
1836
IEICE TRANS. INF. & SYST., VOL.E99–D, NO.7 JULY 2016

PAPER

API-Based Software Birthmarking Method Using Fuzzy Hashing

Donghoon LEE†a), Dongwoo KANG†b), Younsung CHOI††c), Jiye KIM†d), Nonmembers,
and Dongho WON†e), Member

SUMMARY The software birthmarking technique has conventionally
been studied in fields such as software piracy, code theft, and copy-
right infringement. The most recent API-based software birthmarking
method (Han et al., 2014) extracts API call sequences in entire code sec-
tions of a program. Additionally, it is generated as a birthmark us-
ing a cryptographic hash function (MD5). It was reported that dif-
ferent application types can be categorized in a program through pre-
filtering based on DLL/API numbers/names. However, similarity can-
not be measured owing to the cryptographic hash function, occurrence
of false negatives, and it is difficult to functionally categorize appli-
cations using only DLL/API numbers/names. In this paper, we pro-
pose an API-based software birthmarking method using fuzzy hash-
ing. For the native code of a program, our software birthmarking
technique extracts API call sequences in the segmented procedures and
then generates them using a fuzzy hash function. Unlike the conven-
tional cryptographic hash function, the fuzzy hash is used for the sim-
ilarity measurement of data. Our method using a fuzzy hash function
achieved a high reduction ratio (about 41% on average) more than an
original birthmark that is generated with only the API call sequences.
In our experiments, when threshold ε is 0.35, the results show that
our method is an effective birthmarking system to measure similar-
ities of the software. Moreover, our correlation analysis with top
50 API call frequencies proves that it is difficult to functionally
categorize applications using only DLL/API numbers/names. Com-
pared to prior work, our method significantly improves the properties of re-
silience and credibility.
key words: software birthmark, birthmarking systems, software similarity,
fuzzy hash, API-based sequences

1. Introduction

A software birthmark is a technology that reflects the char-
acteristics that are inherent to each software application.
Software birthmarking techniques have conventionally been
studied for detection of software piracy, code theft, and
copyright infringement. As information and communication
technologies have developed in recent years, malicious ac-
tivities, such as piracy, code cracking, and code theft, have

Manuscript received September 18, 2015.
Manuscript revised March 18, 2016.
Manuscript publicized April 15, 2016.
†The authors are with College of Information and Communi-

cation Engineering, Sungkyunkwan University, Suwon, 440–746
Korea.
††The author is with Department of Cyber Security, Howon

University, Gunsan, 440–746 Korea.
a) E-mail: dhlee@security.re.kr
b) E-mail: dwkang@security.re.kr
c) E-mail: yschoi@howon.ac.kr
d) E-mail: jykim@security.re.kr
e) E-mail: dhwon@security.re.kr (Corresponding author)

DOI: 10.1587/transinf.2015EDP7379

evolved and the distribution of illegal software has been ac-
celerating. According to the 4th Annual State of Applica-
tion Security Report published by ARXAN in 2015, approx-
imately 77.9% of illegally shared media worldwide is soft-
ware [1]. That software alliance analysis and IDC findings
also reported that 45% of illegal software distributions are
performed through online websites or P2P networks [2].

Software vendors have studied and applied such tech-
nologies such as software watermarking [3], [4], tamper-
proofing [5], obfuscating [6], [7], and software birthmark-
ing [8]–[11] to protect their intellectual property. Among
these, software watermarking and birthmarking can handle
copyright infringement and software code theft. Software
watermarking techniques, which involve embedding copy-
right marks in source code to identify the software owner,
have previously been proposed [4], [12]. These watermark
technologies, however, are easily damaged by semantics-
preserving obfuscation [13] or optimization of compilers.

A birthmark is a colored mark or mole that appears
at birth. Similarly, a software birthmark technique repre-
sents a technology that reflects the inherent features of each
software program. Therefore, such technologies are widely
used in many recent applications, including digital foren-
sics, malicious code detection, and detection of software
copyright infringement and code theft [14], [15].

Software birthmarks have been conventionally gener-
ated from application program code. These can be classified
into source code and compiled code. The compiled program
code can be divided into native code (or unmanaged code,
machine code) or managed code depending on the compiler
and programming language used [16].

Managed code is a term coined by Microsoft [17]. If
original source code, written in a programming language
such as Java or C#, is compiled, the managed code gener-
ates an intermediate language (IL), which is interpreted and
executed by a virtual machine (VM). ILs, such as Java byte-
code, are operated on by a VM and can thus be indepen-
dently executed on a given platform (i.e., a microprocessor,
operating system, and so on).

In contrast, native code is compiled code that relies on a
corresponding platform, such as the C and C++ family. For
instance, if the execution environment is comprised of the
Intel x86 Microprocessor and Windows operating system,
then the native code has an Intel instruction set and portable
execution (PE) format. For this reason, the approaches to
software birthmarking can vary depending on the managed

Copyright c⃝ 2016 The Institute of Electronics, Information and Communication Engineers

LEE et al.: API-BASED SOFTWARE BIRTHMARKING METHOD USING FUZZY HASHING
1837

and native code. The software birthmarking approach pro-
posed in this study involves native code.

Software birthmark technologies are primarily clas-
sified into dynamic birthmarks and static birthmarks [18].
These two approaches can be classified according to the
environment in which a birthmark is generated. Static ap-
proaches use the static information of a program and do not
require the program execution to extract the inherent charac-
teristics, whereas dynamic approaches extract program char-
acteristics by recording the actual behaviors during the run-
ning of the program for a given input. The positive and neg-
ative aspects of these two approaches are outlined as fol-
lows [19]:

• Dynamic birthmarks cannot feasibly cover all possible
program paths and thus can only detect the theft of an
entire program. Static birthmarks, on the other hand,
cover all components of a program; therefore, theft of
an entire program and of individual modules can both
be detected.
• Dynamic birthmarks are highly dependent on the given

input and runtime environments, whereas static ones
are not.
• The extraction of a dynamic birthmark, which must

collect information during the program execution, is
more difficult to implement than that of a static one.
• Static birthmarks are extracted by static program anal-

ysis, which tends to over-approximate program proper-
ties. Hence, static birthmarks are less credible and less
precise than dynamic ones.

Software birthmarks can be classified into three cat-
egories depending on the extraction targets: instruction-
sequence-based, graph-based, and API-based birthmarks.

1.1 Instruction-Based Birthmarks

A program basically consists of data and instructions. In
previous studies, an instruction sequence is frequently used
as a birthmark because it reflects some program behaviors.
A static n-gram-based birthmark extracted with Java byte-
code/opcode was proposed by Myles and Collberg [9]. In
their study, a set of all opcode n-grams of the methods in
the class was extracted as a birthmark for the Java class. In
addition, Lu et al. proposed a dynamic n-gram-based birth-
mark that is extracted from dynamic opcode sequences dur-
ing program execution [20].

The opcode n-grams for these two birthmarks are com-
puted by sliding a window of length n for continuous op-
code sequences. In one of our previous studies, we pro-
posed a method of generating a birthmark into categories
by grouping the opcode of instruction sequences extracted
from a program [21]. In that study, the opcode was classi-
fied into categories, such as data transfer, logical, and I/O, to
improve the resilience; moreover, the continuously repeat-
ing opcode was reduced to increase efficiency. Unlike that
partition method, Lim et al. considered using sequences of
contiguous opcode that is partitioned based on its operand

stack depth [22]. These three birthmark techniques consider
the use of physical instruction sequences and are thus vul-
nerable to control-flow or program modifications [19].

1.2 Structure-Based Birthmarks

Software birthmarks have also been proposed in the graph
structure of a program. Each function (alternatively, proce-
dures on native code) of a program can be expressed as the
dependence among statements in a function, the inheritance
relationship between classes (such as acyclic graphs), and
the control flow. Accordingly, a birthmark can be gener-
ated as an expression of a program graph [23]. Myles and
Collberg proposed for Java applications a dynamic birth-
mark called the whole program path (WPP) [8]. To ex-
tract the WPP birthmark, dynamic traces of a program are
compressed into a directed acyclic graph and then collected.
However, comparing two graphs with millions of nodes may
prove prohibitively expensive; moreover, it is unclear how
this birthmark would perform on substantial traces of real
programs [23].

1.3 API-Based Birthmarks

Several birthmarks exist that are based on the way a program
uses standard libraries or system calls (henceforth collec-
tively referred to as APIs); such a birthmark is both unique
to that program and difficult for an attacker to forge [23].
We classify these birthmarks as API-based ones. Tamada
et al. presented three algorithms for collecting birthmarks.
These algorithms compute the birthmark from the sequence
of method calls within a class, the inheritance path from the
root class to a given class, and the types that a class employs,
respectively, [24], [25]. In addition, Park et al. proposed
a static API-call-based birthmark for software theft detec-
tion of Java applications [26]. Choi et al. additionally pre-
sented a static API birthmark for Windows execution files
using a set of API calls identified as being static by a dis-
assembler [27]. In addition to the above static birthmark-
generation techniques, several dynamic API-based birth-
marks have been proposed. Tamada et al. suggested a
method of tracing the API calls of programs that are exe-
cuted by particular input values [11]. Schuler et al. proposed
a method of combining k-gram-based birthmarks and API-
based birthmarks [10]. These researchers constructed a set
of k-grams for API call sequences and proposed dynamic
k-gram API-based birthmarking using an API call sequence
that is well known to the program being executed with par-
ticular input values.

The most recent API-based software birthmark technique
was proposed by Han et al. [28]. They generated a birth-
mark based on a program’s API call sequence. Furthermore,
by creating a birthmark database, their system can effec-
tively detect software copyright infringement in the online
service provider (OSP) or P2P environment. Such a birth-
mark extracts API call sequences of the whole program and

1838
IEICE TRANS. INF. & SYST., VOL.E99–D, NO.7 JULY 2016

then saves and compares them in the birthmark database
by using a cryptographic hash function (MD5). They re-
ported that different types of applications can be classified
into categories (multimedia player, FTP client, text editor,
etc.) through a prefiltering process, which is based on the
numbers and names of DLLs and APIs in a program.

In this study, we intend to resolve the limitations of the
software birthmarking technique proposed by Han et al. in
[28]. Our proposed software birthmarking method extracts
API call sequences in the segmented procedures for the na-
tive code of a program and then generates the sequences
through a fuzzy hash function. In short, the contributions
of our work can be summarized as follows:

• We improve the most recent API-based software birth-
marking technique, which is proposed in [28]. Detailed
descriptions of the shortcomings of that method are
provided in Sect. 3.
• Our proposed birthmarking method is separated into

procedures in a single program and is generated by cre-
ating API call sequences within each procedure.
• Each birthmark procedure is compressed into a fuzzy

hash function for similarity measures.
• We prove the effectiveness of our method through ex-

perimental results.

The remainder of this paper is organized as follows. In
Sect. 2, we explain relevant existing knowledge to elucidate
our proposed method. The software birthmarking technique
proposed in [28] is refined in this study. We describe that
existing technique and its problems in Sect. 3. In Sect. 4, we
provide a detailed description of our proposed method. In
Sect. 5, we explain the implementation of the birthmarking
system. In Sect. 6, we discuss the experiments conducted on
the proposed system. Our discussion is provided in Sect. 7,
and Sect. 8 presents our conclusions and future work.

2. Preliminaries

2.1 Software Birthmark

The software similarity problem has conventionally focused
on code theft detection. It is used to determine if program P
is a copy or derivative of programQ. It is an extension of the
definition in [11] and [18]. A workflow is shown in Fig. 1.

Definition 1: (Software Birthmark) Let P denote all sets
of a program, where program P is given as P ∈ P. Let
B denote a function capable of extracting a set of program
characteristics. If the following conditions are satisfied, the
birthmark B(P) of program P can be defined.

Fig. 1 Software similarity problem

• B(P) is obtained only from P itself.
• Program Q ∈ P is a copy of P → B(P) = B(Q).

As shown in Def 1, the software birthmark reflects the
innate traits extracted from program P itself. Such a soft-
ware birthmark is a technology designed to measure the
similarity of two programs. If similarities of birthmarks ex-
tracted from two programs are matched, then the two pro-
grams can be considered identical or copied.

In order to evaluate the effectiveness of software birth-
marks, researchers usually consider two properties: credi-
bility and resilience [29].

Definition 2: (Resilience) Let us first assume there are two
programs or program components P, Q ∈ P. Then, let us
say that B(P) → α and B(Q) → β are the birthmark values
extracted from programs P and Q. Let Simp(α, β) → [0, 1]
be a function that measures program similarity; the thresh-
old is given as 0 < ε < 1. If P and Q are similar to each
other and Simp(α, β) > 1−ε, then the birthmarking system
is called resilient.

Definition 3: (Credibility) Let P and Q denote indepen-
dently written programs. If the birthmarking system can
distinguish between the two programs, it is deemed reliable
and can be defined as follows:

Simp(α, β) ⩽ ε (1)

Defs. 2 and 3 define the basic properties in measuring
similarity between two birthmarks. Credibility defines the
property in which comparison values of programs from the
birthmarking system can be clearly sorted.

Generally, software birthmarking can be extracted with
two approaches: original source code (including managed
code) and compiled native code. One benefit of the extrac-
tion approach using original source code is its easy extrac-
tion of characteristics through intuitive searching of the flow
of code written by a developer. However, it is not suitable
for real-world applications because it is more common to
perform it in the absence of original source code when de-
tecting software copyright infringement or code theft. An-
other shortcoming is that code with the same flow can be
differently analyzed because various factors, such as devel-
oper coding style, are reflected in this approach.

On the other hand, birthmarks can be extracted from
native code only with machine code and thus do not require
original source code. For its extraction, this native code
that is dependent on the platform (microprocessor, operat-
ing system, and so on) is subject to the disassembling pro-
cess and code flow analysis by an experienced professional.

Our challenge is to extract the software birthmark from
native code. At the same time, our ultimate goal is to mea-
sure similarity between one program and other multiple pro-
grams or between two programs.

LEE et al.: API-BASED SOFTWARE BIRTHMARKING METHOD USING FUZZY HASHING
1839

2.2 Context-Triggered Piecewise Hashing

The cryptographic hash algorithm produces a fixed output
for input files. Such outputs are unique values, and the
two files are considered identical if they have the same hash
value. The traditional cryptographic hash function is gener-
ally used for data integrity checks in the field of information
security.

A fuzzy hash can split input values into several pieces
and then produce a single outcome in each piece by us-
ing the hash. In this way, similarity can be evaluated be-
tween two input values. Early fuzzy hash approaches use
a method of comparing the hash values by splitting input
values into fixed-size blocks by employing a block-based
hash [30]. However, in these approaches, a different offset
caused by the manipulated input values (insertions, dele-
tions, editing) alters the components of the block and af-
fects the overall outcome. To overcome this drawback, the
context-triggered piecewise hash (CTPH) was proposed by
Kormblum et al. [31]. CTPH recognizes an identifier capa-
ble of identifying the context of input values and uses a hash
as an identifier for the split block.

For example, if a character is moved down by editing
a page, the character contained in all pages is edited in the
comparison process of two documents. This makes it diffi-
cult to determine the similarity between the two documents
in the conventional method. CTPH, however, employs a
method of dividing by paragraphs, not by pages, and thus
similarity can be identified through only edited paragraphs
while others remain unchanged.

Ssdeep is a tool that was also implemented by Korn-
blum [32]. It provides a function that produces fuzzy hash
outcomes of input values and a function that computes simi-
larity by comparing those outcomes. For CTPH outcomes in
ssdeep, the processed outcomes of all blocks are produced
by employing the spamsum algorithm that outputs the top
six characters by Base64 encoding and by applying a cor-
responding block-scrolling hash and traditional hash. The
algorithm is presented in Fig. 2.

The two signatures are recorded in the outcome:
signature1 is the comparison of output block sizes, and
signature2 is the computation of the blocks that are doubled
in size.

The fuzzy hash has recently been used in measuring
program similarity (i.e., malware) in the field of digital
forensics. Roussev et al. compared the similarities of mal-
ware and different types of normal files, such as documents
or images, by using ssdeep, and they confirmed its effi-
ciency [33]. In 2008, more results of ssdeep were added
by Virus Total for detecting malware [34]. Furthermore, in
2009, the FTK forensic tool also added the ssdeep function
for its forensic investigations [35].

Despite the above advances, an issue remains with such
a comparative approach. This was indicated in 2010 by the
Carnegie Melon University computer emergency response
team, who demonstrated that a comparison of similarity over

Fig. 2 Pseudocode for the spamsum algorithm.

the entire file suffers from low efficiency [36]. The built-in
code in a program basically contains various constant values
by default. This may change during recompiling even if it
was derived from the same source code. Therefore, the hash
value extracted from the entire file is not suitable for deter-
mining similarity. Our proposed birthmarking technique is
broken into procedures in a program to apply the fuzzy hash
function.

Definition 4: (Fuzzy Hash) Input valueK is given, and let
us say thatK = {k1, k2, . . . , kn−1, kn} has n size blocks. Let
h denote the function capable of generating the fuzzy hash.
When h(K) → A denotes a fuzzy hash value for the input
valueK , it is noted thatA satisfies the following conditions:

• When A = {a1, a2, . . . , an−1, an}, ai and ki are in the
bijection and ai is represented by only ki.
• After obtaining h(K)→ A, block ki ∈ K must beA ≃
A‘ even when h(K ‘) → A‘ is obtained with different
values that were changed by specific manipulation or
editing.

We define the fuzzy hash function, h, if particular con-
ditions are satisfied as described in Def. 4. With the applica-
tion of the fuzzy hash function on the program characteris-
tics, the similarities between programs can be measured on
account of its properties. A detailed description is provided
in Sect. 4.

2.3 Procedure

The procedure (subroutine, method, or function) is an im-
portant part of any computer system’s architecture. A pro-
cedure is a group of instructions that usually performs one
task. In this paper, the function and procedure are differently
designated. A function is defined as something that can be
semantically classified by human beings on original source
code or managed code. A procedure is defined as something

1840
IEICE TRANS. INF. & SYST., VOL.E99–D, NO.7 JULY 2016

Fig. 3 A Standard procedure linkage

that can be classified by machines on native code.
Each procedure has a prologue sequence and an epi-

logue sequence. The former is a small line of code at the be-
ginning of a procedure that prepares the registers and stacks
to be used inside the procedure. Similarly, the epilogue pro-
cedure appears at the end of the procedure and restores the
registers and stacks to their original conditions before the
procedure is called. Figure 3 shows how the pieces of a
standard procedure linkage fit together.

Definition 5: (Procedure) Given a program P ∈ P, let
us assume that there is a universal set of procedures P =
{ f1, f2, . . . , fn−1, fn}, where n is the size of the procedures in
a program P. Also, let us assume that fi is a specific ith pro-
cedure of the sequence in P, where i has 0 < i ≤ n. Then, fi
is defined as the procedure of programPwhen the following
conditions are met.

• fi is a set of insturctions that is called more than once
when program P is executed.
• If fi is called from f j, then fi must include the instruc-

tions (i.e., epilogue) that can be returned to f j with cer-
tainty.
• When fi is forwarding control to the other f j, it is pos-

sible only through the call instruction, which is the pro-
logue of f j.
• fi called by the call instruction must be a particular ref-

erence value or a set of instructions in the P (a property
that also includes the API).

In this paper, according to Def. 5, the birthmark is ex-
tracted by separating procedures from the disassembled in-
struction sequences of a program. However, the procedures
without the API call and the instructions beyond the proce-
dure scope are excluded. This is because the accurate pro-
gram characteristics must be reflected to measure similarity
using the software birthmarking method herein proposed.

3. Han et al. Birthmark Review

As mentioned in Sect. 1, Han et al. proposed the most re-
cent API-based software birthmark method [28]. It detects,
blocks, and removes software that has been illegally copied
and distributed by unauthorized users or malicious program-
mers on an OSP or P2P network. Their method covers
files that are executable on the Microsoft Windows platform.

Such Windows-executable files have conventionally been in
portable executable (PE) format. The method is based on
information that is extractable from the PE format of execu-
tion files, specifically the:

• Number of DLLs and their names
• Number of APIs and their names
• Sequences of API calls

First, the numbers of DLLs and APIs and their re-
spective names are extracted from the import address table
within the PE format. The sequences of API calls are ex-
tracted by analyzing each instruction from the code segment
inside the PE format. Second, the API call sequences are
converted into their representative values using a one-way
cryptographic hash function. The extracted information is
classified and saved by the category and software type, as
shown in Fig. 4(a). The extraction process ends by sav-
ing this information in a birthmark database (as shown in
Fig. 4(b)).

In this system, the uploaded program undergoes a four-
step identification process to detect illegal programs that are
available on OSP or P2P networks. A detailed description is
as follows:

• Step 1. The uploaded program is sorted into one of the
categories classified in the birthmark database. This
step helps compare information in the corresponding
category of the uploaded program without requiring a
search of the whole, large birthmark database.

• Step 2. The uploaded program compares the number
of APIs and the names of DLLs for the programs in
the classified categories. If the uploaded program is
not identified in this step, then the process advances to
Step 3.

• Step 3. In the Han et al. approach, the code segments in
the PE format of execution files are extracted; then, the
API call sequences are saved in the birthmark database
through an MD5 hash function. In this step, uniden-
tified programs from Step 2 attempt another round of
identification through a hash value comparison for the
API sequences of the same category programs saved in
the database. If this step fails again, then the process
advances to Step 4.

• Step 4. Steps 2 and 3 identify only the programs in
the categories classified in Step 1. However, if they
are not identified until Step 3, then all programs in the
birthmark database must be identified through an MD5
hash value comparison of API call sequences. This
procedure is required on account of the possibility of
incorrect categorization from Step 1.

The Han et al. birthmark method has three problems.
First, it cannot achieve accurate category classification us-
ing the names of DLLs and numbers of APIs. APIs can be
defined as a list of functions that operating systems provide

LEE et al.: API-BASED SOFTWARE BIRTHMARKING METHOD USING FUZZY HASHING
1841

Fig. 4 Birthmarking system proposed by Han et al. [28]

to application developers. In particular, the Windows sys-
tem offers APIs by loading the DLL-encapsulated modules
in shared memory so they are available for a wide variety of
applications. If DLLs are classified by function, several sep-
arate DLLs result that must remain in memory at all times.
For this reason, Windows sets DLLs into specific classes
to make them smaller in number and retained in memory.
Therefore, the application properties cannot be classified by
only a name, such as USER32.dll, KERNEL32.dll, or AD-
VAPl32.dll, which has not been clearly classified by func-
tion.

Furthermore, because multifunctional applications
have recently become available in response to user demand,
it has become difficult to determine characteristics of ap-
plications simply by the API call frequency alone. For ex-
ample, recently available text editor programs have image
editing functions and they save files by synchronizing with a
cloud server. In this case, the APIs of the text editor program
inherently contain image editing functions and networks—
they are image-related APIs by default—and thus they can
be similar to applications that perform such actual functions
as described above.

Second, the API call sequences are extracted from the
entire areas of a program. When program source code is
compiled, the compiler generally reflects the function of the
original source code as intact as possible. In particular, if
the API call command is invoked from a specific function of
the original source code, then it can also exist in the corre-
sponding function area for the compiled program command
sequences. Hence, even in the same source code, a different
API call sequence may be generated if positional changes
are made on the function area during compiling. This in-
cludes the possibility of a detour. The software birthmark-
ing method proposed in this paper consists of API call se-
quences separated into procedures in a single program. Ac-
cordingly, it is not affected by the position of the function
that can be modified during compiling.

Lastly, the use of the cryptographic hash function is not

Fig. 5 Comparison of a cryptographic hash and fuzzy hash for API call
sequences

suitable for determining the similarity of program character-
istics. Software birthmarks have conventionally been stud-
ied to measure similarity between programs. Therefore, a
software birthmarking method must be designed to measure
similarity between programs.

As mentioned, the Han et al. birthmarking approach
uses a cryptographic hash function on the API call sequence.
The cryptographic hash function is a one-way function that
is largely used in data integrity checking because it pro-
duces totally different outputs, even with a minor change
in the original source data [37]. For instance, when a pair
of API call sequences that are similar to each other is given,
as shown in Fig. 5, a cryptographic hash function, such as
MD5, produces completely different output. In contrast, a
fuzzy hash function, such as CTPH, as described in Sect. 2,
maintains the similarity of the original data. Therefore, it is
more appropriate to use the fuzzy hash function rather than

1842
IEICE TRANS. INF. & SYST., VOL.E99–D, NO.7 JULY 2016

the cryptographic hash function in evaluating the similarity
of two data sets.

The birthmarking method proposed in this paper en-
hances the approach of Han et al. by resolving its limita-
tions. The proposed method is detailed in Sect. 4.

4. Proposed Method

4.1 Feature Extraction

A software birthmark can be defined as an inherent property
of a program. Our proposed software birthmarking method
is based on procedures that contain API calls in the dis-
tributed programs with native code. In other words, these
characteristics are extracted from a single program and are
described as follows:

• A set of procedures that includes the API call.
• Sequences of API calls in each procedure.
• DLL and API information embedded in a target pro-

gram.

In [28], the API call sequences are extracted from the
entire code section in a program, and a birthmark is gener-
ated via an MD5 hash function. A program fundamentally
consists of functions or procedures. Therefore, it is inap-
propriate to generate sequences over the entire code sec-
tion in a program. A cryptographic hash function is also
unsuitable for the similarity measure. This is a motivation
for the software birthmark because it produces completely
different output even with a minor change in the original
data. In Sect. 5, relevant experiments that confirm the above-
mentioned findings are described.

In the our proposed method, the instructions in a single
program that are first disassembled to extract the program
characteristics are classified in the procedure unit. Next, the
sequences of the API call commands, which are among the
call commands in each function, are generated. Finally, the
API call sequences of a function generate their values by the
fuzzy hash function and then save the values in the database.

As described earlier, applying the fuzzy hash function
on all of the data for the data similarity measure is not rec-
ommended [36]. Accordingly, our proposed technique prop-
erly applies the fuzzy hash function on the procedures that
can be classified into regular units within a program.

4.2 Birthmark Generation

The proposed method is based on the API call sequence
of the segmented procedures in a single program. In our
method, a procedure must be satisfied with all conditions of
Def. 5 and the following Eq. (2):

fi = {API1, API2, . . . , APIm |m > 0}, (2)

where m is a size of the API call sequence in a procedure,
fi ∈ P. Then, the birthmarking procedure is defined as be-
low.

Definition 6: (Birthmarking Procedure) Given program
P, let us assume that there is a procedure fi ∈ P, where i is
a specific ith procedure of sequence of P. Also, let B f be
the function that generates a birthmark for the procedures.
Then, the procedure birthmark B f (fi) is defined as follows:

B f (fi) = h

 m∪
k=1

APIk

 , (3)

where h is fuzzy hash function that was defined as Def. 4 in
the previous section. A birthmarking procedure individually
extracted from a single program generates values through
the fuzzy hash function for the similarity measure. In [28],
the birthmarking method was that generates values through
the MD5 cryptographic hash function for the API call se-
quences extracted from the entire area of the program. This
method, as indicated in Sect. 3, has several problems.

To overcome these drawbacks, the fuzzy hash function
h is applied on m API call sequences {API1, API2, . . . , APIm}
extracted from each procedure in this study (as shown in
Eq. (3)). Next, we define the birthmarking program as
Def. 7.

Definition 7: (Birthmarking Program) Let us assume
that there is a universal set of procedures, P =

{ f1, f2, . . . , fn}, which has a procedure size of n in a given
a program P. Program birthmark function Bp is defined as
a B f (fi) list with | P |= | Bp(P) |→ n length by birthmark
procedure B f . This can be defined as follows:

Bp(P) =

 n∪
i=1

B f (fi)

 (4)

4.3 Similarity Measure for Fuzzy Hashing Using the
Weighted Edit Distance

The fuzzy hash function used in this paper is CTPH [31].
The CTPH spamsum algorithm uses the weighted version of
the edit distance formula developed for the USENET news-
reader [38]. In this version, each insersion or deletion is
weighted as a difference of one; however, each change is
weighted as three and each swap (i.e., the correct characters
but in the reverse order) is weighted as five. For the sake
of clarity, this weighted edit distance is defined as e(s1, s2)
when two signatures, s1 and s2, are given, as illustrated in
Eqs. (6) and (7). In these equations, i is the number of in-
sertions, d is the number of deletions, c is the number of
changes, and w is the number of swaps.

e = i + d + 3c + 5w (5)

c + w ≤ min(l1, l2) (6)

i + d = |l1 − l2| (7)

where l1 and l2 are the lengths of s1 and s2, respectively.
The edit distance is then rescaled from 0 − 64 to 0 − 100
and inverted so that zero represents no homology, and 100

LEE et al.: API-BASED SOFTWARE BIRTHMARKING METHOD USING FUZZY HASHING
1843

indicates almost identical files. The final match score, M,
for strings of length l1 and l2 can be computed using Eq. (8).

M = 100 −
(

100S e(s1, s2)
64(l1 + l2)

)
, (8)

where S is represented by rescale constant. It rescaled and
inverted the degree of file similarity from 0 − S to 0 − 100.
For example, when S = 64, 0 is rescaled to 100, which
indicated identical files, and S = 64 is rescaled to 0, which
indicated no homology. Note that when S = 64, which is
the default, that the S and 64 terms are cancelled.

The match score represents a conservative weighted
percentage of the extent to which s1 and s2 are ordered in
the homologous sequences [31]. That is, it denotes the mea-
sure of how many of the bits of these two signatures are
identical and in the same order.

Finally, in Eq. (9), match score M is defined as the
similarity measure function Sim f for the proposed birth-
marking procedure. Let us assume that B f (f1) → α and
B f (f2) → β are obtained from the two given procedures,
f1 and f2, respectively. This enables the measuring of simi-
larity of the two birthmarking procedures through similarity
measure function Sim f .

Sim f (α, β) = 100 −
(

100S e(α, β)
64(| α | + | β |)

)
(9)

4.4 Program Similarity Measuring

Our ultimate goal is to measure similarity between two pro-
grams. To achieve this, a list of birthmarking procedures
using a fuzzy hash is generated through a set of procedures
that generate API calls in a single program. With this list,
similarity is measured between the two programs.

The similarity measure is known as the dice coefficient
or Sorensen index. It is used for information retrieval. By
expanding this index, the similarity measure function be-
tween two programs is defined.

Definition 8: (Program Similarity)
Let us assume there are two programs or program com-

ponents P, Q ∈ P. Also, let us say that B f (fi ∈ P) → αi

and B f (f j ∈ Q) → β j are the birthmark values extracted
by the birthmarking procedure function B f . Then, program
similarity Simp(P,Q) is defined as:

Simp(P,Q) =
2 ×∑n

i=1 max
(∪k

j=1 Sim f (αi, β j)
)

n + k
(10)

where n and k represent the number of procedures that con-
tain API calls for programs P and Q, respectively. αi and
β j are the values generated through B f for each procedure
extracted from the two programs P and Q.

5. Implementation

In this section, the implementation of the proposed birth-
marking method is described. The method is comprised of

five steps. The birthmark is extracted through four steps af-
ter initial program P input and is then saved in the database.
From that point, similarity is measured between the proce-
dures or other programs as a whole in two steps. The overall
workflow is presented in Fig. 6.

Most existing studies evaluate similarity for two pro-
grams, whereas the proposed method evaluates similarity in
five steps and enables the automation of the comparison of
multiple programs. It can achieve this because it evaluates
similarity with proceduralized birthmarks of all programs
saved in the database. Moreover, birthmarks are saved sep-
arately in the procedure unit. Therefore, similarity can be
measured in part rather than over the entire program. Unlike
previous studies in which the entire program is compared,
the proposed method can detect the copied code in a proce-
dure. Furthermore, the birthmark information downscaled
through the fuzzy hash is more effective than the conven-
tional way of performing sequence-comparison processing.

• Step 1. A code area is extracted from the input pro-
gram, P, where the code area refers to a set of code in-
terpreted and executed by the microprocessor. The ex-
ecutable files have particular formats according to the
given operation system. For instance, Windows has a
PE format, whereas Unix/Linux has formats such as
ELF or COFF.

• Step 2. The code area extracted in Step 1 is disassem-
bled. This disassembly process is needed to identify
the meaning of the instruction sequences and to sepa-
rate the procedures for extraction from which the API
call sequences. The distorm3 program is herein used to
perform reliable and automated disassembly. The ba-
sic structure of the procedures described in Sect. 2 is
recognized for Step 3, which involves the separation of
procedures. In addition, reference procedures for the
call instructions are recognized through a recursive de-
scent disassembly method, which focuses on the con-
trol flow of the disassembly processing method.

• Step 3. The disassembled instruction sequences of the
program are separated into procedures. The sequences
that fail to generate API calls in each procedure are
excluded. The outcome from this step is a set of the
procedure-intrinsic names and the API call sequences
generated in it. The proposed system provides the dis-
assembly outcomes of similar procedures for user re-
view. In this way, the disassembly outcome can be se-
lectively saved.

• Step 4. The final extraction step is to generate the hash
values through the fuzzy hash function for the API call
sequences of the separated procedures. They are then
saved in a database. The database can be comprised of
a table with information on the execution files, and a
table with the procedure list connected to it with infor-
mation on the execution files.

1844
IEICE TRANS. INF. & SYST., VOL.E99–D, NO.7 JULY 2016

Fig. 6 Proposed birthmak method workflow

In the method of Han et al., the numbers of DLLs and
APIs are saved for category classification. However, the ex-
periments conducted in this study prove that it is practically
impossible to classify categories by identifying the char-
acteristics of applications with the numbers of DLLs and
APIs, which may cause false-positives. Moreover, recently
available applications include numerous multifunctions. For
this reason, it is highly likely that the categories will not be
clearly classified but will rather be processed at a great ex-
pense. Therefore, the proposed system focuses only on the
similarity of a program itself.

5.1 Similar Relation Assessment

Definition 9: (Similarity Measure) If Q is derived from
the same source as P (namely, different versions of the same
program), where P and Q are given, we can let P and Q be
similar to each other and write them as P ≃ Q. If P ≃ Q,
then the two values α and β obtained by Bp(P) → α and
Bp(Q) → β can also be defined as α ≃ β. In this manner,
the similarity measure function Simp(α, β) defined in this
paper can be defined as follows:

Simp(α, β) =

> 1 − ε α ≃ β
⩽ ε α / β
otherwise inconclusive

(11)

In Sect. 6, we determined the threshold as being ε =
0.35. From the threshold, a similarity range of [0.0, 0.35] is
classified as independent, (0.35, 0.65] as inconclusive, and
(0.65, 1] as that of similar programs.

Schuler et al. employed such a classification scheme
with a threshold of 0.2, such that the similarity range [0, 0.2]

is classified as independent, (0.2, 0.8) as inconclusive, and
[0.8, 1] as copies. In [29], the authors classify programs with
a slightly different scheme, wherein the similarity range
[0, 1 − 2ε) is classified as independent, [1 − 2ε, 1 − ε) as
inconclusive, and [1 − ε, 1] as similar with to ε = 0.2. Ac-
cordingly, the similarity range [0, 0.4) is classified as inde-
pendent, [0.4, 0.8] as inconclusive, and (0.8, 1] as copies.
However, Schuler and Myles did not explain the threshold
determination.

Generally, the previous works were evaluated with
each other threshold ε. Our decision to set the threshold
to ε = 0.35 is related to the our experimental results in the
properties of resilience and credibility. In Sect. 6, our eval-
uations performed with Windows applications show that is
satisfied with ε = 0.35 as the properties.

6. Evaluation

Our experimental environment was comprised of the 32-
bit Windows 7 operating system, an Intel Core i7 2.6-GHz
processor, and 16Gb of RAM. The system was embodied
by Python, and the packages of pefile, distorm3, and
ssdeep were used. Furthermore, IDA Pro 6.1 of Hex-Rays
was used for the verification of the disassembly.

Our two-part assessment was comprised of a resilience
evaluation and credibility evaluation. First, birthmark re-
silience was examined and the problems of the Han et al.
approach were investigated. Second, credibility was evalu-
ated. The results demonstrated the ⩽ ε relationship between
independent programs. In addition, a correlation coefficient
analysis was conducted using API call frequency to examine
the problems of the Han et al. application category classifi-

LEE et al.: API-BASED SOFTWARE BIRTHMARKING METHOD USING FUZZY HASHING
1845

Table 1 Similarity measure for putty version-specific information using the software birthmarking
method proposed by Han et al.

Ver. 0.52 0.53 0.54 0.55 0.56 0.57 0.58 0.59 0.60 0.61 0.62

0.52 1.0 0.44 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.53 0.44 1.0 0.41 0.41 0.44 0.0 0.0 0.0 0.0 0.0 0.0
0.54 0.0 0.41 1.0 0.93 0.82 0.0 0.0 0.0 0.0 0.0 0.0
0.55 0.0 0.41 0.93 1.0 0.91 0.0 0.0 0.0 0.0 0.0 0.0
0.56 0.0 0.44 0.82 0.91 1.0 0.0 0.0 0.0 0.0 0.0 0.0
0.57 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0
0.58 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.6 0.57 0.0 0.0
0.59 0.0 0.0 0.0 0.0 0.0 0.0 0.6 1.0 0.96 0.0 0.0
0.60 0.0 0.0 0.0 0.0 0.0 0.0 0.57 0.96 1.0 0.0 0.0
0.61 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 1.0
0.62 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 1.0

Table 2 Similarity measure for putty version-specific information using our proposed software
birthmarking method

Ver. 0.52 0.53 0.54 0.55 0.56 0.57 0.58 0.59 0.60 0.61 0.62

0.52 1.0 0.94 0.82 0.82 0.82 0.71 0.69 0.67 0.67 0.66 0.66
0.53 0.94 1.0 0.83 0.82 0.81 0.72 0.71 0.68 0.68 0.66 0.66
0.54 0.82 0.83 1.0 0.99 0.97 0.87 0.84 0.76 0.76 0.72 0.72
0.55 0.82 0.82 0.99 1.0 0.98 0.86 0.82 0.79 0.76 0.75 0.75
0.56 0.82 0.81 0.97 0.98 1.0 0.88 0.85 0.8 0.79 0.76 0.76
0.57 0.71 0.72 0.87 0.86 0.88 1.0 0.95 0.89 0.88 0.83 0.83
0.58 0.69 0.71 0.84 0.82 0.85 0.95 1.0 0.91 0.91 0.86 0.86
0.59 0.67 0.68 0.76 0.79 0.8 0.89 0.91 1.0 0.99 0.91 0.91
0.60 0.67 0.68 0.76 0.76 0.79 0.88 0.91 0.99 1.0 0.91 0.91
0.61 0.66 0.66 0.72 0.75 0.76 0.83 0.86 0.91 0.91 1.0 1.0
0.62 0.66 0.66 0.72 0.75 0.76 0.83 0.86 0.91 0.91 1.0 1.0

cation method.

6.1 Version-Specific Applications

Han et al. extracted a birthmark using a cryptographic hash
function for the API call sequences over the entire area of
a program. Our first experiment was intended to prove that
their birthmarking system is resilient by using the sets of
similar programs. To this end, similarity was measured for
different versions (v0.52–0.62) of putty, a well-known re-
mote terminal access program (see Table 1). Each compiler
version was identified using the PEiD tool.

The original source code was modified each time that
ten programs were respectively updated to the most recent
version. Hence, we formulated a hypothesis. First, version-
specific putty programs have some similarities. Second,
with version updates, the given similarity to lower versions
is weakened. The resulting difference shows that the largest
similarity is observed between the oldest and newest ver-
sions. Lastly, the similarity to itself must always indicate a
100% perfect match.

Our first experiment was performed in two ways. One
method concerned a birthmark generated with the fuzzy
hash function by extracting the API call sequence from the
entire program, as proposed by Han et al. The other method
concerned a birthmark generated with the fuzzy hash func-
tion by extracting API call sequences from each procedure
in a program, as herein proposed.

Table 1 presents the results of similarity measures per-
formed by generating a birthmark through fuzzy hash func-
tion h in the entire area of putty version-specific programs.
Fields with more than 40% similarity are highlighted. The

Table 3 putty version-specifics infromation

Ver Size(KB) Num. Proc. Num. Proc.
(API Calls)

Compiler
(Microsoft

Visual C++)

0.52 324 668 536 6.0
0.53 348 705 569 6.0
0.54 364 835 687 6.0
0.55 368 840 691 6.0
0.56 372 856 704 6.0
0.57 372 828 676 7.0
0.58 412 900 735 7.0
0.59 444 967 794 7.0
0.60 444 966 792 7.0
0.61 472 1015 832 7.0
0.62 472 1015 832 7.0

issues on the method of Han et al. can be found in the exper-
imental results in Table 1. As shown, all similarity measure-
ment results are 0.0, except for some versions. However, the
only valid hash value is 1.0 because the MD5 hash function
was applied in the Han et al. approach.

Furthermore, generating the API call sequences over
the entire area of a program may generate false-negatives,
even if programs are similar to each other. This depends on
the positional changes in procedures during program com-
piling, regardless of program characteristics. From the re-
sults reported in Table 1, it is proved that the Han et al. ap-
proach does not satisfy resiliency, which is a key property
of software birthmarking.

The experimental results of the proposed our method
are presented in Table 2. The results show that all versions
of putty are more than 66% similar. Moreover, the results
from the hypothesis-driven examination show that similar-
ity is weakened as the difference between versions becomes

1846
IEICE TRANS. INF. & SYST., VOL.E99–D, NO.7 JULY 2016

Table 4 Various applications information for similarity measuring of birthmark

Category Applications Ver. File Size
(KB)

Num. Proc. Num. Proc.
(API Calls)

Size of Original
Birthmark

(KB)

Size of
Birthmark

applied Fuzzy
Hashing (KB)

Text Editor Sublime Text 2 2.0.2 3830 22153 2260 49 19
Sublime Text 3 1.0.1 3981 30127 612 20 9
notepad 6.1 176 135 84 9 2
notepad++ 6.7.4 2447 8637 855 84 29
HxD 1.7.7 1643 3893 687 33 14
UltraEdit32 22.0.0.51 14463 33685 7534 400 158

Emulator DeamonToolsLite 4.49.1 3941 8361 2549 112 57
CDSpace8 8.0.12 9803 13522 2683 132 61

Zip Alzip 9.66 3037 14201 3251 189 76
7zip 15.05b 256 2372 605 11 5
7zipFM 15.05b 476 4827 1226 25 12
PeaZip 5.7.0 5543 7434 422 17 7

Player GOMPlayer 2.2.73 9182 50834 6404 248 110
GOM Audio 2.0.10 4440 6243 1870 101 43
KMPlayer 3.9.1 11862 28631 3837 117 48
WinAmp 5.666 2273 2938 1656 149 50

Terminal putty 0.65 512 1272 534 25 10
SecureCRT 7.3.4 3619 23437 4422 191 82

greater. It is herein proved that the largest difference is ob-
served between the oldest and newest versions with a simi-
larity of approximately 66%, where 0.56 and 0.57 versions
went through changes in their compilers.

To prove the properties of resilience (Def. 2) and cred-
ibility (Def. 3), we need to decide the threshold ε. In previ-
ous works, the threshold value was suitably decided by the
experimental results of each method. Our first experimen-
tal result with the putty version-specific was satisfied in a
property of resilience if ε = 0.35, and all versions of the
putty program showed that it is similar in Table 2. There-
fore, we can decide a threshold ε = 0.35. Once again, in
order to satisfy the credibility property, we will describe the
ε = 0.35 with our second evaluations in Sect. 6.2.

Our detailed results of resilience property are presented
in Fig. 7. The graph shown in Fig. 7 is based on data from
Table 2 and 1. For better expression of the graphs, a specific
value was mapped to reveal the version-specific differences.
For instance, as a reference, the 0.55 version has 0, the 0.56
version has +1, and the 0.57 version has +2. Accordingly,
higher versions were cumulatively mapped at +1 each. Con-
versely, lower versions were mapped by deducting −1; for
example, 0.54 and 0.53 were mapped at −1 and −2, respec-
tively. The resulting values were used as x-coordinates. The
y-coordinates were used as the measurements of similarity.
The arithmetic mean of this reconfigured data was computed
and expressed in a black curve. Each point indicates a simi-
larity value for each version. By using this graph, we prove
that the similarity decreases as a version is farther from itself
(x = 0). We additionally confirm that the proposed system
satisfies the resiliency.

Fig. 7 Comparison between the procedure-based API sequence and en-
tire API sequence

6.2 Evaluation of Other Applications

Our second experiment was performed on applications that
were independently implemented. As shown in Table 4, the
sample applications were selected by classifying them into
particular categories. Some applications with two different
versions were selected for the similarity measure. All appli-
cations had the PE format that were executable in Windows,
and they were compiled for a 32-bit operating system.

In Table 4, we also measured the reduction ratio be-
tween sizes of the original birthmark (including only the
API call sequences) and birthmark applied fuzzy hashing.
The reduction ratio is about 41% on average. This means
that the size of the birthmark is actually more efficient at us-
ing fuzzy hashing than the original birthmark. Also, it can
be decreased in a storage overhead on the database.

To compare with the method proposed by Han et al.,

LEE et al.: API-BASED SOFTWARE BIRTHMARKING METHOD USING FUZZY HASHING
1847

Fig. 8 Several cases of similarities between same-category and different-category applications

we experimented with various Windows applications. In
Fig. 8, the blue bar and red bar represent the similarities
of the our API-based birthmark using fuzzy hashing and
the method proposed by [28], respectively. Among these,
Fig. 8(a) shows a graph that is compared by same applica-
tions with different versions.

By deciding the threshold ε = 0.35 in Sect. 6.1, 1− ε is
0.65. Since all the blue bars have higher values than 1 − ε,
our method also satisfy the resilience property. In Fig. 8,

the results were performed with the same applications and
identical approach, using the API-based approach. Thus,
the other method, proposed by Han et al., also must have a
similar value as our method. Nonetheless, their results were
not fully satisfied in term of the resilience property, and all
the values are distinguished from our values. Such an issue
is appeared by each different extraction method.

Fundamentally, the organizational unit of a native code
(i.e. compiled from original source code) is the procedure,

1848
IEICE TRANS. INF. & SYST., VOL.E99–D, NO.7 JULY 2016

Fig. 9 Correlation analysis of the top 50 API call frequency between same-category programs

also called the function. We extracted the birthmark from
the API call sequence out of precisely segmented proce-
dures. By contrast, the order of the API call sequence that
is extracted from the entire code section can be changed by
the procedure position, when recompiling with same orig-
inal source code. The distinction between these methods,
which is involved in the characteristics of a program appli-
cation, was clearly revealed from our experiments.

In Fig. 8(b) and Fig. 8(c), to prove the credible prop-
erty, we also compared the applications in the same cate-
gories or different category. Even if two applications are
in the same category, the similarity is not always high,
because the applications have different numbers of proce-
dures and API calls. However, our method fully satisfied
the inconclusive, which is ε < α ≤ 1 − ε, where α is
Simp(Bp(P), Bp(Q))→ α.

In this paper, we would like to clearly elucidate this
point. Applications of the same category satisfied “incon-
clusive” in the experiment. However, this does not mean
that all applications in the same category had the same out-
come. What we would like to make clear about this issue
is that even in applications that belong to the same category
may have a high probability of different API call sequences
due to functional characteristics of each application despite
similarity between applications; therefore, the applications
can be perceived as completely independent of one another.
For example, let us assume that there are two music player
programs and the first program has simply a playback func-
tion of mp3 files only and the second program can not only
playback high quality sound music files (such as flac or dsd)
format but also has a visual function. Then, even if the above
two programs belong to the same category according to our

method, birthmark similarity is considerably low. The rea-
son for this result is because the type of similar applications
is not measured but similarity is measured by focusing on
reflecting unique functional characteristics due to the birth-
mark characteristics.

Nonetheless, evaluation results on similarity using their
method, which are compared in Fig. 8(b), are significantly
low. As shown in Fig. 8(c), their experiments results using
applications of totally different categories had also signifi-
cantly low similarity. The overall reason for the low simi-
larity result of their measurement is due to the fact that the
API call sequence is extracted from the entire code section
as mentioned in the above. When a location of procedure in
the API calls is modified within a program due to reasons
such as recompiling, their method is likely to determine the
programs as independent programs even if the programs are
similar to one another. Thus, our experiment results showed
that their measurement values are maintained significantly
lower than ours overall. Furthermore, even if threshold ε is
set to 0.4 in accordance with their experiment result shown
as Table 1, any results in Fig. 8 cannot satisfy the attributes
such as credibility and resilience.

6.3 Correlation Analysis for Pre-Filtering with DLLs/APIs

Han et al. performed pre-filtering with the numbers of DLLs
and APIs of the given program. Windows enables a variety
of applications to be available by loading APIs to a shared
memory in a DLL-encapsulated module. As mentioned ear-
lier, the functional classification of DLLs requires a large
number of separated DLLs to remain in memory all the time.
For this reason, Windows reduces the number of DLLs by

LEE et al.: API-BASED SOFTWARE BIRTHMARKING METHOD USING FUZZY HASHING
1849

separating them into particular classes to make them remain
in memory. Hence, as also mentioned earlier, the applica-
tion characteristics cannot be sorted only with names that
are not clearly classified by function. Moreover, because
many multifunctional applications are currently available, it
has becomes difficult to determine the characteristics of ap-
plications simply by the API call frequency alone.

This problem has already been addressed in Sect. 3. To
investigate this issue, a correlation analysis was conducted
between programs in the same category using the top 50
API call frequencies, as shown in Fig. 9. Each graph in-
dicates the correlation coefficient regarding the API call oc-
currence frequencies of the two programs in each category
for the sample programs. The correlation coefficient value
for each category was rated very low, which indicates that
the numbers of DLLs and APIs and their names were not
sufficient for category classification as proposed by Han et
al. To achieve the category classification, a stochastic ap-
proach, such as machine learning, is required. Therefore,
related research will be conducted in our future work.

7. Discussion and Future Works

In this paper, we proposed a birthmarking system using
fuzzy hashing for API call sequences. Our proposed method
improves the most recent API-based software birthmarking
method, which was proposed by Han et al. [28]. Soft-
ware birthmarks have conventionally been studied to satisfy
two properties, resiliency and credibility. In the experiments
conducted, resiliency was evaluated by comparing different
versions of the putty program, while the problems of the
Han et al. approach were identified. Based on the results,
we conclude that our proposed birthmarking system is supe-
rior to that of Han et al. In addition, we conducted a cred-
ibility evaluation experiment in which 18 applications were
selected from each category. This involved similarity mea-
sures, including different versions of the same program. The
results suggest that an exact distinction is possible.

In this paper, we highlighted problems associated with
category classification of the Han et al. approach. A corre-
lation analysis was performed across programs of the same
category with the top 50 APIs and their frequencies in each
program’s API call frequency. In Fig. 9, the results showed
that all programs had low correlations. Therefore, we con-
clude that the functional category classification cannot be
achieved with the Han et al. approach. Instead, a stochastic
approach, such as machine learning, is needed and will be
proposed in our subsequent paper.

In recent years, owing to technological advances, var-
ious types of computer-related crimes have been increas-
ing. Specialized digital forensic technologies have there-
fore been in high demand to collect and analyze evidence.
Our proposed birthmarking method can determine similari-
ties between software programs. Determination of similar-
ity measures between software programs can be utilized in
detecting rapidly evolving malware variants. Antivirus pro-
grams conventionally relying on signatures and thus cannot

successfully address unknown or variant malware. In con-
trast, the birthmarking technique can be used in malware
detection as well as in detecting software piracy, code theft,
and copyright infringement. Therefore, our future research
will extend the present paper and develop a birthmark tech-
nique generated by the combination of a program’s other in-
herent information as well as API calls. We will then apply
the technique to unknown and variant malware detection.

8. Conclusion

Thesoftware birthmark is a technology that reflects the in
herent characters of application programs. It has con-
ventionally been studied in fields such as software piracy,
code theft, and copyright infringement. This technique
can be classified into three approaches: instruction-based,
structure-based, and API-based approaches. The API-based
approach can reflect well on the characteristics of software
because the API is used by all applications that must per-
form certain functions (such as the I/O, network, and GUI)
of the operating system. In this paper, we proposed an
API-based software birthmarking method using fuzzy hash-
ing. Our proposed software birthmarking technique extracts
API call sequences in the segmented procedures for the na-
tive code of a program and then generates them using a
fuzzy hash function. The fuzzy hash, unlike the conven-
tional cryptographic hash function, is used for the similarity
measurement of data. Our method using fuzzy hash func-
tion achieved a high reduction ratio (about 41% on average)
more than the original birthmark that is generated only with
the API call sequences. In our experiments, when threshold
ε is 0.35, the results showed that our method is an effective
birthmarking system to measure similarities of the software.
The threshold ε = 0.35 was obtained from the experimen-
tal results: a similarity measure for an application version-
specific and the various applications in the same category or
different category. Moreover, our correlation analysis with
top 50 API call frequencies proved that it is difficult to func-
tionally categorize applications using only DLL/API num-
bers/names. Compared to prior work, our method signif-
icantly improved the properties of resilience and credibil-
ity. Our future work will address unknown or variant mal-
ware detection as an extension of this proposed birthmark-
ing technique.

References

[1] ARXAN, “A look inside the universe of pirated software and digital
assets,” tech. rep., 2015 4th Annual State of Application Security
Report, 2015.

[2] J.F. Gantz, et al., “The dangerous world of counterfeit and pirated
software,” tech. rep., IDC White Paper, March 2013.

[3] C. Collberg and C. Thomborson, “Software watermarking: Mod-
els and dynamic embeddings,” Proc. 26th ACM SIGPLAN-SIGACT
symposium on Principles of programming languages, pp.311–324,
ACM, 1999.

[4] W. Zhu, C. Thomborson, and F.Y. Wang, “A survey of software wa-
termarking,” in Intelligence and Security Informatics, pp.454–458,
Springer, 2005.

http://dx.doi.org/10.1145/292540.292569
http://dx.doi.org/10.1145/292540.292569
http://dx.doi.org/10.1145/292540.292569
http://dx.doi.org/10.1145/292540.292569
http://dx.doi.org/10.1007/11427995_42
http://dx.doi.org/10.1007/11427995_42
http://dx.doi.org/10.1007/11427995_42

1850
IEICE TRANS. INF. & SYST., VOL.E99–D, NO.7 JULY 2016

[5] D. Aucsmith, “Tamper resistant software: An implementation,” In-
formation Hiding, pp.317–333, Springer, 1996.

[6] C. Collberg, C. Thomborson, and D. Low, “A taxonomy of obfuscat-
ing transformations,” tech. rep., Department of Computer Science,
The University of Auckland, New Zealand, 1997.

[7] C.S. Collberg and C. Thomborson, “Watermarking, tamper-
proofing, and obfuscation-tools for software protection,” Software
Engineering, IEEE Transactions on, vol.28, no.8, pp.735–746, 2002.

[8] G. Myles and C. Collberg, “Detecting software theft via whole
program path birthmarks,” in Information security, pp.404–415,
Springer, 2004.

[9] G. Myles and C. Collberg, “K-gram based software birthmarks,”
Proc. 2005 ACM symposium on Applied computing, pp.314–318,
ACM, 2005.

[10] D. Schuler, V. Dallmeier, and C. Lindig, “A dynamic birthmark for
java,” Proc. twenty-second IEEE/ACM international conference on
Automated software engineering, pp.274–283, ACM, 2007.

[11] H. Tamada, K. Okamoto, M. Nakamura, A. Monden, and K.i.
Matsumoto, “Dynamic software birthmarks to detect the theft of
windows applications,” International Symposium on Future Soft-
ware Technology, 2004.

[12] C. Collberg, E. Carter, S. Debray, A. Huntwork, J. Kececioglu, C.
Linn, and M. Stepp, “Dynamic path-based software watermarking,”
ACM Sigplan Notices, pp.107–118, ACM, 2004.

[13] C. Collberg, G. Myles, and A. Huntwork, “Sandmark–a tool for soft-
ware protection research,” IEEE security & privacy, no.4, pp.40–49,
2003.

[14] S.L. Garfinkel, “Digital forensics research: The next 10 years,” dig-
ital investigation, vol.7, pp.S64–S73, 2010.

[15] G. Palmer et al., “A road map for digital forensic research,” First
Digital Forensic Research Workshop, Utica, New York, pp.27–30,
2001.

[16] K. Gregory, “Managed, unmanaged, native: What kind of code is
this?,” 4 2003.

[17] B. Abrams, “What is managed code?,” blog, Microsoft Windows
Dev Center, Jan. 2004.

[18] S. Cesare and Y. Xiang, Software similarity and classification,
Springer Science & Business Media, 2012.

[19] H.i. Lim, H. Park, S. Choi, and T. Han, “A method for detecting the
theft of java programs through analysis of the control flow informa-
tion,” Information and Software Technology, vol.51, no.9, pp.1338–
1350, 2009.

[20] B. Lu, F. Liu, X. Ge, B. Liu, and X. Luo, “A software birthmark
based on dynamic opcode n-gram,” Semantic Computing, 2007.
ICSC 2007. International Conference on, pp.37–44, IEEE, 2007.

[21] D. Lee, Y. Choi, J. Jung, J. Kim, and D. Won, “An efficient catego-
rization of the instructions based on binary excutables for dynamic
software birthmark,” Int. J. Information and Education Technology,
vol.5, no.8, pp.571–576, 2015.

[22] H.-I. Lim, H. Park, S. Choi, and T. Han, “Detecting theft of java
applications via a static birthmark based on weighted stack patterns,”
IEICE Trans. Inf. & Syst., vol.E91-D, no.9, pp.2323–2332, 2008.

[23] J. Nagra and C. Collberg, Surreptitious Software: Obfuscation, Wa-
termarking, and Tamperproofing for Software Protection, Pearson
Education, 2009.

[24] H. Tamada, M. Nakamura, A. Monden, and K. Matsumoto, “De-
tecting the theft of programs using birthmarks,” Information Sci-
ence Technical Report NAIST-IS-TR2003014 ISSN, 0919–9527,
2003.

[25] H. Tamada, K. Okamoto, M. Nakamura, A. Monden, and K.i.
Matsumoto, “Design and evaluation of dynamic software birth-
marks based on api calls,” Info. Science Technical Report NAIST-
IS-TR2007011, ISSN, pp.0919–9527, 2007.

[26] H. Park, S. Choi, H.i. Lim, and T. Han, “Detecting java theft based
on static api trace birthmark,” in Advances in Information and Com-
puter Security, pp.121–135, Springer, 2008.

[27] S. Choi, H. Park, H.i. Lim, and T. Han, “A static api birthmark

for windows binary executables,” Journal of Systems and Software,
vol.82, no.5, pp.862–873, 2009.

[28] Y. Han, J. Choi, S.j. Cho, H. Yoo, J. Woo, Y. Nah, and M. Park,
“A New Detection Scheme of Software Copyright Infringement
using Software Birthmark on Windows Systems,” COMPUTER
SCIENCE AND INFORMATION SYSTEMS, vol.11, no.3, SI,
pp.1055–1069, Aug. 2014.

[29] G. Myles, “Software theft detection through program identification,”
2006.

[30] N. Harbour, Dcfldd, 2002.
[31] J. Kornblum, “Identifying almost identical files using context trig-

gered piecewise hashing,” Digital investigation, vol.3, pp.91–97,
2006.

[32] J. Kornblum, “Fuzzy hashing and ssdeep,” 2006.
[33] V. Roussev, G.G. Richard, and L. Marziale, “Multi-resolution simi-

larity hashing,” digital investigation, vol.4, pp.105–113, 2007.
[34] jcanto, “Extra metadata field: ssdeep,” 2008.
[35] D. Hurlbut, “Fuzzy hashing for digital forensic investigators,” Ac-

cessData, 2009.
[36] D. French, “Fuzzy hashing against different types of malware,” tech.

rep., 2010 CERT Research Report, Software Engineering Institute,
Sept. 2010.

[37] R. Rivest, “The md5 message-digest algorithm,” 1992.
[38] T. Andrew, “Spamsum readme,” 2011.

Donghoon Lee received the B.S. degree
in Computer Science from National Institute for
Lifelong Education (NILE), Korea, in 2009 and
the M.S. degree in Information Security Engi-
neering from Sungkyunkwan University, Korea,
in 2011. He is currently undertaking a Ph.D.
course on Electrical and Computer Engineering
in Sungkyunkwan University. He also worked
as a security developer in EGLOO SECURITY
and NEXON COMPANY between 2010 and
2013. His current research interest is in the area

of software security, cryptography, authentication protocol, and network
security.

Dongwoo Kang was born in Seoul,
Korea on January 26, 1993. He received the
B.S. degree in Electrical and Computer Engi-
neering from Sungkyunkwan University, Korea,
in 2015. He is currently pursuing M.S. de-
greein Electrical and Computer Engineering at
Sungkyunkwan University. His current research
interest includes cryptography, malware, and au-
thentication or key management protocols.

http://dx.doi.org/10.1007/3-540-61996-8_49
http://dx.doi.org/10.1007/3-540-61996-8_49
http://dx.doi.org/10.1109/tse.2002.1027797
http://dx.doi.org/10.1109/tse.2002.1027797
http://dx.doi.org/10.1109/tse.2002.1027797
http://dx.doi.org/10.1007/978-3-540-30144-8_34
http://dx.doi.org/10.1007/978-3-540-30144-8_34
http://dx.doi.org/10.1007/978-3-540-30144-8_34
http://dx.doi.org/10.1145/1066677.1066753
http://dx.doi.org/10.1145/1066677.1066753
http://dx.doi.org/10.1145/1066677.1066753
http://dx.doi.org/10.1145/1321631.1321672
http://dx.doi.org/10.1145/1321631.1321672
http://dx.doi.org/10.1145/1321631.1321672
http://dx.doi.org/10.1145/996893.996856
http://dx.doi.org/10.1145/996893.996856
http://dx.doi.org/10.1145/996893.996856
http://dx.doi.org/10.1109/msecp.2003.1219058
http://dx.doi.org/10.1109/msecp.2003.1219058
http://dx.doi.org/10.1109/msecp.2003.1219058
http://dx.doi.org/10.1016/j.diin.2010.05.009
http://dx.doi.org/10.1016/j.diin.2010.05.009
http://dx.doi.org/10.1007/978-1-4471-2909-7_8
http://dx.doi.org/10.1007/978-1-4471-2909-7_8
http://dx.doi.org/10.1016/j.infsof.2009.04.011
http://dx.doi.org/10.1016/j.infsof.2009.04.011
http://dx.doi.org/10.1016/j.infsof.2009.04.011
http://dx.doi.org/10.1016/j.infsof.2009.04.011
http://dx.doi.org/10.1109/icsc.2007.15
http://dx.doi.org/10.1109/icsc.2007.15
http://dx.doi.org/10.1109/icsc.2007.15
http://dx.doi.org/10.7763/ijiet.2015.v5.570
http://dx.doi.org/10.7763/ijiet.2015.v5.570
http://dx.doi.org/10.7763/ijiet.2015.v5.570
http://dx.doi.org/10.7763/ijiet.2015.v5.570
http://dx.doi.org/10.1093/ietisy/e91-d.9.2323
http://dx.doi.org/10.1093/ietisy/e91-d.9.2323
http://dx.doi.org/10.1093/ietisy/e91-d.9.2323
http://dx.doi.org/10.1016/j.jss.2008.11.848
http://dx.doi.org/10.1016/j.jss.2008.11.848
http://dx.doi.org/10.1016/j.jss.2008.11.848
http://dx.doi.org/10.2298/csis130918064h
http://dx.doi.org/10.2298/csis130918064h
http://dx.doi.org/10.2298/csis130918064h
http://dx.doi.org/10.2298/csis130918064h
http://dx.doi.org/10.2298/csis130918064h
http://dx.doi.org/10.1016/j.diin.2006.06.015
http://dx.doi.org/10.1016/j.diin.2006.06.015
http://dx.doi.org/10.1016/j.diin.2006.06.015

LEE et al.: API-BASED SOFTWARE BIRTHMARKING METHOD USING FUZZY HASHING
1851

Younsung Choi received the B.S. de-
gree in Electrical and Computer Engineering
from Sungkyunkwan University, Korea, in 2006
and the M.S. degree in Electrical and Com-
puter Engineering from Sungkyunkwan Univer-
sity, Korea, in 2007. He is currently undertak-
ing a Ph.D. course on Electrical and Computer
Engineering in Sungkyunkwan University. His
current research interest is in the area of digital
forensic, cyber crime, cryptography, authentica-
tion protocol, and network security.

Jiye Kim received the B.S. degree in Infor-
mation Engineering from Sungkyunkwan Uni-
versity, Korea, in 1999 and the M.S. degree in
Computer Science Education from Ehwa Uni-
versity, Korea, in 2007. He is currentlyundertak-
ing a Ph.D. course on Electrical and Computer
Engineering in Sungkyunkwan University. His
current research interest is in the area of cryp-
tography, authentication protocol, and sensor se-
curity.

Dongho Won received his B.E., M.E., and
Ph.D. from Sungkyunkwan University in 1976,
1978, and 1988, respectively. After working at
ETRI (Electronics and Telecommunications Re-
search Institute) from 1978 to 1980, he joined
Sungkyunkwan University in 1982, where he is
currently Professor of the School of Informa-
tion and Communication Engineering. In the
year 2002, he served as the President of KI-
ISC (Korea Institute of Information Security and
Cryptology). He was the Program Committee

Chairman of the 8th International Conference on Information Security and
Cryptology (ICISC 2005). His research interests are on cryptology and
informationsecurity.

