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PAPER

A Dynamic Switching Flash Translation Layer Based on Page-Level
Mapping

Dongchul PARK†∗a), Member, Biplob DEBNATH†∗∗b), and David H.C. DU††c), Nonmembers

SUMMARY The Flash Translation Layer (FTL) is a firmware layer in-
side NAND flash memory that allows existing disk-based applications to
use it without any significant modifications. Since the FTL has a critical
impact on the performance and reliability of flash-based storage, a variety
of FTLs have been proposed. The existing FTLs, however, are designed
to perform well for either a read intensive workload or a write intensive
workload, not for both due to their internal address mapping schemes. To
overcome this limitation, we propose a novel hybrid FTL scheme named
Convertible Flash Translation Layer (CFTL). CFTL is adaptive to data ac-
cess patterns with the help of our unique hot data identification design
that adopts multiple bloom filters. Thus, CFTL can dynamically switch
its mapping scheme to either page-level mapping or block-level mapping
to fully exploit the benefits of both schemes. In addition, we design a
spatial locality-aware caching mechanism and adaptive cache partitioning
to further improve CFTL performance. Consequently, both the adaptive
switching scheme and the judicious caching mechanism empower CFTL
to achieve good read and write performance. Our extensive evaluations
demonstrate that CFTL outperforms existing FTLs. In particular, our spe-
cially designed caching mechanism remarkably improves the cache hit ra-
tio, by an average of 2.4×, and achieves much higher hit ratios (up to 8.4×)
especially for random read intensive workloads.
key words: FTL, flash translation layer, CFTL, SSD, flash memory

1. Introduction

Several distinguished features of flash memory have enabled
flash-based storage devices (e.g., Solid State Drives) to be
successfully adopted in enterprise markets as well as per-
sonal mobile markets [1]–[3]. They include fast random
access, lower power consumption, shock resistance, and
light weight [4], [5]. However, since it does not allow in-
place update (i.e., overwrite), overwriting a page in a flash
memory must be preceded by an erasure of the correspond-
ing block (the flash memory space is partitioned into many
blocks, where each block contains a fixed number (32 or
64) of pages). This in-place update problem results from the
asymmetric operational granularity of flash memory: both
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read and write operations are performed on a page basis,
whereas erase operations are executed on a block basis. Ac-
cording to [6], read operations take 15 µs, write operations
take 200 µs, and erase operations take 2,000 µs. This is
the main reason erase operations severely degrade the over-
all performance of flash memory. Therefore, reducing the
number of erase operations is one of the most fundamental
issues in flash memory. Moreover, balancing the erase count
of each cell block, called wear leveling, is also another cru-
cial issue due to the limited life span of a cell block in flash
memory [7]. To resolve these problems, the flash translation
layer (FTL) has been designed and deployed.

The FTL is a firmware layer implemented inside a
flash-based storage device and emulates disk-like in-place
updates: it first acquires a clean page and updates the cor-
responding data on that page. Next, it maps the original
Logical Page Number (LPN) into this new Physical Page
Number (PPN). Thus, an efficient FTL scheme has a criti-
cal impact on overall performance of flash memory since it
directly affects in-place update performance and balancing
the wearing of each data block.

In general, existing FTLs classifies largely into three
schemes: page-level, block-level, and hybrid mapping.
Page-level mapping [8] provides a fine granularity (i.e.,
page-level) address mapping so that it can achieve the best
read/write performance, while it consumes a very large
memory space to store a number of page mapping entries.
An update to a page in page-level mapping may not have to
trigger a block erase since it can use any clean page in any
block for updating. On the other hand, an update to a page in
block-level mapping will trigger the erase of the block con-
taining the corresponding page. Consequently, the perfor-
mance of block-level mapping for write intensive workloads
is even lower than that of page-level mapping. However, for
the read intensive workloads, the performance of block-level
mapping is comparable to that of page-level mapping with
much less memory space (theoretically, 1/N, where N is the
number of pages in a block) because a read operation does
not trigger block erasure. Although various hybrid mapping
schemes [9]–[13] have been proposed to take advantage of
both, they still suffer from a performance degradation be-
cause they are fundamentally designed on the basis of block-
level mapping and added very limited page-level mapping
restricted only to a small number of log blocks.

Considering the pros and cons of the existing FTLs and
the tradeoff between the performance and the required mem-
ory space, we make the following observations: 1) with an
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even less memory space, block-level mapping can offer a
good performance for read intensive workloads due to its
fast direct address translations, 2) page-level mapping is
best fit for write intensive workloads with a high block uti-
lization and less erase operations, 3) spatial locality (as well
as temporal locality) in workloads can also help improve
FTL performance, and 4) a dynamic cache assignment can
make the best use of a limited memory space. Based on these
observations, our goal is to design a dynamic FTL scheme
adaptive to the workload behaviors. For write intensive
workloads, it can provide the page-level-mapping-like per-
formance for hot data, while for read intensive workloads, it
provides the block-level-mapping-like performance for cold
data. We define a data page updated frequently as hot data,
and a data page read intensively with very infrequent or no
updates as cold data. However, hot data may turn into cold
data or vice versa from time to time in a workload. The
challenge is how to judiciously deal with these conversions.

This paper proposes a novel hybrid FTL scheme named
CFTL (Convertible Flash Translation Layer). CFTL, un-
like other existing hybrid FTLs, is fundamentally rooted in
page-level mapping. This is a very meaningful transition in
the design paradigm of a hybrid FTL because the core of
the existing hybrid FTLs is mostly based on log-structured
block-level mapping. Thus, they cannot completely over-
come the inherent limitation (i.e., lower write performance)
of the block-level mapping scheme. However, the core map-
ping table of CFTL is page-level mapping so that CFTL can
fully exploit the main benefit (i.e., good write performance)
of page-level mapping. Furthermore, it takes advantage (i.e.,
good read performance with less memory) of block-level
mapping by using its adaptive feature. The key idea is that
the mapping scheme is dynamically switched according to
the data access patterns. In CFTL, since the mapping ta-
ble is stored in the flash memory, there can be an overhead
to look up the mapping tables. To reduce this overhead,
we specially design a spatial locality-aware caching mecha-
nism to get extra benefits from the spatial locality in work-
loads as well as a temporal locality. Moreover, our adaptive
cache partitioning boosts the address translation efficiency
of CFTL by fully exploiting a small memory space further.
The main contributions of this paper are as follows:

• A Dynamic Switching FTL Scheme: CFTL is dynam-
ically switched to either scheme according to data ac-
cess patterns: Block-level mapping is in charge of read
intensive data to exploit its fast direct address transla-
tion, while page-level mapping manages write inten-
sive data to minimize erase operations.
• A Spatial Locality-Aware Caching Mechanism: For

a faster address translation, CFTL adopts two small
caches to store the mapping data and speed up both the
page and block-level address translations respectively.
In particular, the page-level cache is specially designed
to make the best use of spatial localities (as well as
temporal localities) in workloads.
• Adaptive Cache Partitioning: CFTL does not stati-

cally assign a memory space to both mapping tables
(i.e., page and block) on the cache. Instead, it dynam-
ically assigns a more cache space to either one in ac-
cordance with workload patterns to makes the effective
use of a limited cache space.
• A New Hot Data Identification Scheme: In CFTL, hot

data identification plays an important role in address
mode switching. Thus, we developed a novel hot data
identification scheme adopting multiple bloom filters
and multiple hash functions to capture finer-grained re-
cency information as well as frequency information.

The rest of this paper is organized as follows. Sec-
tion 2 gives an overview of FTL and describes existing FTL
schemes. Section 3 explains the design and operations of the
CFTL scheme. Section 4 provides performance evaluation.
Finally, Sect. 5 concludes the discussion.

2. Background and Related Work

2.1 Address Mapping Schemes in Flash Memory

Typical address mapping procedures in FTL are as follows:
on receiving a logical page address from the host system,
FTL looks up the address mapping table and returns the cor-
responding physical address. When the host system issues
overwrite operations, FTL redirects the physical address to
a clean location in order to avoid erase operations. Then the
updated data are written to the new physical location. After
the overwrite operation, FTL updates the address mapping
information and the outdated invalid block can be erased
later by a garbage collection mechanism [14]. FTL main-
tains the mapping table information either in a page-level,
block-level, or hybrid manner.

Page-Level Mapping can map a logical page into any
physical page in flash memory. Although it can achieve
a good overall performance for both read and write oper-
ations, it requires a large amount of memory space to main-
tain the entire mapping table [15], [16]. As an example,
1 TB of a flash-based storage device requires 4GB of mem-
ory space only for the mapping table (assuming a 2KB page
and 8 bytes per mapping entry).

In block-Level Mapping, a logical page address is
made up of both a logical block number and an offset. This
can save the memory space for mapping information. How-
ever, when overwrite operations to logical pages are issued,
the corresponding block must be migrated and remapped to
a clean physical block. That is, the valid pages and the up-
dated page of the original data block are copied to a new
clean physical block before the original physical block can
be erased. When it comes to a block-level mapping, this
erase-before-write characteristic is an unavoidable perfor-
mance bottleneck in write operations.

To overcome the aforementioned limitations of both
mapping schemes, diverse hybrid approaches have been pro-
posed [9], [10], [12], [13], [17]. Most of them are based
on a log buffer approach by adopting a limited number of
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log blocks to improve the write performance. The memory
usage for mapping can also be lessened since only a small
number of log blocks are allocated for page-level mapping.
However, the log blocks eventually need to be erased and
this will trigger multiple block merges to reclaim them in
the future.

2.2 Related Work

DFTL (Demand-based Page-Level FTL) [15], [18] is a page-
level FTL scheme and tries to overcome the memory space
problem by storing its complete mapping table on flash
memory, not in DRAM. This approach can save a memory
space, but gives rise to extra overheads for flash memory
lookup. Moreover, DFTL suffers from frequent updates to
its flash mapping table under the write-dominant workloads.

Several hybrid schemes have been proposed. BAST
(Block Associative Sector Translation) [9] scheme classi-
fies blocks into two types: data blocks for data saving and
log blocks for overwrite operations. This log buffer con-
cept enables BAST to reduce erase operations, but still suf-
fers from block merge operations and low block utilization.
FAST (Fully Associative Sector Translation) [17] is based
on BAST scheme, but allows log blocks to be shared by all
data blocks. Even though this scheme accomplishes bet-
ter utilization of log blocks, random log blocks give rise
to the more complicated block merge operations due to
the fully associative property. AFTL (Adaptive Two-Level
Flash Translation Layer) [13] maintains latest recently used
mapping information with fine-grained address translation
mechanism and the least recently used mapping information
is maintained with coarse-grained mechanisms. However,
coarse-to-fine switches incur corresponding fine-to-coarse
switches, which causes overheads in valid data page copies.

3. CFTL: Convertible Flash Translation Layer

3.1 Architecture

CFTL stores the complete page mapping table (named tier-
2 page mapping table) in the flash memory. Thus, it needs
to read the page mapping table from flash to look up the
location of the original data. This page table lookup requires
at least one flash read operation. To get over this overhead,
it caches parts of the mapping table in SRAM. As shown
in Fig. 1, CFTL maintains two mapping tables in SRAM:
CPMT (Cached Page Mapping Table) and CBMT (Cached
Block Mapping Table). CPMT is a small amount of a page
mapping table that serves as a cache to make the best use
of a temporal and spatial locality in a page-level mapping.
This table retains an addition to CPMT called a consecutive
field. This simple field provides a smart hint to improve
the hit ratio of CPMT by judiciously exploiting the spatial
locality. This will be explained in more detail in Sect. 3.4.
CBMT is a block mapping table and, like CPMT, serves as
a cache to exploit both localities in a block-level mapping.
CBMT translates logical block numbers (LBN) to physical

Fig. 1 CFTL architecture. Here, PPNs (110-113 and 570-571) are con-
secutive. So, the numbers (4 and 2) are stored to the consecutive field in
CPMT. VPN, LPN and PPN stand for virtual page number, logical page
number and physical page number respectively. In addition, C, V and I
correspond to clean, valid and invalid respectively.

block numbers (PBN), which enables fast direct access to
flash data blocks in conjunction with page offsets.

In addition to both CBMT and CPMT, there exists an-
other mapping table in SRAM. We define this SRAM-based
mapping table as a tier-1 index table. This tier-1 index table
keeps track of the on-flash locations of pieces of the tier-
2 page mapping tables. Unlike those three tables residing
in SRAM, tier-2 mapping tables are stored in flash memory
due to its large size. Since tier-2 mapping tables correspond
to the complete page mapping table in a pure page-level
mapping scheme, each entry in each table directly points
to a physical page in flash. Moreover, since tier-2 mapping
tables reside in flash memory, whenever any mapping infor-
mation is updated, a new page is assigned and all mapping
information in the old page (i.e., mapping table) is copied to
the new page with the updated mapping information. This is
because both read and write operations to flash memory are
performed on a page basis. Therefore, we need to maintain
a tier-1 index table to keep track of each tier-2 page map-
ping table which can be distributed over the flash memory
whenever it is updated. Each page (i.e., one tier-2 mapping
table) can hold 512 page mapping entries. For clarification,
assuming each page size is 2KB and 4 bytes are required
to address the entire flash memory space, then 29 (2KB/4
bytes) logically consecutive address mapping entries can be
saved for each data page. Therefore, for instance, a 4GB
flash memory device needs only 8MB (212 × 2KB) of space
to store all the required 212 (4GB/1MB per page) number of
tier-2 mapping table pages in flash.

3.2 Addressing Mode Switches

• Hot and Cold Data Identification: When any data block is
frequently updated, we define it as hot data. On the other
hand, if it is accessed in a read dominant manner or has
not been updated for a long time, we define it as cold data.
CFTL makes decisions about address mode switching based
on the hot data identification. Therefore, we developed a
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novel hot data identification algorithm by adopting multi-
ple bloom filters (for short, BF) and multiple hash func-
tions [19].

For capturing frequency, unlike other existing hot data
detection schemes, our proposed scheme does not maintain
a specific counter for all LBAs; instead, the number of BF
can present its frequency information so that it consumes a
very small amount of memory (8KB) which corresponds to
a half of the state-of-the-art scheme [20]. Recency (as well
as the frequency) is another important factor to identify hot
data. To precisely capture recency, all information of each
BF will be periodically erased by turns, which corresponds
to an aging mechanism. Thus, each BF retains a different
recency coverage. We also dynamically assign a different
recency weight to each BF: the BF that just erased (i.e., reset
BF) has higher recency weight, whereas the lowest recency
weight is assigned to the BF that will be erased in right next
turn because this BF has stored LBA access information for
the longest period of time. Consequently, it can capture fine-
grained recency information.

Figure 2 presents the operation of our hot data identi-
fication scheme. We assume that our scheme adopts a set
of V independent BFs and K independent hash functions to
capture both frequency and recency, and each BF consists of
M bits to record K hash values (we employed V = 4, K = 2,
and M = 2,048 in our scheme). Whenever a write request
is issued to the FTL, the corresponding LBA is hashed by
the K hash functions, and K hash values set the correspond-
ing K bits in the first BF to 1. For the next write request, it
chooses the next BF in a round robin manner to record its
hash values. To classify the incoming data as hot or cold,
it calculates a total hot data index value by combining the
frequency and the recency value for each write request. If it
is greater than a predefined hot threshold, they are identified
as hot and otherwise, as cold.

Our multiple BF-based hot data identifier achieves
more accurate hot data identification as well as less mem-

Fig. 2 Our hot and cold data identification scheme adopting multiple
bloom filters and multiple hash functions.

ory consumption [19]. Hot and cold data identification it-
self, however, is out of scope of this paper. Different al-
gorithms such as the LRU discipline [21], sampling-based
approach [22], or multihash function scheme [20] can also
substitute for our approach.
• Page to Block Mapping: If the hot data identifier clas-

sifies some data into cold data, addressing mode of those
data is switched to a block-level mapping during the garbage
collection. In particular, when the cold data pages in a log-
ical block are physically distributed over flash, we need to
collect those pages into a new physical data block. Then,
we pass this block mapping information into CBMT for a
block-level mapping. Whereas, when all valid physical data
pages in a logical block are identified as cold data and saved
in a consecutive manner, they can be switched to a block-
level mapping without any extra cost. However, CFTL does
not convert such types of cold data that has not been up-
dated for a long time to a block-level mapping. Converting
all cold data that have not been referenced for a long time
to the block-level mapping wastes a memory space for the
mapping table and pays an expensive read/write cost to col-
lect them. This is based on the fact that generally only a
small fraction of the address space for a disk is frequently
referenced [20]. When they are frequently accessed in a read
manner, CFTL converts this type of cold data blocks to a
block-level mapping.
• Block to Page Mapping: In the case of write dominant

access patterns, the hot data classifier makes a decision to
switch from a block to a page-level mapping. Even though
the workload does not exhibit a write intensive access pat-
tern, the corresponding data block is converted to a page-
level mapping if at least four data pages in the block are up-
dated within the same decay period. The latter case enables
CFTL to improve address translation efficiency. That is, if
there exist many invalid pages in a block due to frequent
updates, we cannot take advantage of direct address trans-
lation of a block-level mapping scheme because additional
accesses are required to look up the valid data pages. To
reduce this extra overhead and exploit the benefit (i.e., good
write performance) of a page-level mapping, CFTL man-
ages those kinds of data with a page-level mapping. Conse-
quently, CFTL can completely remove log blocks for page
updates which are the main cause of the expensive full block
merges in other hybrid FTLs. Unlike the mode change from
a page to a block mapping, this mode switch does not re-
quire any extra costs because a page mapping table is always
valid to all data in flash. Therefore, when a hot data classi-
fier in CFTL identifies some data as hot data, CFTL sim-
ply remove the corresponding block mapping entries from
CBMT. Then, those data can be only accessed by a page
mapping table, not by a block mapping table.

3.3 Address Translation Process

When a read or write request is issued, if its mapping infor-
mation has been already stored in either CBMT or CPMT,
the request can be directly served with the existing map-
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Fig. 3 CFTL address translation process. This example presents a worst
case scenario.

ping information so that CFTL can significantly reduce ad-
dress translation overheads. Otherwise, CFTL fetches the
requested mapping information from flash by using both the
tier-1 index table and tier-2 page mapping table.

When the request does not hit either CBMT or CPMT,
CFTL requires more address translation processes as fol-
lows: If there are cache spaces available in CBMT or CPMT,
the fetched mapping information is stored in either cached
mapping table accordingly. Otherwise, CFTL needs to
evict an entry from those tables to accommodate the newly
fetched mapping information. As an entry replacement al-
gorithm, CFTL adopts the Least Frequently Used (LFU)
cache algorithm [23]. CFTL employs delayed updates to
reduce frequent cache flush overheads. Thus, when CFTL
chooses a victim, it first checks if the victim in CPMT is
valid. If it is valid, it is simply evicted from the cache with-
out any extra operations. Otherwise, CFTL needs to reflect
the updated mapping information in CPMT to both the tier-1
index and tier-2 page mapping table. To update the outdated
mapping information in flash, CFTL reads the mapping in-
formation from the old page (old tier-2 page mapping table),
updates the corresponding mapping information, and then
writes to a new physical page (new tier-2 page mapping ta-
ble) (Step 4 and 5 in Fig. 3). The corresponding tier-1 index
table is updated to reflect the new tier-2 page mapping table
(Step 6 in Fig. 3).

Now, the victim is removed from the cache and the re-
quest is served by using both tier-1 index table and tier-2
page mapping table (Step 7 in Fig. 3). Finally, the newly
fetched mapping information is stored into the space avail-
able in CPMT (Step 8 in Fig. 3).

CFTL employs a two-level address translation scheme
so that a worst case (i.e., requested mapping information
does not exist in the cache, the cached mapping tables
are full, and the victim entry is invalid) read latency re-
quires three page reads and one page write. Similarly, a
worst case write latency needs two page reads and two page
writes. However, CFTL can considerably reduce this over-
head, which is the main motivation of our efficient caching

mechanism.

3.4 A Spatial Locality-Aware Caching Mechanism

Our proposed caching strategy in CFTL is inspired by the
following idea: all PPNs (Physical Page Numbers) in a
data block are consecutive [24]. As in Fig. 1, CFTL adds
one more field named a consecutive field in CPMT for
more efficient address translation. This field describes how
many PPNs are consecutive from the corresponding PPN in
CPMT. In other words, whenever FTL reaches a tier-2 page
mapping table for an address translation, it identifies how
many physical data pages are consecutive from the corre-
sponding page. It then records the number of consecutive
PPNs to the consecutive field in CPMT at the time it updates
CPMT.

In Fig. 1, LPN = 0 corresponds to PPN = 110. More-
over, the consecutive field hints that 4 numbers of PPN from
PPN = 110 are consecutive: 110, 111, 112, and 113. These
physical addresses correspond to 4 respective logical ad-
dresses from LPN = 0. That is, LPN = 1 is mapped to PPN
= 111, similarly, LPN = 2 is to PPN = 112, and LPN = 3
is to PPN = 113. If any page in the consecutive pages is
updated, we need to split and update both consecutive fields
information accordingly.

This consecutive field in CPMT enables CPMT to judi-
ciously exploit a spatial locality as well as a temporal local-
ity. With the help of this simple field, even though CPMT
does not store the requested mapping information, the con-
secutive field can provide a hint to increase the cache hit ra-
tio. This achieves higher address translation efficiency with
the same number of mapping table entries.

3.5 Adaptive Cache Partitioning

Originally CFTL assigns an even memory space to both
CBMT and CPMT. However, this static assignment can
waste a memory space. To make the best use of this,
CFTL with adaptive cache partitioning dynamically adjusts
the sizes of both CBMT and CPMT in SRAM according to
workload patterns. CFTL is fundamentally based on page-
level mapping and, especially at the beginning, it always
uses up CPMT earlier than CBMT. Consequently, CFTL
with adaptive cache partitioning initially assigns a more
memory space to CPMT than CBMT (initially 80% vs. 20%,
but this ratio can be configurable). This can considerably
improve initial cache hit ratios. After both tables are full
of mapping information, CFTL adaptively tunes the ratio of
CBMT and CPMT according to the workload characteris-
tics. That is, as write requests increase, CFTL assigns more
spaces to CPMT. When CFTL takes a space from CBMT,
it can remove the block mapping information without any
extra cost and reuses the space for CPMT. However, when
CFTL takes a space from CPMT, it should first check if
the corresponding mapping information has been updated.
Then, it follows the cache replacement policy in CPMT de-
scribed in Sect. 3.3. Similarly, CFTL allots more spaces to
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CBMT with read intensive workloads. The ratio between
CPMT and CBMT changes dynamically and one mapping
table can take a one entry space from the other on demand.
This adaptive partitioning mechanism enables CFTL to find
an optimal ratio between them so that CFTL not only effi-
ciently utilize a limited memory space, but also improves its
performance further.

3.6 Discussion

• Read Performance: DFTL [15] shows a good read perfor-
mance under the condition of high temporal locality. How-
ever, under totally random read intensive patterns (i.e., low
temporal locality), it suffers from performance degradation
because of many cache misses in SRAM. CFTL, on the
other hand, exhibits a good read performance even under
the low temporal locality because read intensive data are dy-
namically converted to block-level mapping. Moreover, its
elaborate caching mechanism improves it further by exploit-
ing spatial locality. FAST shows a comparable read perfor-
mance to page-level mapping only if the workloads contain
no write operations. Theoretically, if there exist workloads
that have never been updated since they were initially de-
ployed (to prevent extra page read overhead in log blocks)
and retains 100% read access patterns, FAST may be able to
show a comparable read performance to CFTL. However, in
practice, FAST does not reach both page-level mapping and
CFTL in realistic read intensive workloads. AFTL provides
relatively lower read performance than the other schemes in
read intensive workloads because the full fine-grained slots
inevitably trigger valid data page copies for coarse-grained
mapping. However, if workloads contain write accesses,
AFTL shows a better read performance than FAST (but still
lower than both CFTL and DFTL) because FAST signifi-
cantly suffers from merge operations.
•Write Performance: While hybrid FTLs maintain log

blocks, they cannot be free from a poor write performance.
Many random write operations inevitably cause many full
merge operations in FAST and frequent erase operations to
both primary and replacement blocks in AFTL, which ul-
timately results in a poor write performance. On the other
hand, a page-level mapping can get rid of full merge opera-
tions. Thus, both FAST and AFTL write performance never
reach a page-level mapping scheme. Although CFTL uses
a hybrid approach, it achieves the good write performance
of page-level mapping since all data in CFTL is fundamen-
tally managed by two-tier page-level mapping. Thus, both
CFTL and DFTL achieve a good write performance. How-
ever, CFTL shows a better overall write performance than
DFTL due to its faster address translation resulting from our
elaborate caching scheme.

4. Performance Evaluation

4.1 Evaluation Setup

A 32GB NAND flash memory is simulated with configu-

Table 1 Simulation configurations

Parameters Values
Page Read to Register 25µs
Page Write from Register 200µs
Block Erase 1.5ms
Serial Access to Register (Data Bus) 50µs
Page Size 2KB
Data Register Size 2KB
Block Size 128KB
Entries in Mapping Tables 4,096 entries

Table 2 Workload characteristics

Workloads Total Request Ratio Inter-arrival
Requests (Read:Write) Time (Avg.)

Websearch3 4,261,709 R:4,260,449(99%) 70.093 msW:1,260(1%)

Financial1 5,334,987 R:1,235,633(22%) 8.194 msW:4,099,354(78%)

Financial2 3,699,194 R:3,046,112(82%) 11.081 msW:653,082(18%)

Random read 3,695,000 R:3,657,822(99%) 11.077 msW:37,170(1%)

Random even 3,695,000 R:1,846,757(50%) 11.077 msW:1,848,244(50%)

Random write 3,695,000 R:370,182(10%) 11.077 msW:3,324,819(90%)

rations shown in Table 1. Our experiments of flash mem-
ory are based on the product specification of Samsung’s
K9XXG08UXM series NAND flash part [6], [25]. For an
ideal page-level mapping (selected as our baseline scheme),
we assume that the whole mapping table can be stored in
SRAM. For fair evaluation, we assign the same number of
mapping entries (4,096) for the cached mapping tables in
SRAM and use the same size of cache memory (16KB) for
both tier-1 index table in CFTL and Global Translation Di-
rectory (GTD) in DFTL. We additionally assume that the
SRAM is sufficient enough to store the address mapping
table for both FAST and AFTL, and approximately 3% of
entire space is assigned for log blocks in FAST (this is
based on [16]). Various types of workloads including real
trace data sets are employed for more objective evaluations
(Table 2). Websearch [26] trace made by Storage Perfor-
mance Council (SPC) represents well a read intensive I/O
trace. Although a Websearch trace consists of three trace
files (i.e., Websearch1, Websearch2, and Websearch3), the
characteristics of each trace file are almost identical (i.e.,
heavily read intensive). Since our experiments also showed
almost the same results for each trace, we adopt just one of
them (i.e., Websearch3). As a write intensive trace, we em-
ploy Financial1 [27] made from an OLTP application run-
ning at a financial institution. For the totally random per-
formance measurements, we based random traces upon Fi-
nancial2 [27] which is also made from an OLTP applica-
tion. Three types of random trace workloads (read intensive,
50% read and 50% write, and write intensive) are employed
for more complete and objective experiments of the purely
random access performance. Interestingly Gupta et al. [15]
classified Financial2 trace as a write dominant trace, but our
study clearly shows read dominant access patterns (refer to
Table 2). So, we classify the Financial2 trace as a read in-
tensive I/O trace.
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4.2 Evaluation Results and Analyses

1) Overall Performance: Figure 4 presents an overall per-
formance under various workloads. The overall perfor-
mance of CFTL is very close to that of an ideal page-level
mapping. CFTL provides a better read performance than
FAST [17] which has a strong point in a read performance.
It also exhibits a better write performance over DFTL [15]
which has an excellent write performance.

Under read intensive workloads (Fig. 4 (a), (b), and
(d)), CFTL switches more and more data to block-level
mapping over time to make the best use of its fast direct ad-
dress translation. Moreover, our caching mechanism makes
a considerable contribution to read performance improve-
ment since almost consecutive data pages in a data block
are not updated with these access patterns. In particular, as
in Fig. 4 (d), our proposed caching scheme demonstrates its
notable effectiveness in read performance improvement es-
pecially under random read intensive workloads. Compared
to Fig. 4 (a), the random read performance of most FTLs is
significantly degraded. However, CFTL still maintains good
performance due to its smart caching mechanism. We will
explore this in more detail later.

FAST also provides a good performance under the read
intensive workloads. However, it does not reach CFTL per-
formance because even though there are not many updates
in this workload, they still affect its overall performance due

Fig. 4 Overall performance under various workloads (read %: write %)

to merge operations in FAST. In addition, the extra data read
cost in log blocks is another factor to degrade its read per-
formance. DFTL is two-tier page-level mapping like CFTL.
If, however, the workload does not retain a high temporal lo-
cality, it cannot avoid an additional address translation over-
head. This is the main reason that DFTL does not exhibit
relatively good random read performance (Fig. 4 (d)). Un-
like other schemes, AFTL [13] does not show a good per-
formance in read intensive workload because when the fine-
grained slots are full, it starts to cause valid data page copies
for coarse-grained mapping. This incurs extra overheads.

As the ratio of write requests in workloads grows,
performance variations among each scheme also increase
rapidly because the frequent write operations cause frequent
updates in flash. As plotted in Fig. 4 (c), (e), and (f), the
overall performances of AFTL and FAST are severely de-
graded under the 50% read and 50% write workload, not to
mention write intensive workloads. This stems fundamen-
tally from frequent erase operations in both schemes. Fre-
quent updates produce frequent merge operations in FAST
and frequent erase operations to both primary and replace-
ment blocks in AFTL. On the other hand, since DFTL is
page-level mapping and CFTL is fundamentally based on
the page-level mapping, both schemes show significantly
better performances than AFTL and FAST. This is evident
particularly under write dominant workloads (Fig. 4 (c) and
(f)). However, CFTL shows better overall write perfor-
mance than DFTL due to its faster address translation re-
sulting from our elaborate caching mechanism.
2) A Spatial Locality-Aware Caching Mechanism: We pre-
pare two different CFTL schemes: CFTL and CFTL WC.
CFTL originally contains our proposed caching strategy by
adding a consecutive field to CPMT. On the other hand,
CFTL WC does not contain this field in CPMT. For fair
evaluation, both schemes have identical parameters only ex-
cept the caching strategy.

As in the Fig. 5, CFTL exhibits its dominant request
hit ratio against CFTL WC especially under read intensive
workloads (Websearch3, Financial2, and Random read)
since read operations do not hurt the consecutiveness of
data pages in a block. In particular, CFTL surprisingly im-
proves a cache hit ratio by 8.8× for the random read inten-
sive workload (i.e., Random read) compared to CFTL WC.
These results demonstrate that our spatial locality-aware
caching mechanism achieves significant performance im-
provement for the read intensive workloads, and surprising
performance improvement particularly for the random read
intensive workloads.

On the other hand, as write requests grow like Ran-
dom even (50% Read : 50% Write), Financial1 (23% Read :
77% Write), and Random write (10% Read : 90% Write),
the frequent updates break the consecutiveness of data pages
in a block so that the variation of hit ratios between CFTL
and CFTL WC is relatively reduced. Even though the gaps
are lessened, CFTL still shows higher cache hit ratios than
CFTL WC.

Figure 5 (a) presents that even though the CFTL WC
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Fig. 5 Performance improvement with our spatial locality-aware caching
mechanism. CFTL WC stands for the CFTL without our proposed caching
strategy.

does not have the efficient caching mechanism, its read per-
formance gradually approaches that of CFTL as more and
more read intensive requests come in. In our experiment,
both read performances converge on the same performance
after approximately 500 seconds corresponding to 104,420
intensive read requests in this workload (Websearch3). Note
that the convergence time totally depends on the types of
workloads. In other words, most read intensive data switch
to block-level mapping so that the read performance of
CFTL WC gradually approaches that of CFTL after some
time. This proves the effectiveness of the adaptive feature
of CFTL. However, CFTL with the caching mechanism can
offer its better read performance from the beginning, even
before CFTL WC are switched to block-level mapping.
3) Adaptive Cache Partitioning: Our adaptive cache parti-
tioning scheme dynamically tunes the ratio of CBMT and
CPMT. To evaluate its effectiveness, we again prepare two
different CFTL schemes: CFTL and CFTL WA. CFTL re-
tains our proposed dynamic partitioning scheme as well as
the aforementioned caching mechanism, while CFTL WA
is not equipped with this dynamic partitioning scheme but
includes the spatial locality-aware caching mechanism.

As in Fig. 6, both CFTL and CFTL WA start identi-
cal read and write performance at the beginning since both
CBMT and CPMT are not full yet. However, as time goes
on, CFTL shows a better performance due to our proposed
adaptive cache partitioning scheme. These performance
gaps ultimately result from total cache hit ratios of both
CBMT and CPMT, and Fig. 6 (c) adds support to this claim.
4) The Number of Block Erase: Figure 7 shows the number
of block erase for each FTL under various workloads. Since
excessively read dominant workloads (i.e., Websearch3 and
Random read) cause a significantly smaller number of block
erases than the others, we do not adopt both workloads. As
shown in Fig. 7, both CFTL and DFTL do not give rise to
as many block erases as FAST and AFTL because DFTL is

Fig. 6 Performance improvement with our adaptive cache partitioning.
CFTL WA stands for the CFTL without our adaptive partitioning scheme.

Fig. 7 The number of block erase. We do not present heavily read inten-
sive workloads (Websearch3 and Random read) due to their significantly
small numbers of erases. (read %: write %)

page-level mapping and CFTL is fundamentally rooted in
page-level mapping. These results explain well why both
CFTL and DFTL show a good write performance compared
to other hybrid FTLs. However, CFTL causes a slightly
less number of block erases than DFTL due to its judicious
caching schemes. Assuming the Cached Mapping Table in
DFTL is already full, whenever a write request is issued,
one mapping entry must be evicted from the cache unless
the request hit the cache. This evicted entry brings about a
new write operation of one flash page to update a page map-
ping table. On the other hand, CFTL maintains a consec-
utive field to improve the cache hit ratio. Although, com-
pared to a read operation, this field does not considerably
improve the cache hit ratio in write operations due to a
break of the address consecutiveness, it still does help in-
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Fig. 8 Impact of SRAM size in CFTL and DFTL. The average re-
sponse time is normalized in terms of the ideal page-level mapping scheme.
(read %: write %)

crease the cache hit ratio, which results in a little bit less
number of block erases than DFTL. Moreover, this clearly
explains why there are no big differences of block erases
between CFTL and DFTL especially under totally random
access workloads (i.e., Random even and Random write).

FAST generates a significantly large number of block
erases because of many merge operations. When FAST used
up all log blocks in data updates, it must perform merge op-
erations which can cause many block erases. Similarly, as-
suming AFTL used up all fine-grained slots, whenever write
requests are issued, the corresponding number of entries
evicted from the fine-grained slots must move to a coarse-
grained slots, which eventually causes a lot of valid page
copies and block erases.
5) Impact of SRAM Size: Evaluating performance of both
CFTL and DFTL with the same size of SRAM is also very
meaningful. Figure 8 presents the normalized average re-
sponse time in CFTL and DFTL with variable SRAM size.
Since each value is normalized in terms of ideal page-level
mapping, the value 1 means the performance of each scheme
is comparable to that of the page mapping. Thus, adding
more SRAM beyond the corresponding SRAM size for the
faster address translation does not provide performance ben-
efit to each scheme. As in Fig. 8, CFTL provides a better
performance than DFTL with the same SRAM under each
workload. More read workloads enable CFTL to benefit
from block-level mapping so that it can reduce memory con-
sumption. On the other hand, since a write intensive work-
load breaks the consecutiveness of data pages in a block,
CFTL converts its mapping scheme to page-level mapping.
Therefore, both CFTL and DFTL consume almost compa-
rable memory in the long run.
6) Memory (SRAM) Consumption: For simplification, we
assume the entire flash size is 4GB and each mapping table
in the SRAM consists of 2,048 mapping entries. We also as-
sume that approximately 3% of the entire space is allocated
for log blocks in hybrid FTLs (this is based on [16]).

Ideal page-level mapping consumes 8MB to accommo-
date its complete page mapping table. This is an excep-
tionally large space compared to the other schemes. Both
AFTL [13] and FAST [17] also consume a lot of memory
spaces (400KB and 512KB respectively). Almost over 90%
of total memory requirements in AFTL are assigned for
coarse-grained slots and most of them in FAST are allo-
cated for page-level mapping tables. On the other hand, both
CFTL and DFTL [15] consume only about 10% of the to-
tal memory space (50KB and 32KB respectively) in FAST
and AFTL since a complete page mapping table is stored
in flash memory and not in SRAM. CFTL requires a little
more memory (18KB) than DFTL since it adds a consec-
utive field to CPMT and maintains one additional mapping
table (CBMT). In addition, both CFTL and DFTL consume
the same size of cache memory for the both tier-1 index ta-
ble in CFTL and GTD in DFTL. However, this extra small
amount of memory empowers CFTL to take advantage of
page-level mapping and block-level mapping, with which
CFTL achieves a good read and write performance. In fact,
we did not consider the memory space consumption for a
hot data identification scheme since each FTL scheme does
not clarify their hot data identification algorithms. CFTL
adopts bloom filters to notably save a memory space as well
as computation overheads (it consumes only 8KB for the hot
data identification scheme). Typical FTL schemes maintain
block access counters for hot data identification, which gen-
erally requires a lot more memory spaces.

5. Conclusion

This paper proposed a novel hybrid FTL scheme named
Convertible Flash Translation Layer (CFTL) for flash-based
storage devices. CFTL can dynamically switch its map-
ping scheme between page-level mapping and block-level
mapping according to data access patterns to fully exploit
the benefits of both. Since CFTL, unlike other existing hy-
brid FTLs, is fundamentally based on page-level mapping,
it overcomes the inborn limitations of them. CFTL stores
the entire mapping table in the flash memory. Thus, there is
an overhead to look up address mapping information in the
data page. To resolve this issue, we also proposed a smart
caching scheme including a spatial locality-aware caching
mechanism and adaptive cache partitioning.

Our experiments show that CFTL outperforms
DFTL [15] by up to 24% for the read intensive workloads,
by up to 47% for the random read intensive workloads,
and by up to 4% for the write intensive workloads. More-
over, our proposed caching mechanism improves the ad-
dress translation efficiency by significantly increasing the
cache hit ratio, by an average of 2.4×, and by up to 8.4×
especially for the random read intensive workloads.
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