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PAPER

A Heuristic Expansion Framework for Mapping Instances to
Linked Open Data

Natthawut KERTKEIDKACHORN† ,††a), Nonmember and Ryutaro ICHISE†,††, Senior Member

SUMMARY Mapping instances to the Linked Open Data (LOD) cloud
plays an important role for enriching information of instances, since the
LOD cloud contains abundant amounts of interlinked instances describing
the instances. Consequently, many techniques have been introduced for
mapping instances to a LOD data set; however, most of them merely focus
on tackling with the problem of heterogeneity. Unfortunately, the problem
of the large number of LOD data sets has yet to be addressed. Owing to
the number of LOD data sets, mapping an instance to a LOD data set is not
sufficient because an identical instance might not exist in that data set. In
this article, we therefore introduce a heuristic expansion based framework
for mapping instances to LOD data sets. The key idea of the framework is
to gradually expand the search space from one data set to another data set in
order to discover identical instances. In experiments, the framework could
successfully map instances to the LOD data sets by increasing the coverage
to 90.36%. Experimental results also indicate that the heuristic function
in the framework could efficiently limit the expansion space to a reason-
able space. Based upon the limited expansion space, the framework could
effectively reduce the number of candidate pairs to 9.73% of the baseline
without affecting any performances.
key words: semantic web, linked data, Linked Open Data set, expansion
space, search space, heuristic function, instance matching

1. Introduction

In the big data era, interlinking among data sets is the key
procedure to utilize information more wisely. For exam-
ple, if an instance in data set A connects to the identical in-
stance in data set B, the information of the instance in data
set A could be enriched by its connected instance. As a re-
sult, another perspective of knowledge will be discovered.
Therefore, Linked Data [1] was created to provide a simply
concept of publishing and connecting such data. The aim
of Linked Data is to construct a Linked Data collection or
the web of Data. For building Linked Data, Linked Data
concept specifies that the published data must be published
under the Resource Description Framework (RDF) [2], must
represent things by Uniform Resource Identifier (URI) and
must be published in triples (subject, predicate, object).
Currently, there is the ongoing project, which aims to con-
struct Linked Data data sets, named the Linked Open Data
(LOD) cloud [3]. In the LOD cloud, there are more than
million instances. Consequently, it is well-known that any
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instances mapped to the LOD could be enriched by other
instances in the LOD cloud. Therefore, the aim of this re-
search is to discover and map instances to their identical in-
stances in the LOD cloud.

Mapping instances to the LOD cloud becomes a chal-
lenging problem because of the continuous growth of LOD
data sets. When the LOD project cloud started in 2007,
there are only 12 data sets, while currently there are more
than 1000 data sets [4]. Due to a large number of LOD data
sets, we could not know which data set contains an identical
instance. As a result, some source instances could not be
mapped to the LOD cloud. To the best of our knowledge,
mapping instances to more than a data set is not addressed
yet.

In this article, we introduce HMILDs: a Heuristic ex-
pansion framework for Mapping Instances to LoD data sets
(HMILDs). The basic idea of HMILDs is to directly map in-
stances to one particular data set and then gradually expand
a search space for discovering identical instances to other
LOD data sets in order to find other identical instances. Due
to a large amounts of instances in LOD data sets, an ex-
pansion strategy and a heuristic function for limiting the ex-
panding search space are designed into the framework.

The rest of this article is organized as follows. Firstly,
technical terms and a definition of mapping instances to
LOD data sets are given in Sect. 2. Secondly, related works
are briefly reviewed and are discussed in Sect. 3. Thirdly, the
methodology of HMILDs is described in Sect. 4. In Sect. 5,
the details of experiments and their results are presented.
Eventually, this article is concluded in the last section.

2. Preliminary

To clarify the problem for mapping instances to the LOD
cloud and some technical terms in the article, their defini-
tions are given in this section.

An instance represents a real-world thing. Let a, e, s, x
and y are instances.

Problem Mapping instances to the LOD cloud: Mapping
instances to the LOD cloud is not similar to conven-
tional mapping instances, which aims to map instances
to a data set. Since the LOD contains tremendous
amounts of data sets, mapping instances to the LOD
cloud aims to map instances to more than a data set
or multiple LOD data sets. Given D1,D2,D3, . . . ,Dn

and S , where Di represents the LOD data set i, n is a
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number of LOD data sets and a source data set S , the
definition of mapping instances to the LOD cloud is to
compute set ω = {(x, y) |x ≡ y, x ∈ S ,∃i (y ∈ Di)}.

Definition 1 Identical Instance: x ≡ y denoted that x and y
are identical if and only if they are referred to the same
real-world object.

Definition 2 Source Instance: s is an source instance if s ∈
S , where S is a source data set. A source data set is a
data set that aims to map to the LOD cloud.

Definition 3 Anchor Instance: a is an anchor instance if
a ∈ A, where A is an anchor data set. An anchor data
set is a base data set in the LOD cloud where a source
data set is mapped to at first. Any LOD data set could
be selected as an anchor data set. However, a data set
strongly connected to other LOD data sets is preferred.
If the anchor data set tightly connect to other LOD data
sets, it will provide useful links to expand the search
space to another data set.

Definition 4 Adjacent Instance: y is the adjacent instance
of x, when the following set is not empty:
{(ox, sy) | < sx, px, ox > ∈ t(x),

< sy, py, oy > ∈ t(y) and ox ≡ sy}
, where t(x) and t(y) are a set of triples of instance x
and y respectively and < sx, px, ox > is a triple of t(x)
and < sy, py, oy > is a triple of t(y).

Definition 5 Expanded Instance: e is an expanded instance,
if e ∈ E, where E is an expanded data set. An expanded
data set is a LOD data set that could be reached from
the anchor data set.

3. Related Works

Instance mapping, also known as instance matching, object
co-reference resolution, or entity resolution, is the problem,
which aims to discover two identical instances in the same
data set or between difference data sets.

There are many approaches [5]–[12] proposed for map-
ping instances to a data set. In Silk [5], three steps are
introduced in order to discover and manipulate the match-
ing between different data sets. For the first step, a dis-
covery engine computes identical links between different
data sets. Then, the second step fine-tunes the correctness
of such links. The third step manipulates the links when
changing of data sets is applied. AgreementMaker [6] is
a resolution system for matching both ontologies and in-
stances. In AgreementMaker, three phases are performed
in order to match between instances. Firstly, candidate pairs
of instances are selected by similarity between labels of in-
stances in the candidate generation phase. Secondly, simi-
larity between instance pairs are extracted during the disam-
biguation phase. Finally, instance pairs are verified, whether
they are correct match or not, in the matching phase. In
Zhishi.Links [7], which is an enhanced version of Silk, some
weighting schema is applied to improve the matching results

between instance pairs. ObjectCoref [8] is a self-learning
system, which detects identical objects by iteratively learn-
ing discriminative property. SERIMI [9] selectes high en-
tropy predicates, which usually possess abilities to discrim-
inate identical objects, in order to select instance pairs and
then build a binary classifier to classify whether such in-
stance pairs are correctly matched or not. SLINT [10] and
SLINT+ [11] select useful predicates for generating candi-
date pairs of instances and then such candidate pairs are ver-
ified whether they are identical or not. Rong et al. later
introduce an instance matching approach using similarity
metrics [12]. Several types of the similarity metric are pro-
posed to extract similarity features between candidate in-
stances and then a binary classifier is employed to justify
whether candidate pairs are matched. Although those ap-
proaches success to identify identical instances, such ap-
proaches could not perform mapping instances to multiple
data sets.

Owing to a large amount of LOD data sets, we could
not know which data set contains an identical instance. As
a result, an instance matching system, which map instances
to a data set, cannot effectively map instances to the LOD
cloud. Kertkeidkachorn et al. therefore introduce an auto-
matic instance expansion framework for mapping instances
to the LOD [13]. The framework discovers and maps in-
stances to the LOD cloud by gradually expanding the data
set from one data set to another data set. Although their
work successfully increases coverage of mapping instances
to the LOD cloud, the search space during the expansion
process from one data set to another data set is still high. In
this article, the major contribution differentiating from the
work [13] is a heuristic function for the automatic instance
expansion framework in order to limit the expanded search
space in the LOD cloud to a reasonable range. Moreover,we
also give rigid evidences why mapping instances to multiple
data sets are necessary for the LOD cloud and also provide
further empirical study of similarity metrics in the instance
matching component.

4. HMILDs

In this section, the details of HMILDs are presented. As
depicted in Fig. 1, HMILDs consists of three components
as follows: 1) the Candidate Selector component (CS), 2)
the Instance Matching component (IM) and 3) the Candi-
date Expander component (CE). CS retrieves candidate in-
stances from an anchor data set by using a set of keywords to
generates a set of candidate pairs. IM verifies whether gen-
erated candidate pairs are correctly match or not by using a
machine learning technique based on similarity vectors be-
tween instances. CE heuristically expands the search space
from an anchor data set to another LOD data set in order
to find other candidate instances for non-matched instances
and re-generates a new candidate pair. The details of the
components are as follows.
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Fig. 1 The diagram of HMILDs

4.1 Candidate Selector

As shown in Fig. 1, source instances are passed into CS. In
CS, there are three modules: 1) the literal information ex-
traction module, 2) the keyword extraction module and 3)
the instance selection module. The literal information ex-
traction module extracts description of a source instance.
The keyword extraction module creates a set of keywords
from description of the source instance. The instance se-
lection module finds candidate instances in the anchor data
set by using the set of keyword and then pairs the candidate
instances with the source instance as candidate pairs. The
result of CS is a set of candidate pairs.

4.1.1 Literal Information Extraction

The literal information module extracts description of the
instance referred as literal information for each source in-
stance. There are many studies [12], [14], extracting the lit-
eral information by considering rdfs:label and some other
common properties [15]. Although the common proper-
ties are widely used to describe many LOD instances, due
to heterogeneous problem, some instances might not con-
tain those properties. Limiting extracting literal informa-
tion to some properties might miss some useful information.
Therefore, in the literal information extraction module, all
properties are considered as literal information.

The literal information is divided into two types. Two
types of literal information are a short literal string ls and
a long literal string ll. ls is a string, of which the length
equals one phrase, whereas ll is a string, of which the length
is greater than one phrase. Considering the characteristic of
ls, ls uses to represent specific information of an instance
since a short string usually behave as a label of the instance
or a concise description of the instance. In contrast with ls, ll
generally describes greater detail of an instance. Therefore,
ls carries much more essential information than ll. Neverthe-
less, in case that ls of instances causes an ambiguity, ll could
help to disambiguate between instances. For example, given
the instance, db:Barack Obama†,

†http://dbpedia.org/page/Barack Obama

db:Barack Obama foaf:surname “Obama”@en
rdfs:comment “Barack Hussein Obama II

(born August 4, 1961). . . .”@en

“Obama” is treated as ls because its length equals
one phrase. “Barack Hussein Obama II (born August 4,
1961) . . . .” should be considered as ll because its length is
greater than one phrase. In the example, The ls “Obama”
could not disambiguate between db:Barack Obama and
db:Michelle Obama†† because both instances are referred
to “Obama”. Nonetheless, the ll “Barack Hussein Obama
II (born August 4, 1961) . . . .” could help to distinguish be-
tween the instances. Therefore, HMILDs does not only con-
sider ls but also consider ll. Consequently, the results of this
module are ls and ll of an instance.

4.1.2 Keyword Extraction

In the keyword extraction module, ls and ll are used to create
a set of keywords. Since the characteristic between ls and ll
is different, the different methods for extracting keywords
are applied.

For ls mostly contains critical information of an in-
stance, omitting some words might not be able to represent
an identity of instance. Each word in ls therefore is selected
as a keyword. Furthermore, the N-gram technique is also
applied to capture co-occurrence words. For example, given
ls as “San Francisco”, if we consider the words, “San” and
“Francisco”, separately, it might not be able to represent
the exact meaning of “San Francisco”. Consequently, the
words generated by the N-gram technique is employed as
keywords to cope with such characteristic.

For ll, the same strategy as ls cannot be applied be-
cause ll comprises a lot of words. It therefore would be bet-
ter to select some words. Name Entity Recognition (NER)
technique [16] is employed in order to select keywords from
ll. Usually name entities such as person, location, organi-
zation name are highly relate to an instance. With the NER
technique, a small set of keywords could be created. Af-
ter acquiring keywords from ls and ll, a set of keywords is
constructed by combing all keywords together.

4.1.3 Instance Selection

The instance selection module generates candidate pairs be-
tween a source instance and an anchor instance by using a
set of keywords. Each keyword is used to retrieve anchor
instances, which contain the same keyword. After that, the
anchor instance are paired with the source instance as the
candidate pair.

4.2 Instance Matching

In IM, each candidate pair from CS is verified whether it is
a correct match or not by using a similarity vector. Con-
sequently, the results of IM are match pairs and non-match
instances. In IM, there are two modules: 1) the similarity
vector extraction module and 2) the classifier module. In the
††http://dbpedia.org/page/Michelle Obama
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similarity vector extraction module, a similarity vector of
a candidate pair is computed by various similarity metrics.
The classifier module then classifies the candidate pair by
using its similarity vector. When the classifier module clas-
sifies that the candidate pair is a correct match, the source
instance of the candidate pair immediately map to its paired
instance. Such relation could be utilized to access expanded
instances later. Otherwise, the candidate pair is unpaired as
a non-match instance.

4.2.1 Similarity Vector Extraction

In the similarity vector extraction module, a candidate pair
is passed to various similarity metrics to compute a similar-
ity vector between the instances. In the LOD cloud, usually
instances are heterogeneous and some of them might be dis-
torted and ambiguous [17]. As a result, limiting similarity
metrics to a few metrics might not overcome such problems.
In the similarity vector extraction module, many kinds of
similarity metrics therefore are used in HMILDs.

For the similarity metrics, the six similarity metrics:
Term Frequency-Inverse Document Frequency cosine sim-
ilarity (TF-IDF) [18], Jaro-Winkle similarity metric [19],
Edit Distance similarity metric [20], Count similarity met-
ric [12], IDF similarity metric [12] and TopIDF similarity
metric [12], are used. These similarity metrics are conven-
tional similarity metrics for representing the similarity be-
tween documents. In HMILDs, an instance could be viewed
as a document because we treat all literal information of in-
stances as string. To create a document from an instance, all
strings of an instance are appended together as a document.
Consequently, we could apply these similarity metrics as the
same manner of the conventional document similarity.

In addition, we also introduce two novel similarity met-
rics: the CommonKeyword similarity metric and the Candi-
dateHits similarity metric.

The CommonKeyword similarity metric aims to cap-
ture the similarity between a set of keywords of instances.
Based upon the characteristic of a set of keywords, instances
sharing a lot of keywords have a high chance to be a match
pair, because the instances of such candidate pairs intend to
describe the same thing. Consequently, we assume that the
more keywords instances of a candidate pair share, the more
likely they are matched. To capture this characteristic, the
CommonKeyword similarity metric is calculated by passing
sets of keywords between instances of a candidate pair to
the Jaccard Similarity [21].

The CandidateHits similarity metric is to represent how
many times the candidate pairs are generated. During gener-
ating candidate pairs, some candidate pairs might be gener-
ated more than once. For example, different keywords might
retrieve the same candidate instance for generating the can-
didate pair. We therefore assume that the candidate pair,
which is generated frequently, is likely to match, because
the relation between such instance and the source instance
is highly correlate. Based on this concept, the CandidateHits
similarity metric is derived as shown in Eq. (1),

CandidateHits(c) =
n(c)
∑

i∈C n(i)
(1)

where n(c) and n(i) is how many times the candidate pair
c and the candidate pair i are generated and C is a set of
candidate pairs.

Apart from eight similarity metrics, we also consider
types of literal information as a factor of combination of
similarity metrics. Ignoring type of literal information might
miss some description of an instance. We categorize literal
information into three types: 1) ls, 2) ll and 3) combining ls

and ll together. In HMILDs, three documents regard types
of literal information are extracted for each instance. Then,
similarity metrics are applied for each document of the in-
stance. However, a dimensional length of our feature vector
is 22-dimensional feature vector. Since the CandidateHits
similarity metric does not relate to a type of literal infor-
mation of instances, a candidate pair applies this similarity
metric only once.

4.2.2 Classifier

In the classifier module, a machine learning method is uti-
lized to create a classifier C for determining whether the can-
didate pair is correct match or not. To create the classifier
C, similarity vectors of candidate pairs and their label indi-
cating the class of candidate pair are used. If the classifier
C classifies the candidate pair as a correct match, the source
instance of the candidate pair will be mapped to the LOD
instance of the candidate pair. Otherwise, the candidate pair
is unpaired as a non-match instance.

4.3 Candidate Expander

For non-match instances, CE expands the search space for
finding other candidate instances in other LOD data sets to
generate new candidate pairs. In CE, only the expander
module is installed. The expander module enables HMILDs
to traverse through the LOD cloud by using link properties,
in particular the owl:sameAs property, in order to discover
a new candidate instance for re-generating a new candidate
pair.

Generally, adjacent instances of an instance carries rel-
evant information about the instance. We therefore assume
that adjacent instances could be utilized to discover a new
candidate instance. The basic idea is to start with a non-
matched instance and gradually expand the search space to
its adjacent instances. Then, such adjacent instances con-
tinue to expand the search space to their adjacent instances.
The expansion procedure is done repeatedly until a candi-
date instance of the non-matched instance could be discov-
ered or there are no any adjacent instances to expand the
search space.

Although we could gradually expand an source in-
stance to an expanded instance by using adjacent in-
stances and link properties, the expanded search space could
grow up dramatically when expanding into higher depth
level [13]. The depth level is measured by how many hops
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from the instance to the other instance via adjacent in-
stances. According to this problem, a simple heuristic func-
tion is introduced by assuming that the search space should
be expanded to an expanded instance if the expanded in-
stances share at least a keyword with instances in traversed
path of adjacent instances in the source data set [13]. Based
on the preliminary experiment [13] with the maximum depth
level set at 3, the expander module generates averagely
214,885 candidate pairs per an instance, while using the
simple heuristic function the expander module establishes
203 candidate pairs per an instance. The heuristic function
in the work [13] could reduce a number of candidate pairs.
Still, the work [13] generates enormous useless candidate
pairs, which have no chance to be a correct match pair.

In this article, a new heuristic function for generating
candidate pairs is introduced. The aim of the heuristic func-
tion is to limit the expanded search space so that a less num-
ber of candidate pairs and a less number of useless candidate
pairs would be generated.

In HMILDs, the keyword score is proposed as the new
heuristic function. In the keyword score, two basic assump-
tions are made. First, the more instances share keywords,
the more they are likely to match. This assumption is simi-
lar to the CommonKeyword similarity metric. Second, key-
words from adjacent instances in the different depth level
are distinct. Keywords of adjacent instances in the lower
depth level could more highly related to the instance than
keywords of adjacent instances in the higher depth level.
Consequently, it could be assumed that the lower the depth
level of keywords to the instance is, the more important the
keyword is. Based upon two assumption above, a keyword
score of an instance could be derived as shown in Eq. (2),

KeywordS cores(e) =

∑d
i=0 w

i · |keyword(e)∩∪x∈Ad j(s)i keyword(x)|
∑

x∈Ad j(s)i
|keyword(x)|

∑d
i=0 w

i

(2)

where e is an expanded instance, keyword(x) is a function
returned keywords of the instance x, d is the maximum
depth level for expanding the search space, w is a parameter
for weighting necessity of keywords at the different depth
level and Ad j(s)i is a set of adjacent instances of s at the
depth level i. For example, given the scenario in Fig. 2, the
instance “Baron Papanoida” in the source data set is s and
the instance “Star war iii Revenge of the Sith” in the ex-
panded data set is e. The instances, “Star war iii Revenge
of the Sith” and “George Lucas”, in the source data are in-
stances in Ad j(s)1.

The aim of keyword score is to capture the correlation
between the source instance s and the expanded instance
e. If the keyword score is high, the correlation between in-
stances will be high. We assume that the expander module
should expand the search space to the high correlated in-
stance because there is high probability to discover an iden-
tical instance.

In Algorithm 1, the algorithm of the expander mod-
ule is expressed. The idea of the algorithm is to find a pair

Fig. 2 An example of the expanded search space from One Data Set to
Other Data Sets.

Algorithm 1 Expander Module for Generating New Candi-
date Pairs
Input: NIs (Set of non-match instances)
Output: C (Set of Candidate pair)
1: C ← ∅
2: Q← ∅ # Q is a queue of instances, which will explore and expand
3: foreach s ∈ NIs do
4: Q← s
5: while Q � ∅ do
6: p← Q.Dequeue() # Get the first instance of Q
7: N ← Ad j(p) # Get the adjacent instances of instance p
8: foreach e ∈ N do
9: if KeywordS cores(e) > δ then

10: Q← e # Add to Q for exploring next round
11: C ← (s, e) ∪C # Pair candidate between s and e
12: end if
13: end foreach
14: Q← sameAsLink(p) # Get other instances linked to p

# by owl:sameAs and store in Q
15: end while
16: end foreach
17: return C

of a source instance and an adjacent instance, of which the
keyword score is greater than the threshold δ. Then, the
algorithm gradually expands the search space by using the
owl:sameAs property of that adjacent instance in order to
reach an expanded instance and pair the expanded instance
with the source instance as a new candidate pair.

In Fig. 2, an example of the algorithm is illustrated.
Given the source instance “Baron Papanoida”, this instance
does not match any instances in the anchor data set; in
consequence, it is a non-matched instance. However, the
instance “Baron Papanoida” has some adjacent instances:
“Star war iii Revenge of the Sith” linking to “Baron Pa-
panoida” by the character in relation and “George Lucas”
linking to “Baron Papanoida” by the actor relation, and
they successfully map to the anchor data set. Utilizing the
owl:sameAs property, the expander module could traverse
through the expanded data set via the owl:sameAs property
among the source instance, the anchor instance and the ex-
panded instance. Then, the expander module expands and
locally searches the expanded instance “Star war iii Revenge
of the Sith” in order to discover a new candidate instance for
the source instance “Baron Papanoida”. Then, the new can-
didate pair between the source instance “Baron Papanoida”
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and the expanded instance “Baron Papanoida” could be ac-
quired. In case that the keyword score of expanded instances
is less than the threshold, the instance is removed from the
expanded search space in order to limit the range of the
search space. In Fig. 2, the instance “Rick McCallum” is
removed, since its keyword score is less than the threshold
δ.

5. Experiments

5.1 Experimental Setup

To evaluate the framework, four experiments are conducted.
The first experiment investigates contribution of our novel
similarity metrics for IM. The second experiment evaluates
the performance of CS and CE for mapping instances to
multiple LOD data sets. The third experiment investigates
parameters for the heuristic function of HMILDs. The forth
experiment evaluates the performance of HMILDs.

Instances from Ontology Alignment Evaluation Initia-
tive 2012 (IM@OAEI 2012) track [22] are used as source
instances. Then, the source instances are aligned to LOD in-
stance by a domain expert in order to construct ground truth
for experiments. All experiments are conducted by using
this dataset. Due to a large number of LOD data sets, man-
ual aligning source instances to all data sets is impossible.
Therefore, instances in two prominent LOD data sets, DB-
pedia and Freebase, are selected to align to source instances
for constructing ground truth. DBpedia [23] is also chosen
as the anchor data set because DBpedia is well-known as
the hub of the LOD cloud [24]. Based upon the prelim-
inary experiment, we could find that only 90.36% of our
source instances could be manually mapped to DBpedia in-
stances. This result shows the solid evidence conforming to
our research statement, where only one data set might not
be enough for mapping instances. Freebase [25] is selected
as the expanded data set because more than million links of
DBpedia are connected to Freebase. Furthermore All of our
source instances, which do not contain in DBpedia, could be
found in Freebase.

In HMILDs, there are many parameters. To conduct
the experiments, the parameters are set as follows. In the
keyword extraction module, N for the N-gram technique are
set as 1, 2, 3 and n respectively, where n is the length of a
considered string. For NER system, Stanford Named Entity
Recognizer [26], is used. In the instance selection module,
the DBpedia Lookup Service interface [27] is used to gather
candidate instances from DBpedia. In the instance matching
module, the Support Vector Machine (SVM), LIBSVM [28],
is used in this component as the classifier to classify a candi-
date pair as the same manner of the work [29]. To build the
classifier, candidate pairs generated by HMILDs are man-
ually labeled to their corresponded class. Then, such label
together with their similarity feature vectors are used to cre-
ate parameters of the classifier.

Table 1 Summary of similarity metrics for each method

Method
Similarity Metrics

TF Jaro Edit Count IDF TopIDF Common Candidate
IDF Winkler Distance [12] [12] [12] Keyword Hits

TF-IDF ✓

TF-Jaro [19] ✓ ✓

RiMOM [20] ✓ ✓

Rong et al. [12] ✓ ✓ ✓ ✓ ✓

Combined [13] ✓ ✓ ✓ ✓ ✓ ✓

HMILDs-CH ✓ ✓ ✓ ✓ ✓ ✓ ✓

HMILDs-CK ✓ ✓ ✓ ✓ ✓ ✓ ✓

HMILDs ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Table 2 The results of each method

Method Precision Recall F-Measure
TF-IDF 0.89204 0.76874 0.82276
TF-Jaro [19] 0.91825 0.79228 0.84760
RiMOM [20] 0.92389 0.82998 0.87256
Rong et al. [12] 0.95569 0.81925 0.88100
Combined [13] 0.94999 0.85782 0.90013
HMILDs-CH 0.95243 0.87349 0.90970
HMILDs-CK 0.94799 0.88237 0.91202
HMILDs 0.95202 0.91008 0.92949

5.2 Experiment 1

Experiment 1 is designed to investigate contribution of our
two novel similarity metrics, CommonKeyword and Can-
didateHits, for IM. Furthermore, various similarity metrics
are compared to find the suitable combination of the simi-
larity metrics for the instance matching component. In the
instance matching problem, many combination of a sim-
ilarity metrics have been proposed [12], [13], [19], [20].
In the experiment, we compare combination of similarity
metrics with combination of our similarity metrics. Com-
bination of similarity metrics of our approach, including
HMILDs, HMILDs without the CandidateHits similarity
metric (HMILDs-CH) and HMILDs without the Common-
Keyword similarity metric (HMILDs-CK), and other stud-
ies [12], [13], [19], [20] are summarized as shown in Table 1.

In the experiment, 10-fold cross-validation technique is
applied to evaluate each combination of similarity metrics.
Precision, Recall and F-Measure are employed to measure
the performance of the results.

The experimental results are listed in Table 2. Con-
sidering the results in Table 2, we could notice that Rong’s
method provides the highest precision at 0.956, while
HMILDs gives the best recall and the best F-measure at
0.910 and 0.929 respectively. Although HMILDs provides
less precision than Rong’s method, the highest result of the
F-measure still acquired from HMILDs.

In order to deeply investigate the results, HMILDs is
compared against other methods by the t-testing method.
The significance level is set at 0.05. It turns out that al-
though combination of our similarity metrics gives the lower
precision result than Rong’s method [12], the difference of
the results is not significant. Nevertheless, the paired t-
test’s results of the recall and the F-Measure indicate that
HMILDs is significantly different from other methods ex-
cepting HMILDs-CH and HMILDs-CK, which include the
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CommonKeyword similarity metric or the CandidateHits
similarity metric. To further investigate contribution of
each similarity metric, the CommonKeyword similarity and
the CandidateHits similarity, the t-test’s results of the re-
call and the F-Measure between HMILDs-CH, HMILDs-
CK and other methods, excepting HMILDs, are conducted.
The t-test results turn out that for HMILDs-CH there is no
significance when comparing with Combined [13], while for
HMILDs-CK, there is no significance when comparing with
Combined [13] and RiMoM [20]. Based upon this investiga-
tion, the CommonKeyword similarity metric together with
the CandidateHits similarity metric could provide signifi-
cant contribution for improving the recall result and the F-
Measure result of IM while they do not affect the precision
result.

5.3 Experiment 2

Experiment 2 is to investigate the contribution of CE for
mapping instances to many LOD data sets and the contribu-
tion of keywords in CS for discovering identical instances.
In the experiment, to fairly evaluate CS and CE, all gen-
erated candidate pairs are manually verified whether they
are correct match or not so that the effect of IM could be
avoided.

There are four setting in the experiment. The first
setting is the Lookup [30] with DBpedia as a baseline ap-
proach. The Lookup approach retrieves candidate instances
by using only a label of an instance as a keyword. The sec-
ond and the third settings are CS with two different data sets,
DBpedia and Freebase respectively. The fourth setting is CS
with CE (CS + CE). For CS + CE, the anchor data set is
DBpedia and the expanded data set is Freebase. Three met-
rics: selecting, non-selecting and missing, are used to evalu-
ate the components in the experiment. The selecting metric
measures the percentage of existing identical instances be-
tween the source data set and the LOD data set retrieved
by the component for generating candidate pairs. The non-
selecting metric measures the percentage of existing identi-
cal instances between the source data set and the LOD data
set, which could not be retrieved by the component for gen-
erating candidate pairs. The missing metric represents the
percentage of non-existing identical instances between the
source data set and the LOD data set.

Considering the results in Table 3, CS using the data set
DBpedia outperforms Lookup. Even though both CS and
Lookup utilize a set of keywords for retrieving an instance
in DBpedia, the main difference is a method to obtain a set
of keywords. Lookup selects only a label of an instance as a

Table 3 The results of generating candidate pairs

Setting Data Set Selecting Non-Selecting Missing

Lookup [30] DBpedia 84.30% 6.06% 9.64%
CS DBpedia 88.71% 1.65% 9.64%
CS Freebase 95.04% 4.96% 0.00%

CS + CE
DBpedia

97.80% 2.20% 0.00%
Freebase

keyword, while our CS generates a set of keywords by using
various strategies. Therefore, The result confirms that our
keywords in CS are helpful to discover identical instances.

The results of the experiment are listed in Table 3.
In the Table 3, two main contribution for CE are founded.
Firstly, comparing the missing result of CS using DBpedia
with CS + CE, the missing result reduces from 9.64% to
0.0%. This reduction significantly shows that CE could dis-
cover some missing instances in one data set by using ex-
panded data set. This result conforms to the assumption of
this research, where mapping instances to one LOD data set
is not enough. Secondly, considering the results between
CS and CS + CE, the selecting result of CS + CE is greater
than the selecting result of CS with any data sets. This re-
sults shows that CE could help to discover more identical
instances because it can successfully map instances to many
data sets. Based upon two contribution of CE, we conclude
that CE greatly contributes to map instances to the LOD
cloud.

5.4 Experiment 3

In Experiment 3, parameters in the heuristic function are
studied to investigate the trade-off between the ability to
limit the expanded search space and the ability to map in-
stances to the LOD cloud.

Two parameters are studied in the experiment. The first
parameter is the threshold δ for limiting the expanded search
space. The threshold δ in the experiment is varied from 0.0
to 0.5 and increases each step by 0.05. The second parame-
ter is the weighting w for computing the keyword score. In
the experiment, the weight w at 0.0, 0.25, 0.5 and 1.0 are
investigated respectively.

To fairly evaluate the performance and the goodness of
the heuristic function in the framework, the work [13] is se-
lected as the baseline for the experiment. The framework
in the study [13] is mostly similar to HMILDs in this arti-
cle; however, the heuristic function of the expander module
is different. In the experiment, the 10-fold cross validation
technique is performed to evaluate the results. Based upon
our preliminary experiment [13], we statically set the depth
level d at 3, since it could be sufficient enough to reach can-
didate instances and does not allow the expander module to
explore the large search space.

Three evaluation metrics: 1) the average number of
generated candidates, 2) the average number of useless can-
didates and 3) the coverage percentage of mapping instances
to the LOD cloud, are used to evaluate the ability to map
instances to the LOD cloud and the ability to limit the ex-
panded search space in aspects of quantity and quality.

The average number of generated candidates is used
to evaluate the ability to limit the expanded search space in
the aspect of quantity. The expanded search space directly
relates to a number of generated candidate pairs. If the ex-
panded search space is very large, a number of generated
candidate pairs will also become greater. Consequently, the
ability to limit the expanded search space in the aspect of
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Fig. 3 Average number of generated candidate pairs of the baseline and
the framework with different weight w varied by the threshold δ

Fig. 4 Average number of useless generated candidate pairs of the base-
line and the framework with different weight w varied by the threshold δ

quantity could be observed through an average number of
generated candidate pairs.

The average number of useless candidates is employed
to measure the quality of the ability to limit the expanded
search space. Although many useless candidate pairs are
generated, such candidate pairs could not improve any cov-
erage for mapping instances to the LOD cloud. Therefore,
the quality of the ability to limit the expanded search space
could be observed via an average number of useless candi-
date pairs.

The coverage percentage of mapping instances to the
LOD cloud is used to evaluate the ability to map instances
to the LOD cloud. If the percentage of mapping instances to
the LOD cloud is high, it could be inferred that the ability to
map instances to the LOD cloud is also high.

The results of the experiment are illustrated in Figs. 3–
5. In each figure, the x-axis is the threshold δ, while the y-
axis is the result measured by each metric. Each line in the
figure represents the result with the different weight config-
uration.

In the Figs. 3–4, the results show that the threshold δ
directly influences the ability to limit the expanded search

Fig. 5 Coverage for mapping instances to the LOD cloud of the baseline
and the framework with different weight w varied by the threshold δ

space. At the threshold δ = 0.05, the dramatic reduction
of a number of generated candidate pairs and reduction of a
number of useless candidate pairs could be observed. There-
fore, the threshold δ directly plays an important role in the
ability to limit the expanded search space.

Considering effect of the weight w in Figs. 3–4, we
could observe that the weight w contribute to the ability to
limit the expanded search space at the threshold δ set at 0.05.
When the weight w is reduced, the heuristic function tends
to generate less candidate pairs and useless candidate pairs.
This characteristic happens because when the weight w re-
duces, the priority of the keyword is given to the keyword
that closes to the source instance. As a result, the heuristic
function will eliminate useless candidate pairs.

In the Fig. 5, when the threshold δ increases, the abil-
ity to map instances to the LOD cloud is decreased as we
could observe from the reduction of the coverage number of
mapping source instances to the LOD cloud. For the weight
w, considering the results in different weight w in Fig. 5,
the different weight w could differently provide the cover-
age number of mapping source instances to the LOD cloud.
However, the effect of the weight w could be governed by
the threshold δ when the threshold δ is too large.

According to the experimental result, the threshold δ
and the weight w contribute to the ability to limit the ex-
panded search space and the ability to map instances to the
LOD cloud. The best configuration of the weight w and the
threshold δ for balancing between the ability to limit the ex-
panded search space and the ability to map instances to the
LOD cloud are achieved, when the weight w is set at 0.5
and the threshold δ is set at 0.05. With such configuration,
HMILDs could produce only 9.73% of candidate pairs of
the baseline and 10.05% of useless candidate pairs of the
baseline, whereas the highest coverage result of mapping
source instances to the LOD cloud at 90.36% is still reached
as same as the baseline.
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Table 4 The results of the framework comparing with the baseline

Approach Precision Recall F-Measure Avg. number of Avg. number of % Coverage
Generated Candidates useless generated candidates

Baseline [13] 0.913 0.919 0.914 203.03 28.87 90.36
HMILDs 0.917 0.919 0.917 11.74 2.90 90.36

5.5 Experiment 4

In Experiment 4, the heuristic function of HMILDs is inves-
tigated in three aspects. The first aspect is overall perfor-
mance. The second aspect is the effectiveness to limit the
expanded search space. The third aspect is as the efficiency
for mapping instances to the LOD cloud.

In the experiment, Baseline from the study [13] is used
as the benchmark. The framework [13] is mostly similar to
HMILDs; however, the heuristic function of the expander
module is different. In the experiment, the parameters of
HMILDs are set as follows. The weight w is set at 0.5.
The threshold δ is set at 0.05. The depth d is set at 3. To
evaluate the results the 10-fold cross validation technique is
performed. All results are reported in Table 4.

In the first aspect, three standard metric: precision,
recall and F-measure are employed to evaluate the perfor-
mance of HMILDs, when the heuristic function is installed.
As shown in Table 4, HMILDs provides the similar preci-
sion result, the similar F-Measure result and the same recall
result, when comparing with Baseline. Consequently, in the
first aspect regarding the performance, the heuristic function
could not affect any performance. This result indicates that
even though the expanded search space is reduced due to
the heuristic function, HMILDs could still obtain the simi-
lar performance as Baseline.

In the second aspect, the average number of generated
candidates and the average number of useless generated can-
didates are used to analyze this aspect. The expanded search
space directly relates to a number of generated candidate. If
the expanded search space is very large, a number of gen-
erated candidate pairs will be plentiful. Consequently, we
could observe the effectiveness of the heuristic function for
limiting the expanded search space via the average number
of generated candidates and the average number of useless
generated candidates. As shown in Table 4, the results indi-
cate that our heuristic function helps to limit the expanded
search space due to the reduction of an average number of
generated candidate pairs. Furthermore, we could also ob-
serve that Baseline generates more useless candidate pairs
than HMILDs. Due to the reduction of generated candidate
pairs and useless candidate pairs, it could be concluded that
the heuristic function of HMILDs could limit the expanded
search space effectively.

In the third aspect, the percentage of coverage of map-
ping instances to the LOD cloud (%Coverage) is measured
to represent the efficiency of the heuristic function for map-
ping instances to the LOD. Although HMILDs could gen-
erate less generated candidate pairs and useless candidate
pairs than Baseline in the second aspect, we also need to

consider the efficiency of the heuristic function in the third
aspect because the main purpose of the research is to map
instances to the LOD cloud as many as possible. As shown
in Table 4, HMILDs provide the same percentage of cov-
erage of mapping instances to the LOD cloud to Baseline.
Therefore, the heuristic function of HMILDs does not affect
the percentage of coverage of mapping instances to the LOD
cloud even though the expanded search space is reduced.

Based upon the results in all aspects, HMILDs outper-
forms Baseline in the second aspects and does not provide
worse results than Baseline in any aspects. Therefore, This
experiment indicates that the heuristic function of HMILDs
could effectively limit the expanded search space, while still
maintains the efficiency to map instances to the LOD with-
out affecting any performances.

6. Conclusion

In this article, HMILDs is introduced. The experimental re-
sults showed that HMILDs could successfully map instances
to LOD data sets. Furthermore, the heuristic function of
HMILDs could generate fewer candidate pairs and signifi-
cantly reduce the number of useless candidate pairs better
than the other work without degrading performance.

Although HMILDs could discover candidate instances
across LOD data sets, some of such candidate instances
could not be successfully paired with source instances. Due
to the heterogeneous problem in LOD data sets, IM in
HMILDs might not be able to correctly verify all candidate
pairs generated from the expanded search space whether
they are a correct match or not. In the future work, we there-
fore plan to integrate other powerful instance matching tech-
niques into IM of HMILDs to deal with the heterogeneous
problem of LOD data sets.
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