin. In the case that CF is still
high, using this threshold to request final answers can incur
many unnecessary data objects to be retrieved, so we repeat
requesting histograms again by using new scoremin until it
meets the stopping criteria as follows;

1. When the new estimated scoremin is not different from
the previous one,

2. When the cumulative frequencies are less than (1 +
γ)q.k where we allow some γq.k false positive data ob-
jects to be transferred, and

3. When it exceeds the maximum limit.

Note that this algorithm can incur some false positives but
not incur false negatives, so the correct final top-k answers
can definitely be returned to users.

In each iteration, scoremin gradually converges to the
actual threshold while the number of nodes to be disturbed
is likely to decrease. The initial threshold could be quite far
from the actual one. However, in latter queries when some
potential final answers of the previously posed queries are
available, the initial threshold is close to the actual thresh-
old, so the threshold estimation process is finished within
one or a few iterations.

4.4 Issuing the Subscription and Acquire Top-k Answers
for a Query

BS constructs a top-k subscription if it is a dominating query
(Algorithm 1, lines 6-8 and 13-15). The subscription con-
tains the query’s scoring function (q.s f ) and the query’s
latest threshold (q.ths). To prevent flooding, BS selec-
tively binds the subscription to nodes whose skyline indexes

Algorithm 4 Maintenance procedure at Mi

Data object insertion of d′

1: Di ← Di ∪ {d′}
2: if d′ is not dominated by S Ki then
3: Invalidate data points which d′ dominates in S Ki

4: S Ki ← S Ki ∪ {d′}
5: Inform BS a data tuple d′

6: if d′ is included in S Li and not sent to BS yet then
7: Send d′ to BS and mark d′ as already sent to BS

Data object deletion of d′

8: Di ← Di\{d′}
9: if d′ ∈ S Ki then

10: Execute constrained skyline to update S Ki

11: Send new skyline candidates to BS

12: if d′ was already sent to BS then
13: Inform BS about data deletion

overlap with the latest threshold (crossS Ki (S q.s f , S q.ths)).
Therefore, only a subset of nodes receives this subscription,
i.e., each node receives a different set of subscriptions based
on the necessity. Especially, if the threshold is equal to the
actual threshold, this subscription will be bound to only a
minimum number of needed nodes. Then, the nodes store
the received subscription as well as send the local data ob-
jects that are matched with the subscription and not yet sent
so far to BS . The data objects sent to BS must be marked
as already sent to BS to avoid redundant transferring. This
procedure is shown in Algorithm 3.

4.5 Top-k Answers at the Base Station

The top-k answers for a query q which is in QL are sim-
ply the first k-ranked data objects among all data objects in
DP according to the scoring function q.s f . This approach
can be enhanced by an implementing index of reverse top-k
queries [18], [23], which is beyond the scope of this paper.

(Running Example)

Figure 4 shows a running example when posing a new query
which is the case of HIST. In Fig.4a, after a user poses a
top-5 query to BS , BS requests and aggregates histograms
from distributed nodes by using #bin = 3. Then, BS esti-
mates the threshold by using those aggregated histograms.
According to the histograms, we stop at the second bin
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CF = 6 resulting in scoremin = 43.29. Assuming γ = 0.5,
CF < (1+ 0.5) · 5, so BS does not need to repeat requesting
histograms. Hence, in Fig.4b, BS constructs and issues the
subscription by using 43.29 as a threshold. Due to the sky-
line indexes, BS may not need to issue the subscription to
all nodes, i.e., only M1 and M3 are requested in the example.
After that, nodes keep the received subscription and send
back data objects that are matched with the subscription to
BS (6 objects returned). Those data objects sent back from
nodes and the available data objects in DP are sufficient to
correctly answer the top-k query. Finally, BS returns the
final answers to the user.

4.6 Maintenance on Query Updates and Data Updates

A query can be arbitrarily injected or withdrawn from BS
while data objects held by each node can dynamically
change as time passes. The following procedures are per-
formed in such a case.

(Query injection) A new query is handled as the same
procedure as stated in Sect. 4.3.

(Query withdrawal) A query can be simply removed
from QL. In the case of q ∈ DQ, DQ is updated and it is
possible that some queries in QL become new dominating
queries. Therefore, BS need to construct and disseminate
the subscriptions of those new dominating queries. After
that BS has to inform the nodes which store this query’s
subscription to invalidate it from S Li as shown in Algorithm
1 (lines 16-20).

(Data insertion) A new inserted data item is possibly
included in the final answers of some queries and affects the
change of local skyline. In the case that a new data object
is not dominated by S Ki, this means that the new data item
becomes a part of new S Ki. Then, the node sends the asso-
ciated data tuple of the new data object to BS , and BS up-
dates or issues subscriptions as necessary (Algorithm 1 lines
21-24). Both BS and local nodes do the same procedure
of updating skyline indexes. They simply include the new
data object in S Ki and invalidate data objects dominated by
this new data object (Algorithm 1, lines 25-26). In the case
that the new inserted data object is matched with one of the
stored subscriptions in S L. This data object must be sent
to BS and is marked as it was already sent to BS . Other-
wise, the node keeps the new data object without sending
to any node. Since most cases should fall in the latter case,
the large amount of sending unnecessary data objects can
be reduced. This procedure is shown in Algorithm 4 (lines
1-7).

(Data deletion) Data deletion at a node also has a same
effect as data insertion. In the case that a deleted data item
is in S Ki, our method performs a similar procedure as data
insertion. The node has to send new skyline indexes candi-
dates to BS as well as inform about skyline updates due to
the data deletion. The new candidates can be identified by
executing constrained skyline processing on the area which
only a data object to be deleted is dominating. Finally, if
this deleted data object was already sent to BS before, then

this node must inform BS to invalidate it. Due to the disap-
pearance of the data object, some queries in QL are possi-
bly affected, so those affected queries must be re-calculated
their new threshold.

(Data modification) Fundamentally, data modification
can be taken into 2 basic operations including data deletion
of old values and data insertion of new values. These two
basic operations make the communication with BS based
on the necessity. Hence, a data modification can be pro-
cessed and pruned locally if (1) an old data tuple is not in
the current skyline and was not already sent to BS (2) a new
data tuple does not become a new skyline point and is not
matched with any subscriptions. In the case that either of
these conditions is not satisfied, a data modification can be
equally translated to either data insertion or data deletion.

In addition, we can further cut some communication
cost and latency if both conditions are not satisfied by in-
forming BS of a data modification (old values and new val-
ues) in one round of communication. Then BS modifies the
values in line 21, Algorithm 1 instead of executing either
insertion or deletion. This can help BS call lines 21-24 in
Algorithm 1 only one time.

In Sect. 5, we focus only 2 basic operations including
data insertion and data deletion without using a dedicated
maintenance for data modification.

4.7 Algorithm Correctness

The algorithm for estimating the threshold is designed based
on the safety. It is noted that the possible maximum thresh-
old cannot be higher than the k-ranked data object of the
global dataset (D). Therefore, it is safe that there must be
at least k data objects whose scores trespass the estimated
threshold, and those data objects are the candidates to be
included in the final top-k answers.

We claim the correctness of the method proposed as
follows; Assume that at one period of execution time, a data
object d′ which originally belongs to node M′ is included in
the final answers of the query q, but this data object d′ has
not been sent to BS . This causes incorrect final answers.
Therefore we proof by contradiction to claim this will not
happen by our method. (1) If M′ has been received a sub-
scription of q, d′ must be sent to BS because the score of d′

(q.s f (d′)) must be higher than the threshold unless there are
at least other k data objects which contribute higher scores
than d′ that means d′ is not included in top-k final answers.
This makes the contradiction; therefore, d′ must be sent to
BS . (2) If M′ has not been received a subscription of q, this
means all local data objects of M′ and its S K have lower
scores than the threshold. Hence, a local data item d′ def-
initely has a lower score than the threshold. This leads to
the contradiction. As a result, q.s f (d′) must be higher than
the threshold because we firstly assume that d′ is one of the
final answers.



UDOMLAMLERT et al.: THRESHOLD-BASED DISTRIBUTED CONTINUOUS TOP-K QUERY PROCESSING FOR MINIMIZING COMMUNICATION OVERHEAD
391

4.8 The Procedure When a Node Joins or Leaves

Even though we assume that the topology is unchanged, in
the case that a node Mi joins the system, the node must send
its S Ki to BS . BS then issues a set of necessary subscrip-
tions based on the received S Ki. After that Mi must response
to those subscriptions by sending the data objects matched
with those subscriptions to BS . In the case that a node Mi

leaves, BS must invalidate the stored S Ki and the valid data
objects of Mi in DP. This can be handled as a bulk of data
deletions. These events trigger the procedure for data inser-
tion and data deletion as explained in Sect. 4.6.

5. Performance Evaluation

The experiments were conducted by using an event-based
simulator implemented in Java. We assumed that the coordi-
nator server (BS ) can directly communicate with all nodes.
The range and default setting of these parameters are ex-
pressed in Table 1. Each node Mi initially holds |Di|0 data
objects and each data object is large S izeob j bytes. Firstly we
initially injected |QL|0 queries into the system. The weight-
ing of each dimension of a query (wi) is uniformly random
and normalized with

∑i=m
i=1 wi resulting

∑i=m
i=1 wi = 1. Our

proposed method can support any arbitrary k for each query,
but for fair comparison with other methods, value k of each
query is a uniformly random integer between 1 to kmax. Af-
terward, we simulate the dynamic changes occurring in the
system as events including data insertion/deletion and query
insertion/deletion. For a fair comparison, we conduct the
experiments by using 3 synthetic datasets covering most of
experimental settings in [14] and a real dataset as follows;

1. Clustered dataset (CL): Each node randomly draws
a coordinate of its centroid of a cluster on the m-
dimensional data space. The data value on each dimen-
sion is independently generated by Gaussian distribution
with a specified variance. Hence, each node will hold a
group of data objects that close to each other but different
from other nodes.

2. Uniform dataset (UN): The data value on each dimen-
sion is uniformly pointed in the data space.

3. Anti-correlated dataset (AN): This dataset is generated
referring to [19] and is equally partitioned to nodes. The
characteristic of this dataset is that a data object tends to
have high value on one attribute and low on the others.

Table 1 Simulation parameters

Parameter Default Range

Number of nodes N 500 100-1000
S izeob j [byte] 300 100-1000
|QL|0 1000 100-10000
|Di |0 150 100-500
kmax 15 1-60
Dimensionality m 3 2-8
Datasets CL CL, AN, UN

Most of methods suffer due to the large number of possi-
ble top-k answer candidates, such as skyline (1-skyband)
and K-skyband.

4. Real dataset (RL): This dataset includes the product in-
formation and user reviews from amazon.com.

5.1 Results of Communication Cost

We fixed the number of events at 200,000 per experiment.
This should be high enough to observe behaviors due to
the effect of dynamicity in long-term. Since a user hopes
to monitor top-k answers for a long period of time, the dy-
namicity of data is more likely to occur more often than the
query dynamicity. Therefore, we set the chance of occur-
rence for each event as follows; data insertion/data deletion
at 49% each and query injection/query withdrawal at 1%
each. We varied parameters and datasets in each experiment
to study the effects of these parameters. Due to the lack
of space, we omit graphs of some datasets which share the
same behaviors and characteristics.

5.1.1 Measurement

We recorded the final cost of communication defined by vol-
ume of transferred data in the system as a metric to compare
the performance. The cost of communication was counted
by how many data objects and queries being necessary to
transmit between BS and local nodes. We defined the size
of floating point and integer equal to 8 bytes and 4 bytes re-
spectively. Therefore, for example, a top-k query attached
with the threshold consisting of a scoring function (m float-
ing points), value k (1 integer) and a threshold (1 floating
point) is (8(m + 1) + 4) bytes.

5.1.2 Benchmarks

We implemented the following methods for comparing with
our proposed method.

1. Centralized method (CEN): The baseline which all data
objects and information of updates are sent to BS regard-
less of queries.

2. Enhanced scheme proposed in [14] (ES): This method
produces a top-k point-based filter by utilizing dominant
properties to guarantee that any data points which are dis-
carded by this filter are impossible to be in final top-k
answers. The filter is unavoidably issued to every nodes.
However, due to data updates, the filter may become in-
valid when using for a while that leads to renewal of the
filter by re-issuing a new filter to entire nodes. According
to the filter, local nodes can prevent sending irrelevant
data objects in some degree. This method was proposed
for WSNs in which sensor data with specified expiration
time are relayed via intermediate nodes.
We re-implemented this method with the same concept
to use in our assumed topology to compare the perfor-
mance with our proposed method. Our assumed system
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Fig. 5 The affected area of 3 methods on a top-3 query

has no data expiration time but arbitrary data deletion, so
local nodes need to send a message to inform about dis-
appearance of a data object if the deleted object is sent
to BS so far. This method only takes a single parameter
into account. This parameter defines the maximum value
of k in top-k queries that it can answer, so we assigned
this parameter as kmax in our experiments.
In Fig.5a, the point filter for k = kmax = 3 includes d4 and
d5. Using this filter, {d1, d2, d3, d4, d5, d6}will be returned
to BS . If data insertion or deletion occurred in the gray-
shaded area (the affected area of the filter), nodes must
report those data updates to BS . Otherwise, the updates
can be neglected. It is noted that, given the weighting
vector of q1 as shown, the top-3 answers of q1 only in-
cludes d1, d2 and d3.

3. K-skyband (SKYB): The data objects which belong to
K-skyband are sufficiently enough for answering any
top-k queries where k ≤ K. BS simply aggregates K-
skyband from every local node, so any top-k queries at
BS can be answered intermediately by the aggregated
data objects. Due to the data dynamicity, each node con-
tinuously maintains the K-skyband and sends a new data
update to BS when that new data update belongs to its
local K-skyband. It is noted that the size of K-skyband
is bigger than the real necessity, and in high dimension-
ality and high value K, K-skyband of node Mi possibly
includes all data objects Di, i.e., transferring all data ob-
jects like the CEN method. In the experiments, we assign
K in K-skyband equal to kmax.
In Fig.5b, the data objects that belong to 3-skyband con-
sists of {d1, d2, . . . , d8}. The gray-shaded area exhibits
the affected area of the 3-skyband. K-skyband is calcu-
lated locally for each node unlike the ES method which
is the global point-based filter issued from BS . There-
fore, there is no communication cost for filter construc-
tion. Only data insertion or deletion occurred in the gray-
shaded area (the affected area) must be reported to BS .

4. Our proposed method (THSUB): Our proposed
method described in Sect. 4. Based on our parameter
study, we set the maximum iteration for threshold esti-
mation as 5, and γ = 0.5.

Fig. 6 Impacts of kmax

5.1.3 Impact of the Number of Desired Data Objects

We first evaluate the performance on varying the number of
desired data objects or value k defined in a query. The result
of the CL, UN and AN datasets are shown in Fig.6a, Fig.6b
and Fig.6c respectively.

According to the result for the CL dataset, for very
small kmax (roughly from 1 to 15), the ES and SKYB meth-
ods perform better than the CEN method. This is because
the set of top-k answer candidates and the affected area spec-
ified by the filter and K-skyband are still relatively small. A
lot of updates occurred are not sent to BS . However, as kmax

increases (kmax ≥ 15), the ES method’s cost becomes over
the CEN method; because, apart from sending data objects,
the cost of filter update is also expensive. For high kmax, the
setup filter becomes stale more rapidly than smaller kmax. As
kmax increases, the cost of the SKYB method converges to
the cost of the CEN method because the size of K-skyband
and entire local data objects are almost same and the af-
fected area is large. Thus, most of updates are sent to BS .
As a result, the total cost of the SKYB and CEN methods
are similar. In contrast, the THSUB method has more effi-
ciency since the cost linearly increases with kmax but lower
than the comparative methods. This is because the top-k
subscriptions are selectively diffused to some nodes. Due
to the affected area more strictly controlled by the subscrip-
tions, unnecessary updates are not reported to BS unlike the
comparative methods which greedily aggregate all possible
top-k answer candidates.

In the UN dataset, the THSUB method’s cost grows
slightly faster than the CL dataset. This is because, for uni-
form distribution, besides updates are more likely to match
the subscriptions, the subscription update occurs more fre-
quently. Therefore, the cost of the THSUB method grows
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Fig. 7 Impacts of dimensionality m

up but significantly less than other comparative methods.
In the AN dataset, the SKYB, ES and THSUB methods

suffer because the cost of initialization as well as the size
of top-k candidates such as the number of skyline points,
size of K-skyband and size of filters are object to be very
large. The cost of the SKYB method is almost equal to the
CEN method from kmax = 15, and the cost of the ES method
surpasses the cost of the CEN method when kmax = 5.

In Fig.6d, we show how many data objects are sent to
BS which does not include skyline data tuples in the initial-
ization. Our proposed method matches only final answers,
therefore; only a few thousands of data objects are returned
to BS unlike others.

5.1.4 Impact of Dimensionality

The results of the CL, UN and AN datasets are shown in
Fig.7a, Fig.7b and Fig.7c respectively when varying the
number of dimensions in data objects. We omit some re-
sults of the ES method since the amount of transferred data
is significantly higher than others.

In [14], the authors have only reported the evaluation of
the ES method on varying dimensionality by fixing kmax at 1,
but our default setting sets kmax at 15. As the dimensionality
increases, the cost of the ES method converges close to the
CEN method because the size of K-skyband becomes large
and almost same as sending entire local data objects of each
node. The ES method significantly performs worse than the
CEN method when m ≥ 3 because the size of a filter to be set
up at every node is large, so the cost of filter setup becomes
very expensive.

The THSUB method suffers when using the AN dataset
especially due to huge skylines in the initialization phase
and more frequent skyline updates sent to BS from each
node. It is noted that the THSUB method performs worse

Fig. 8 Impacts of |Di |0

as dimensionality increases; however, it is still superior than
other competitive methods because the number of sent data
objects is strictly controlled by subscriptions as shown in
Fig.7d.

5.1.5 Impact of the Initial Number of Data Objects

We varied the initial number of data objects per node (|Di|0)
in the network by keeping other parameters fixed. This
increment influences the whole amount of data objects in-
creasing. The effects of this factor in the CL and AN datasets
are shown respectively in Fig.8a and Fig.8b.

The result of the CL and UN dataset shares the same
characteristics, using the CEN method, obviously the cost
of data aggregation and the cost due to initialization grow
linearly. The SKYB method remains almost constant in all
settings because every local node has to send its own K-
skyband to BS regardless of how dense of data objects in the
global space. On the contrary, the high data density brings
a positive effect on the ES and THSUB methods. When the
data are dense, the affected area as well as the ES method’s
filters becomes smaller, so new updates that need to be sent
to BS occur infrequently. In addition, the constructed filters
become stale slower because the occurrences of new data
updates that invalidate the old filters are expected to be lower
in the ES method. Thus, the costs of the 2 methods slightly
decrease as |Di|0 increases.

In the AN dataset, the affected area is covered by most
of local data objects in the SKYB and ES methods. They
have no gain over the CEN method. Furthermore, because
of the cost of flooding new filters, the cost of the ES method
goes beyond the CEN method.

Even though our proposed method pays higher cost in
the AN dataset in comparison with the first two datasets, it
does not have that negative effect from increasing |Di|0. This
is because it subscribes only final top-k answers regardless
of data distribution.

5.1.6 Impact of the Number of Initial Queries

Figure 9a shows the result of the CL dataset when varying
the number of initial queries. Only the THSUB method is af-
fected by the number of queries because the rest of compar-
ative methods take only kmax into account regardless of the
actual preference (scoring function) of each query. There-
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Fig. 9 Impacts of |QL|0 and S izeob j

fore, the transferred data of those methods remain constant
in every setting. Since the THSUB method considers every
single query, it has good scalability that can support a large
number of active queries at a time while consuming lower
overhead than other methods.

5.1.7 Impact of Size of Data Objects

We assume that data objects which are sent to BS for an-
swering top-k answers, have a fixed size. In this experiment,
we varied the size of data objects in order to evaluate its ef-
fect shown in Fig.9b.

Our proposed method, instead of greedily aggregating
data objects to BS , tries to carefully construct top-k sub-
scriptions to request only final answers and inform the local
nodes the precise affected area unlike the comparative meth-
ods. Practically, the actual final answers for top-k queries
are a small portion of entire global data objects, and BS re-
ceives unnecessary data objects fewer than other methods.
Therefore, the THSUB method gets less effects from vary-
ing the size of data objects, and a large amount of incurred
cost is because of threshold estimation, skyline updates and
subscription maintenance.

On the contrary, other methods receive and store many
data objects at BS by query processing or data updates in
order to guarantee the accuracy of the final answers. Even
though, those data objects are not all included in the final
answers of the active queries in QL.

5.1.8 Impact of the Number of Nodes

When increasing the number of nodes (N), the entire data
objects in the system increases. Apart from our proposed
method, the transferred cost grows linearly with parameter
N because those methods aggregate the data objects from
every node. For a large number of nodes, the THSUB
method has to issue subscriptions to more nodes and more
frequently, but it avoids flooding by selectively sending re-
quests to only some of nodes. Therefore, while the trans-
ferred cost of the THSUB method also increases linearly,
the growth rate is lower than the others. In the experimental
results shown in Fig.10a, the THSUB method outperforms
other methods.

Fig. 10 Impacts of N and a result of RL dataset

5.1.9 Results on the Real Dataset

The real dataset from amazon.com is used for comparing
the proposed method with the comparative methods. We
selected products which contain complete information and
have more than 15 user reviews (41,545 data objects). 3
numerical attributes were chosen and normalized; price (in-
verse value), average rating and useful comment ratio. We
conducted the experiment by using the environment where
most of default parameters are as same as the synthetic
dataset except for the setting of N = 100 and the number of
events at 50,000. Therefore, 15,000 data objects are equally
divided to nodes, and the rest is for simulating data updates.
In the result in Fig.10b, the SKYB and ES methods can save
cost of communication compared to the CEN method. Still,
the THSUB method outperforms other methods.

5.2 Analysis of the Proposed Method

Too many subscription messages can incur large commu-
nication cost. Without any techniques, in default setting,
we need to send all subscriptions of 1000 queries to all 500
nodes which cost at least 500k subscriptions (not yet include
subscription updates). Due to selectively forwarding only
some subscriptions in DQ to some nodes by using skyline
indexes, the proposed method can avoid sending numerous
unnecessary subscriptions.

We conducted experiments by using the default setting
as shown in Table 1 to simulate a snapshot of the system and
measure the number of subscribed nodes and the number
of transferred subscriptions. We set the number of events
at 20,000 events including only data insertion and deletion
with the same probability (no query dynamicity). In Fig.11a
varying kmax, the total number of subscriptions is less than
30k subscriptions while the number of nodes having at least
1 subscription is less than 100 even kmax = 60. In Fig.11b
varying the number of initial queries, it positively shows that
increasing various queries into the system, the number of
subscribed nodes is far less than the number of entire nodes
as well as the total number of sent subscriptions.

5.2.1 Skyline Indexes and Their Maintenance

We show the number of associated data tuples of local
nodes’ skylines due to the aggregation in initialization phase
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Fig. 11 Results of #subscriptions and #subscribed nodes

Fig. 12 The size of aggregated skyline tuples and updates

(INIT) and the updates (UPDATE) compared to the number
of all transferred data objects in the network (ENTIRE). In
Fig.12a, when increasing dimensionality, the size of skyline
increases essentially as well as skyline updates. Further-
more, the number of skyline tuples largely increases in AN
dataset as shown in Fig.12b. Even though, the cost of sky-
line aggregation is much expensive, but it is done once in
the initialization after that we maintain them. The result
also shows that the number of skyline updates (UPDATE) is
small compared 20,000 data updates, but this differs on each
kind of data distribution and dimensionality.

5.2.2 Iterations of Threshold Estimation

Threshold estimation takes multiple iterations to be finished,
so this can cause a long latency. To prevent too many iter-
ations of threshold estimation, a parameter γ is set to allow
some false positives to be returned when retrieving final an-
swers. However, it is not actually a wasteful transmission
because these false positives once retrieved are possibly in-
cluded in latter coming queries. From the experiment, γ = 0
takes the highest number of iterations and 0.5 ≤ γ ≤ 1.0
provides the smallest number of iterations while the final
number of transferred data objects are almost same. There-
fore, we apply γ = 0.5 as default for all experiments.

Practically, in low dimensionality, threshold estimation
is rarely invoked. From the experiments, only a first few
queries take multiple rounds to finish because BS still does
not have high potential data (cache in DP and top-k an-
swers). Table 2 shows the total number of threshold esti-
mations for the first 10 queries against dimensionality m.
Averagely it takes less than 2 iterations per query, and the
latter queries are expected to averagely take less than this or
no communication latency. After that, the threshold estima-

Table 2 #threshold estimations in the first 10 queries

dimensionality 2 3 4 5 6 7 8
#Iteration 9 17 12 17 17 22 20

tion is finished within a single iteration.
The actual latency largely depends on the real imple-

mentation. Regarding our default setting, the size of the
payload for histograms is 56 bytes. If we assume that IEEE
802.15.4 which is a standard for low-cost and low-speed
communication between devices is used for transmission,
Fig. 5 in [24] shows that end-to-end transmission latency
even up to 100 bytes of a payload is around 70-80 ms. For
processing latency at the base station, as in our experiments
on the default setting implemented in a commodity PC, this
takes only 7-10 ms. To sum up, our proposed method incurs
additional latency in the scale of milliseconds and should
be suitable for most applications which the latency can be
tolerated to this degree, for example, weather monitoring
which periodically collects information from each node ev-
ery 5 minutes. In contrast, in frequent update data model,
the naive method which transfers massive data in real-time
without reducing the volume possibly has other communica-
tion problems such as packet loss and bandwidth limitation.

6. Conclusion

In this paper, we addressed the issue of multidimensional
continuous top-k query processing in distributed environ-
ments where data are horizontally partitioned. Our main
aim is to reduce the communication cost of top-k query pro-
cessing between the coordinator server where users pose
top-k queries and distributed nodes where data objects are
dynamically inserted or deleted.

Our propose method lets the coordinator server inform
nodes about the boundary of data space of user interests
called a subscription. To prevent superfluous query requests,
our method identifies a small set of needed subscriptions
to notify local nodes. Together with pre-indexing of sky-
line information, not only the number of requests but also
the number of nodes to be requested can be significantly
reduced. Our approach also identifies whether previously
posed queries and data objects requested so far can answer
a new query. If so, that new query can be answered with-
out communication overhead. Furthermore, we took into
account dynamic data updates including insertion and dele-
tion and proposed the maintenance mechanism that assures
the completeness of delivered answers to users.

We showed the performance of our method through the
simulation results on both synthetic and real datasets. The
results explicitly indicate that our method is preferred to the
compared methods in terms of the communication cost.
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