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PAPER

Efficient Evaluation of Maximizing Range Sum Queries in a Road
Network

Tien-Khoi PHAN†, HaRim JUNG†, Hee Yong YOUN†, Nonmembers, and Ung-Mo KIM†a), Member

SUMMARY Given a set of positive-weighted points and a query rect-
angle r (specified by a client) of given extents, the goal of a maximizing
range sum (MaxRS) query is to find the optimal location of r such that
the total weights of all points covered by r is maximized. In this paper,
we address the problem of processing MaxRS queries over road network
databases and propose two new external memory methods. Through a set
of simulations, we evaluate the performance of the proposed methods.
key words: facility optimization location, location-based services, maxi-
mizing range sum query, road network database, spatial database

1. Introduction

Location-based services have recently attracted much atten-
tion as one of the most promising applications whose main
functionality is to process location-based queries on spatial
databases. Most traditional studies on spatial databases have
focused on finding nearby data objects (e.g., range queries
and nearest neighbor queries), rather than finding the best
location to optimize a certain objective. Recently, a maxi-
mizing range sum (MaxRS) query was introduced [1]. Given
a set of positive-weighted points and a query rectangle r of
a given size, the goal of a MaxRS query is to find the opti-
mal location of r such that the sum of the weights of all the
points covered by r is maximized. A MaxRS query is use-
ful in many location-based applications such as finding the
most representative place in a city with a limited reachable
range for a tourist or finding the best location with a limited
delivery range for a pizza store.

Figure 1 (a) shows an example of the MaxRS query,
where the size of the query rectangle r is a × b and all the
points are assumed to have the same weight, 1. The center of
the solid-lined rectangle is the optimal location of r because
it covers the largest number of points (i.e., 3).

To process MaxRS queries on Euclidean space, Choi et
al. [1] proposed an external-memory algorithm, while Imai
and Asano [2] proposed an in-memory algorithm. In many
real-life location-based services, however, the motion of a
client may be constrained by an underlying (spatial) road
network. Consider the scenario of a tourist service as an
example, where a tourist (i.e., client) tries to find the hotel
whose location is close to as many sightseeing spots as pos-
sible (e.g., maximum 2.0 km walk from the hotel). In this
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Fig. 1 Examples of the MaxRS query and road network

Fig. 2 MaxRS query in road network

scenario, a MaxRS query can be applied. However, the ex-
isting MaxRS query processing methods cannot be applied
because the distance between the hotel and each sightsee-
ing spot is confined by the underlying (spatial) road net-
work, and thus, the actual distance between two locations
can differ significantly from their Euclidean distance. With
this problem in mind, we study the problem of processing
MaxRS queries over road network databases, where the dis-
tance between two points is determined by the length of the
shortest path connecting them.

Figure 1 (b) shows an example of the road network,
which consists of 6 nodes (square vertices) and 8 edges.
There are 6 facilities f1, f2, . . . , f6 (a set of weighted points),
each of which is associated with a positive weight w( fi) in-
dicating the relative importance of fi, where 1 ≤ i ≤ 6. The
pairs of values in parentheses indicate the coordinates of
nodes and facilities. In this paper, we assume that all facil-
ities are located on the edges of the road network. Then, a
MaxRS query in a road network is defined as follows. Given
a set of facilities and a radius r, the MaxRS query finds all
the locations p (on a road network), which maximizes the
total weights of all the facilities whose network distance to
p is less than or equal to r.

Based on the road network shown in Fig. 1 (b), Fig. 2
shows an example of MaxRS query with the radius r = 2.0.
The weight of each facility is assumed to be 1. Consider
the stage s, where the distance between each point in s and
three facilities f2, f3, f5 is less than or equal to r, while the
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total weight of these facilities is 3, which is the maximum in
this scenario. Therefore, s becomes the result of the MaxRS
query and the query issuer can choose any point lying on s.

In our previous paper [3], we proposed the MaxRS
query processing method in a road network, namely the B+-
Tree seg-file (BTSF) method. In this paper, after discussing
the limitations of the BTSF method, we propose two new
methods, called the Hilbert R-Tree seg-file (HRSF) method
and the Edge-Area (EA) method, both of which make use of
spatial characteristics of the road network. The main contri-
butions of our study is to discuss the limitations of the BTSF
method and to propose the HRSF and EA methods, and to
verify the scalability of the proposed methods.

The reminder of this paper is organized as follows. In
Sect. 2, the problem is formally defined and the preliminar-
ies are provided. In Sect. 3, the drawbacks of BTSF method
are discussed. In Sect. 4 and Sect. 5, the details of the HRSF
method and the EA method, respectively, are described. In
Sect. 6 the results of simulation experiments are presented.
In Sect. 7, some related work is reviewed. Finally, Sect. 8
concludes the paper.

2. Problem Formulation and Preliminaries

2.1 Problem Formulation

A road network is represented by an undirected graph G =
(V, E), where V is a set of vertices (i.e., nodes) and E is a set
of edges. Let F be a set of facilities, each of which, denoted
by f , is located on an edge (in E) and is associated with a
positive weight w( f ).

Definition 1: (Network range and network radius). Net-
work range p(r) of a point p in a road network consists of
all points (in the road network) whose network distance to
p is less than or equal to the value r, where r is the network
radius of p.

Definition 2: (A MaxRS query in a road network). Given
G, F and a network radius value r, let p(r) be the network
range of a point p in the road network, and Fp(r) be the set of
facilities covered by p(r). Then, a Maximizing Range Sum
(MaxRS) query in a road network finds all points p (in G)
that maximizes

∑

f∈Fp(r)

w(f).

2.2 Preliminaries

In this section, we present the background ideas of solving
MaxRS in a road network and the overview of the storage
system assumed in this paper. We also summarize the BTSF
method [3], the first method for processing MaxRS queries
in a road network.

2.2.1 Background Idea

We first remind the idea of transforming the max-enclosing
rectangle query into the rectangle intersection query [4],

Fig. 3 Example of transformation

Fig. 4 Max-Segment in MaxRS query

which is the fundamental idea for processing MaxRS
queries in Euclidean space [1].

Definition 3: (A max-enclosing rectangle query). Given
a set of points O, a rectangle r with a given size, a max-
enclosing rectangle query finds the location of r such that r
encloses the maximum number of points in O.

The MaxRS query calculates the total weight of points,
while the max-enclosing rectangle query counts the number
of points in rectangle. Note that when assuming all points
have the weight being equal to 1, the result of the MaxRS
query equals that of the max-enclosing rectangle query.

Definition 4: (A rectangle intersection query). Given a set
of rectangles R, a rectangle intersection query finds the most
overlapped area among the rectangles in R.

It can be observed from the Fig. 3 that the optimal loca-
tion in the max-enclosing rectangle query can be any point
in the most overlapped area (i.e., the gray area, where 3 rect-
angles overlap), which is the result of the rectangle intersec-
tion query.

Consider an example of the MaxRS query in a road net-
work shown in Fig. 4. To simplify our discussion, we use a
simple road network that consists of two edges (i.e., 〈v1, v2〉
and 〈v2, v3〉) and two facilities (i.e., f1 and f2) lying on these
two edges. We assume that the weight of each facility is 1
and the network radius r is 2.0. The red segment indicates
the network range f1(r) of f1, while the green segments in
the figure indicate the network range f2(r) of f2. Let S be a
set of all segments presented in the network range of all fa-
cilities in the road network. Then, we define two important
notions for the MaxRS query in the road network.

Definition 5: (Location-weight). Let p be the location in
road network. Then, the location-weight of p with regard
to S equals the total weights of all the segments (in S ) that
contain p.

Definition 6: (Max-segment). The max-segment M with
regard to S is a segment such that every point in M has the
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Fig. 5 Disk-based storage model

same location-weight W, and no point in the road network
has a location-weight higher than W.

It is easy to observe that the overlapping segment in
Fig. 4 is a max-segment. Because all max-segments in the
road network contain all the optimal locations (i.e., the result
of the MaxRS query in the road network), we need to find
all max-segments to evaluate the MaxRS query.

2.2.2 Storage System Overview

Similarly to the disk-based storage model was proposed by
Yiu et al. [5], the road network and the facility set are as-
sumed to be stored in a secondary storage. Figure 5 shows
the files and indexes for the road network and facility set.
In this storage model, the road network (adjacency list) is
stored in a flat file, which is indexed by the B+-Tree. For
each node v (e.g., v1), beside the information of v (i.e., iden-
tifier and coordinates), we also store two information of all
adjacent nodes (identifier and Euclidean distance to v (e.g.,
length of edge 〈v1, v2〉)). Similarly, the facility list is also
stored in a flat file and indexed by an index structure (e.g.,
Hilbert R-Tree). To support the MaxRS query processing
algorithm efficiently, beside the information of each facility
f (i.e., identifier, coordinates, weight), we store the infor-
mation of the edge that contains f (identifiers of start node
and end node, and the distance (offset) between start node
and f (e.g., start node of f1 is v2, end node of f1 is v3 and
length of segment 〈v2, f1〉 is 2.25)).

2.2.3 The B+-Tree Seg-File Method

We summarize our previous method, namely the B+-Tree
seg-file (BTSF) method. This method consists of three
main steps for processing the MaxRS query. Firstly, for
each facility f stored in the B+-Tree facility flat file, the
BTSF method generates the segments that cover the over-
all network range f (r) of f . The segments generated for
f have the weight being equal to w( f ). Secondly, the
BTSF method inserts generated segments into the seg-file.
One important point of the seg-file is that all segments
on the same edge is grouped into one record, which is
called the edge-record. Each edge-record in the seg-file,
which is indexed by B+-Tree, has the format of the form
〈edge, (segment1, segment2, . . .)〉. This structure of the seg-
file helps find max-segments effectively. Finally, the BTSF

method processes the seg-file to find the max-segments. The
BTSF method scans each edge-record in the seg-file to find
the local optimal segments. The final result includes the lo-
cal optimal segments with the maximum weight.

3. Drawbacks of B+-Tree Seg-File Method

In the BTSF method, the segments are generated from each
facility, after which the segments in the same edge are
grouped into one record. This has the following limitations:

• First, the facility flat file is indexed by B+-Tree and fa-
cilities are organized based on their identifiers without
considering spatial nearness among the facilities. As a
result, the order of selecting facilities is not based on
their locations. This may cause the inefficient access
to the adjacency flat file. For example, when the BTSF
method processes a facility f1 to generate segments of
f1, it needs to access nodes (in the adjacency flat file)
that are located within the network range f1(r) (See Ap-
pendix - Algorithm 4). These nodes can be stored in
a buffer to improve the performance if the next pro-
cessed facility f2 is nearby f1. In this case, the possi-
bility of the accessed nodes being within the network
range f2(r) is higher than other network ranges of the
farther facilities. In addition, the edge-records can also
be stored in the buffer. Similarly to the case of accessed
node in the adjacency flat file, when the BTSF method
processes f2, it can access the edge-records from the
buffer, which were stored when the BTSF method pro-
cessed f1.
• Second, when the BTSF method inserts a segment into

the seg-file (See Algorithm 3 - insertSegment [3]), if
the edge-record of this segment has already existed in
the seg-file, the BTSF method needs to (i) read the
edge-record (exact-match query), (ii) update the seg-
ment list of the edge-record and (iii) finally write back
the edge-record to the seg-file. From the results of our
performance evaluation, this insertion takes a large por-
tion of total I/O’s in the BTSF method.

4. The Hilbert R-Tree Seg-File Method

In this section, we present the HRSF method, where the
facility flat file and seg-file are indexed by the Hilbert R-
Tree (HRT) [6]. The HRSF method can apply spatial range
queries for the MaxRS query processing algorithm.

4.1 Overview

The order of selecting facilities plays an important role in
improving the performance of MaxRS query processing.
When using the HRT for indexing the facility flat file, facil-
ities are ordered based on their Hilbert value [6], which en-
sures facilities being close together in space, are processed
in succession.

In Fig. 6, the values in square brackets are the Hilbert
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Fig. 6 An example of the HRT that indexes facilities

Table 1 The processed order of facilities

B+-Tree indexing Hilbert R-tree indexing
Order Buffer I/O’s Order Buffer I/O’s

f1 v2 − v3 2 f2 v1 − v4 2
f2 v1 − v4 2 f5 v2 − v4 1
f3 v5 − v4 1 f3 v5 − v4 1
f4 v3 − v6 2 f6 v5 − v6 1
f5 v2 − v4 2 f4 v3 − v6 1
f6 v5 − v6 2 f1 v3 − v2 1

Total 11 Total 7

values of facilities. R1 and R2 are MBRs of two sets of fa-
cilities { f2, f5, f3} and { f6, f4, f1}, respectively. A non-leaf
node of the HRT contains entries of the form (R, LHV, ptr),
where R is the MBR that encloses all the children of that
node, LHV is the largest Hilbert values among the Hilbert
value of all facilities covered by R, and ptr is a pointer to
the child node. A leaf node contains facilities, which are
ordered by their Hilbert values.

Table 1 shows the difference of I/O cost for access-
ing the adjacency flat file between B+-Tree facility flat file
and HRT facility flat file for the road network shown in
Fig. 1 (b). For simplicity, we assume the network radius is
small enough (e.g., r = 0.5), and thus only two vertices need
to be read from the adjacency flat file when processing each
facility. The buffer is assumed to contain at most two ver-
tices, and when reading one vertex from the adjacency flat
file, it is assumed to take one I/O operation. In the table, (i)
the Order columns show the processed order of the facili-
ties, (ii) the Buffer columns show the vertices need to be read
when processing a facility, and (iii) the I/O’s columns show
the number of I/O’s for reading the adjacency flat file. The
first processed facility is f2 and two vertices {v1, v4} are read
from the adjacency flat file, which takes two I/O operations.
The second processed facility is f5, and two vertices {v4, v2}
are read, because v4 has already been in the buffer, only v2
is read with one more I/O operation. The HRT indexing en-
ables to access the adjacency flat file more efficiently than
the B+-Tree indexing.

To reduce I/O cost, the generated segments can be in-
serted directly to the seg-file, so that the segments lying on
the same edge are not grouped into their edge-records. In
the BTSF method, which uses the B+-tree for indexing the
seg-file, it takes a large amount of I/O operation to find and
group the segments lying on the same edge when finding the
max-segments. To remedy this problem, the HRT is used to
index the seg-file. With this indexing, the segments lying on

Algorithm 1 HRSFMaxRS
Input: AF: adjacency flat file, FF: facility flat file, S F: seg-file, r: network radius
Output: maxS egs: list segments with maximum weight
1: Initialize empty lists completedEdges, maxSegs
2: allFacMBR =MBR of all facilities
3: f acCursor = FF.query(allFacMBR)
4: while ( f acCursor.hasNext()) do
5: f ac = f acCursor.next()
6: GenerateSegments(AF, S F, f ac, r)
7: allS egMBR =MBR of all segments
8: segCursor = S F.query(allS egMBR)
9: while segCursor.hasNext() do

10: sS = segCursor.next()
11: if (sS .Edge in completedEdges) then
12: continue
13: else
14: completedEdges.add(sS .Edge)
15: edgeRecord = new EdgeRecord(sS .Edge)
16: edgeMBR =MBR of sS .Edge
17: segsInEdgeCursor = S F.query(edgeMBR)
18: while (segsInEdgeCursor.hasNext()) do
19: sQ = segsInEdgeCursor.next()
20: if (sS .Edge = sQ.Edge) then
21: for each segment sE in edgeRecord do
22: if (sE.facId = sQ.facId) then
23: mergeS eg = mergeSegment(sE, sQ)
24: if (mergeS eg is not null) then
25: edgeRecord.remove(sE)
26: sQ = mergeS eg
27: edgeRecord.add(sQ)
28: scan edgeRecord for filling maxS egs

the same edge are retrieved by spatial range queries. The
structure of the HRT of the seg-file is similar to that of the
facility flat file.

4.2 MaxRS Query Processing Algorithm

The detail of the MaxRS query processing algorithm, de-
noted by HRSFMaxRS, is presented in Algorithm 1. Be-
cause the facility flat file is indexed by the HRT, HRSF-
MaxRS issues a spatial range query to get all facili-
ties, where the query range is the MBR of all facilities
(lines 2–3). From each facility f , HRSFMaxRS gener-
ates the segments that cover the network range f (r) and
inserts these segments to the seg-file by calling function
GenerateS egments in Algorithm 4 (lines 4–6). Although
the generating segments procedure is similar to the BTSF
method [3], for convenience, we present the details of
GenerateS egments in Appendix. In HRSF method, facil-
ities are, however, processed in the increasing order of their
Hilbert values.

In the step of finding the max-segments, HRSFMaxRS
groups all segments located on the same edge to one edge-
record in order to discover the local optimal segments.
HRSFMaxRS uses a spatial range query to find all segments
(lines 7–8). For each segment (i.e., sS ), HRSFMaxRS
checks if the edge contains this segment. If the correspond-
ing edge was processed (i.e., the edge is in the list called
completeEdges), HRSFMaxRS checks the next segment
(lines 11–12). If the edge is not processed, HRSFMaxRS
adds the edge to completeEdges, so that it will not process
the edge in the future (line 14). Then, HRSFMaxRS creates
an edge-record of the edge to store all segments on the edge
(lines 15–27). Firstly, HRSFMaxRS finds all segments that
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located on the edge by a spatial range query (lines 16–17).
Then, for each segment (i.e., sQ), if the segment is really lo-
cated on the edge (note that some segments inside the MBR
of the edge may not be located on the edge), HRSFMaxRS
inserts the segment to the edge-record (lines 20–27). In case
there are some existing segments of the same facility in the
edge-record, HRSFMaxRS merges the segment to the ex-
isting segments (lines 22–26). Finally, HRSFMaxRS scans
the edge-record to find the max-segments for filling the list
called maxS egs (See Algorithm 4 - findMaxSegments [3]).
Creating edge-record from all segments lying on the same
edge, and finding the local optimal max-segments from the
edge-record continues until edge-records of all segments are
processed.

Lemma 1: Let S = NFDR/d be the total number of seg-
ments in the seg-file, where (i) NF, (ii) D, (iii) R, and (iv) d
are (i) the total number of facilities, (ii) the average degree
of all vertices in the road network, (iii) the network radius,
and (iv) the average length of edges in the road network,
respectively. Then, the I/O complexity in HRSF method is
O(S logBBA

V + S logBHRSF
S ), where BBA is the number

of vertices in one block in B+-Tree adjacency flat file, V is
the number of vertices in the road network (or that of ob-
jects in B+-Tree adjacency flat file), and BHRSF is that of
segments per one block in HRSF.

Proof. The total I/O cost of HRSF method should be
computed as (1) the I/O cost for reading the adjacency flat
file, (2) the I/O cost for building HRSF, (3) the I/O cost for
range query when processing seg-file, and (4) the I/O cost
for range query in HRT facility flat file. Because (3) and (4)
are very small compared to (1) and (2), we do not consider
(3) and (4). In the worst case, the segments of each facil-
ity can be considered as a D-ary tree with its height being
equal to R/d, and thus the number of segments generated
by each facility is O(DR/d). For (1), it takes O(1) exact-
match query in the B+-Tree adjacency flat file to generate
a new segment. Because the I/O complexity of an exact-
match query in B+-Tree is O(logBN), where B is the number
of objects per one block and N is the total number of ob-
jects in B+-Tree [7], the I/O complexity to access adjacency
flat file is O(S logBBA

V). For (2), since the Hilbert R-tree

acts like the B+-Tree for insertions [8], the I/O complexity
for building HRSF is O(S logBHRSF

S ). �

5. The Edge-Area Method

In this section, we propose the Edge-Area (EA) method,
where the generated segments are handled in an in-memory
HRT. In case the size of the generated segments is greater
than the maximum size of the in-memory HRT, the exceed-
ing segments are stored in a HRSF.

5.1 Overview

In the BTSF and HRSF methods, the segments of all fa-

Fig. 7 Edge-Areas of edges

cilities are generated and inserted into seg-file, after which
this seg-file are processed to find the max-segments. The
seg-file is accessed through the algorithms, and this is not
efficient. In this section, we present another new method
which minimizes the number of accesses to seg-file. The
edges are processed in the order of their location. In this
way, the segments of all facilities are not generated and in-
serted into the seg-file continuously. Particularly, only seg-
ments of some potential facilities, which is enough to find
the local max-segments on a specified edge, are generated.
In this situation, because the number of generated segments
is not much, these segments can be stored in memory. If the
size of generated segments is greater than a maximum given
size, the exceed segments are stored in the HRSF.

A notion of finding all potential facilities of an edge
which may have the network range overlapping the edge is
found.

Definition 7: (Edge-Area). The edge-area EA of edge E
is a rectangle such that every point p in this rectangle may
have network range p(r) that overlaps edge E.

Figure 7 shows two edge-areas EA1 and EA2 of two
edges E1 and E2 (the gray solid rectangles). It is easy to
observe that any facility f that outside of the edge-area EA1

cannot have the network range f (r) that overlaps E1. From
this idea, for getting all segments on E1, only segments of
facilities, which are stored in EA1, are generated. This will
limit the number of generated segments, so these segments
are stored in memory to process. If the network radius is not
long, the HRSF may not be used, and this helps to reduce
the number of I/O’s a lot.

5.2 The Edge-Area Based Algorithm

Algorithm 2 exhibits in details the MaxRS query processing
algorithm according to the edge-area concept, denoted by
EAMaxRS. The first processed edge is the edge that contains
the most left facility in the HRT of the facility flat file (lines
3–5). For each processed edge currEdge, EAMaxRS gets
all facilities that are located in the edge-area edgeArea of
currEdge (lines 7–8). Then, EAMaxRS generates segments
of these facilities and stores the segments (lines 10–13). EA-
MaxRS only generates segments of facilities which have not
been processed (i.e., the facilities are not in the list called
f inishedFacs) (lines 11–12). The generated segments ly-
ing on the same edge are grouped into one edge-record, and
the edge-record is inserted into the in-memory HRT or the
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Algorithm 2 EAMaxRS
Input: AF: adjacency flat file, FF: facility flat file, HRS F: an empty HRSF, r:

network radius
Output: maxS egs: list segments with maximum weight
1: Initialize an empty Hilbert R-Tree memoryHRT
2: Initialize empty lists f inishedFacs, maxS egs
3: f acMBR =MBR of all facilities
4: f acCursor = FF.query( f acMBR)
5: currEdge = f acCursor.next().Edge
6: while ( f inishedFacs.size() < number of facilities) do
7: edgeArea = getEdgeArea(currEdge)
8: f acEACur = FF.query(edgeArea)
9: while ( f acEACur.hasNext()) do

10: f ac = f acEACur.next()
11: if ( f ac is not in f inishedFacs) then
12: generating segments and insert to memoryHRT or HRS F
13: f inishedFacs.add( f ac);
14: ProcessEdge(currEdge,memoryHRT, S F,maxS egs)
15: if (memoryHRT is not empty) then
16: currEdge = the edge of first edge-record in memoryHRT
17: else
18: while ( f acCursor.hasNext()) do
19: newFac = f acCursor.next()
20: if (newFac is not in f inishedFacs) then
21: currEdge = newFac.Edge
22: break
23: for each edge-record in memoryHRT do
24: scan edge-record for filling maxS egs
25: for each edge-record in HRSF do
26: scan edge-record for filling maxS egs

Fig. 8 The processing of the first edge

HRSF. If the size of the in-memory HRT is greater than the
maximum given size, the most right edge-record in the tree
is moved to the HRSF. After generating segments of a fa-
cility, this facility is inserted into f inishedFacs (line 13).
EAMaxRS finds the max-segments on the edge-record of
currEdge by calling the function ProcessEdge in Algo-
rithm 3 (line 14). Then, EAMaxRS chooses the next edge
to proceed. If the in-memory HRT is not empty, EAMaxRS
chooses the edge of first edge-record in the tree (lines 15–
16). In case there is no edge-record in the tree, EAMaxRS
finds an unprocessed facility and chooses the edge which
contains this facility (lines 18–22). When all facilities are
put through, EAMaxRS processes remaining edge-records
in the in-memory Hilbert R-tree and the HRSF to find the
max-segments (lines 23–26).

Figure 8 describes the processing of the first edge
〈v1, v4〉 shown in Fig. 1 (b). The edge-area of the edge 〈v1, v4〉
is the gray rectangle, which contains two facilities f2 and f5.
After generating segments of f2 and f5, there are three edge-
records of three edges: rec14 of 〈v1, v4〉, rec24 of 〈v2, v4〉,
and rec45 of 〈v4, v5〉. Each edge-record stores two segments

Algorithm 3 ProcessEdge
Input: E: edge will be processed, memoryHRT : in-memory HRT, HRS F: HRT seg-

file, maxS egs: current max-segments
1: edgeMBR =MBR of edge E
2: HRTCursor = memoryHRT .query(edgeMBR)
3: while (HRTCursor.hasNext) do
4: currRec = HRTCursor.next()
5: if (currRec.Edge = E) then
6: scan edgeRecord for filling maxS egs
7: memoryHRT .remove(currRec);
8: if (HRS F is not empty) then
9: s f MBR =MBR of all record in HRS F

10: HRS FCursor = memoryHRT .query(s f MBR)
11: while (HRS FCursor.hasNext) do
12: rec = HRS FCursor.next()
13: if (size(records memoryHRT + rec) ≤ max size) then
14: memoryHRT .insert(rec)
15: HRS F.remove(rec)
16: else
17: break
18: return
19: HRS FCursor = HRS F.query(edgeMBR)
20: while (HRS FCursor.hasNext) do
21: edgeRecord = HRS FCursor.next()
22: if (edgeRecord.Edge = E) then
23: scan edgeRecord for filling maxS egs
24: HRS F.remove(currRec)
25: break

(Note: two blue segments on 〈v1, v4〉, and two red seg-
ments on 〈v2, v4〉 are merged into one segment). These edge-
records are organized in the in-memory HRT. In this exam-
ple, for simplicity, we assume the size of an edge-record
is the number of its segments and the in-memory HRT can
store up to 6 segments. The structure of the in-memory HRT
is similar to that of the facility flat file. In the figure, the
values in square brackets on the left of the edge-records are
their Hilbert values, MBR1245 is the MBR of nodes v1, v2, v4,
v5, which forms 〈v1, v4〉, 〈v2, v4〉, and 〈v4, v5〉. The first edge-
record (i.e., rec14) in in-memory HRT is scanned to find the
max-segments (returning one max-segment with the weight
being equal to 2), then rec14 is removed from the tree.

The edge-record processing algorithm is denoted by
ProcessEdge in the EA method (Algorithm 3). First, Pro-
cessEdge checks if the edge-record of current processed
edge is in the in-memory HRT (lines 1–5). If the edge-
record is in the in-memory HRT, ProcessEdge scans the
edge-record to find the max-segments, and ProcessEdge re-
moves the edge-record from the in-memory HRT (lines 6–
7). Then, ProcessEdge moves edge-records in the HRSF
to the in-memory HRT. If the total size of the first edge-
record in the HRSF and all records in the in-memory HRT is
less than or equal to the maximum given size, ProcessEdge
moves the first edge-record into the in-memory HRT. This
movement continues until the size of all edge-records in the
in-memory HRT reach the maximum given size (lines 8–
18). Second, if the edge-record of current processed edge
is in the HRSF, ProcessEdge gets and scans the edge-record
to find the max-segments, then removes it from the HRSF
(lines 19–25).

Figure 9 shows an example of the HRSF in the EA
method. From the example in Fig. 8, after processing the
first edge 〈v1, v4〉, the second processed edge is 〈v2, v4〉.
There is no unprocessed facility in the edge-area of 〈v2, v4〉,
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Fig. 9 An example of the HRSF in EA method

its edge-record (i.e., rec24) is scanned to find the max-
segments (returning one max-segment with the weight be-
ing equal to 2, at this time, there are two temporary max-
segments). The third processed edge is 〈v4, v5〉. Two un-
processed facilities in the edge-area of 〈v4, v5〉 are f3 and f6.
After generating segments from f3 and f6, there are three
edge records: rec45 (4 segments), rec35 (2 segments) and
rec56 (2 segments). Because the maximum number of seg-
ments of in-memory HRT is 6, the most right edge-record
rec56 is moved to the HRSF. After processing rec45 (returns
a new max-segment with the weight being equal to 3), rec56

is moved to the in-memory HRT (See Algorithm 3). The
next processed edge is 〈v3, v5〉, and the procedure will con-
tinue until all edges are done.

6. Performance Evaluation

In this section, we evaluate and compare the performance
of three proposed methods: the B+-Tree seg-file method
(BTSF), the Hilbert R-Tree seg-file method (HRSF) and the
Edge-Area method (EA). All methods were implemented
in Java. We employ the B+-Tree and HRT from XXL li-
brary [9]. The simulations were conducted on Intel Xeon
E5-2520 6-core Processor with 8GB RAM running on the
Linux system.

6.1 Simulation Setup

We used the real road network of San Francisco [10], which
has 174956 nodes and 223001 edges. We generated facil-
ities over this road network. Because the facility locations
affect the performance, the facilities were generated under
uniform distribution and Gaussian distribution. We normal-
ized the range of coordinates to [0, 1000000].

In our simulations, the performance metric is execution
time. Although I/O cost is a main factor for evaluation per-
formance of an index, execution time is more intuitive than
I/O cost to understand the performance.

We list the set of used parameters and their default val-
ues (stated in boldface) in the simulations in Table 2. In EA
method, we fixed the size of the in-memory HRT to 2MB.
In each simulation, we evaluated the effect of one parameter
while the others were fixed at their default values.

Table 2 Simulation parameters and their values

Parameter Value used (Default)
Cardinality of facilities 5000 – 25000 (12500)

Block size 0.5K – 8KB (4KB)
Buffer size 128KB – 2048KB (1024KB)

Network radius 1000 – 5000 (2500)

Fig. 10 Effect of the number of facilities

Fig. 11 Effect of the network radius

6.2 Simulation Results

6.2.1 Effect of the Number of Facilities

In this simulation, we varied the cardinality of the facilities
from 5000 to 25000. As the number of facilities increases,
the execution time increases in all methods (Fig. 10). Obvi-
ously, when the number of facilities increases, the number of
generated segments also increases, so it takes more time to
read the adjacency flat file, build the seg-file and process to
find max-segments. Both of the results of Gaussian distribu-
tion and uniform distribution suggests that BTSF performs
worst, while EA performs best. As shown in the figure, the
execution time of all methods in Gaussian distribution of
facilities is less than that in uniform distribution. This is be-
cause, in Gaussian distribution, the facilities are distributed
around a center point, then the methods can utilize the buffer
more efficiently than the case of uniform distribution (simi-
lar to the ideas in Sect. 3).

6.2.2 Effect of the Network Radius

Figure 11 shows the results of varying network radius (net-
work range) from 1000 to 5000. When the network radius
increases, the number of generated segments increases, and
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Fig. 12 Effect of the buffer size

thus the execution time also increases. As shown in the fig-
ure, HRSF performs better than BTSF for uniform distribu-
tion and Gaussian distribution. This is because, in BTSF,
when a segment is inserted into seg-file, BTSF finds the
edge-record that contains the segment, updates the segment
list of the edge-record and writes back the edge-record to
the seg-file. This insertion takes time to read/write the seg-
file. However, the performance of HRSF is not as effective
as EA. This due to the fact that, the HRSF method accesses
the seg-file through the algorithms, while the EA method
minimizes the number of accesses to seg-file. This causes
the execution time of EA to be less than that of HRSF.

6.2.3 Effect of the Buffer Size

In this simulation, we increased the buffer size from 128KB
to 2048KB, then studied the effect of the buffer size on the
execution time of BTSF, HRSF and EA (Fig. 12). As the
buffer size increases, the number of I/O’s decreases, leads to
the reduction of the execution time. HRSF and EA perform
better and are less sensitive to this parameter than BTSF. It is
also clear that the execution time of all methods in Gaussian
distribution is less than that in uniform distribution for the
reason mentioned in the description of the first simulation.

6.2.4 Effect of the Block Size

Finally, we investigated how the block size affects the per-
formance of BTSF, HRSF, and EA by increasing the block
size (from 0.5KB to 8KB). As the block size increases, the
number of objects stored in a block also increases, and thus,
the number of I/O’s obviously decreases. However, when
the block size increases, the number of block in the buffer
decreases and the time to search an object in a block size
also increases. As a result, the execution cost increases
when the block size is too large (Fig. 13). It is notable that
EA outperforms BTSF and HRSF in uniform distribution
and Gaussian distribution. EA is also less sensitive to block
size than HRSF and BTSF because of its small seg-file. Sim-
ilarly to other simulations, the execution time of all methods
in Gaussian distribution is less than that in uniform distribu-
tion.

Fig. 13 Effect of the block size

7. Related Work

In this section, we review related work on facility optimiza-
tion location problem in general and MaxRS problem in par-
ticular.

Facility optimization location problem. MaxRS
problem can be seen as an instance of facility location op-
timization problem, which has been studied extensively in
current years. The aim of this facility location optimiza-
tion problem is to find an optimal location in order to max-
imize/minimize an objective function. Cabello et al. [11]
introduced and investigated optimization problems accord-
ing to the Bichromatic Reverse Nearest Neighbor (BRNN)
rule, while Wong et al. [12] studied a related problem called
MaxBRNN: finding an optimal region that maximizes the
size of BRNNs. These two problems studied in L2 space.
Du et al. [13] proposed the optimal-location query returns a
location with maximum influence, where the influence of a
location is the total weight of its RNNs. Zhang et al. [14]
proposed and solved the min-dist optimal-location query, an
extension version of optimal-location query. Xiao et al. [15]
have studied about optimal location queries in road network,
with the introduction of three important types of optimal lo-
cation queries: competitive location query, MinSum loca-
tion query and MinMax location query. However, the goal
of these works is to find a location that is far from the com-
petitors and close to customers. This is different from the
MaxRS problem, since MaxRS does not consider any com-
petitors, it aims at finding a location with the maximum
number of objects around.

MaxRS problem. Imai and Asono proposed an opti-
mal algorithm for the max-enclosing rectangle problem [2]
with the time complexity is O(n log n), n is the number of
rectangles. Nandy and Bhattacharya [4] also presented an-
other algorithm which is based on interval tree data structure
with the same cost. Those methods are internal memory al-
gorithms. Choi et al. [1] proposed an algorithm for solv-
ing MaxRS problem in the case of external memory with
optimal I/O’s. Choi et al. [16] also extended the MaxRS
problem to be more fundamental, namely AllMaxRS, so that
all the locations with the same best score can be retrieved.
Another version of MaxRS problem is maximizing circular
range sum (MaxCRS) problem. This is a circle version of
MaxRS problem with a circle boundary. As max-enclosing
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circle problem is 3SUM-HARD [17], which the best algo-
rithm takes O(n2) time. Choi et al. [1] also proposed the
MaxCRS problem by a novel reduction that converts the
MaxCRS problem to the MaxRS problem. However, all of
these studies aim at Euclidean spaces, while our work inves-
tigates the MaxRS problem in road networks.

8. Conclusions

The MaxRS problem can be used in location-based appli-
cations to find the most profitable service place or the most
serviceable place. All of the previous studies are stated in
Euclidean distance. However, in many location-based ap-
plications, the network distance is used instead of Euclidean
distance. This paper introduced two methods of solving the
MaxRS problem in a road network database. We proposed
external-memory algorithms, which is suitable for a large
dataset of road networks.
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Appendix: Generating Segments Algorithm

The generating segments algorithm is detailed in Algorithm
4, denoted by GenerateS egments. For each facility f ,
GenerateSegments generates the segments, which cover the
overall network range f (r). First of all, GenerateSegments
retrieves the information of the edge that contains f , start
node (i.e., startN), and end node (i.e., endN) (lines 2–4).
Then, GenerateSegments generates the segments at the start
node side first (lines 6–15), after which GenerateSegments
generates the segments at the end node side (lines 16–23). If
the distance between f and the start node is greater than or
equal to the network radius r, GenerateSegments only gen-
erates one segment with the length being equal to r (lines
7–10). On the contrary, GenerateSegments generates the
segment between f and the start node (the length is equal
to the offset of facility, lines 12–13) and continuously gen-
erate segments from the start node with the remaining net-
work radius by calling the function RecursiveGenerateS egs
(line 14), which is described in Algorithm 5. Generate-
Segments does the same way to generate segments at the
end node side (new offset is the length from f to the end
node, line 15). Each new generated segment has the format
of the form 〈start, end, weight, f acId, edge〉, where start is
the start node of the segment, end is the end node of the
segment, weight is the weight of the facility f that gener-
ates the segment, f acId is the identifier of f , and edge is
the edge that contains the segment. The identifier f acId
will help the merging process when there is more than one
segment of f generated in one edge. The generated seg-
ments are inserted directly to the seg-file (with the HRT in-
dexing). This insertion is different from the BTSF method,
where the segments on the same edge are grouped into one
edge-record. The insertion of HRSF method helps reduce
the number of I/O’s when updating edge-records in the seg-
file, as discussed in Sect. 4.1. GenerateSegments uses a list,
called f inishedEdges, to store edges, which were processed
completely (line 5). The edges in f inishedEdges will not be
processed during the invocation of the function Recursive-
GenerateSegs. After generating the segments of f has fin-
ishes, GenerateSegments clears f inishedEdges to start gen-
erating the segments of a new facility (line 26).
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Algorithm 4 GenerateSegments
Input: AF: adjacency flat file, S F: seg-file, f : facility, r: network radius
1: Initialize the list f inishedEdges
2: startN = AF.getNode( f .startId)
3: endN = AF.getNode( f .endId)
4: edge = 〈startN, endN〉
5: f inishedEdges.add(edge)
6: create node f N at facility location
7: if ( f .offset ≥ r) then
8: create node nN between f N and startN, dist( f N, nN) = r
9: newS = new Segment( f N, nN, f .weight, f .Id, edge)

10: insert newS into S F
11: else
12: newS = new Segment( f N, startN, f .weight, f .Id, edge)
13: insert newS into S F
14: RecursiveGenerateSegs(S F, startN, r − f .offset, f )
15: endO f f = edge.length − f .offset
16: if (endO f f ≥ r) then
17: create node nN between f N and endN, dist( f N,nN) = endO f f
18: newS = new Segment( f N, nN, f .weight, f .Id, edge)
19: insert newS into S F
20: else
21: newS = new Segment( f N, endN, f .weight, f .Id, edge)
22: insert newS into S F
23: RecursiveGenerateSegs(S F, endN, r − endO f f , f )
24: f inishedEdges.clear()

Algorithm 5 RecursiveGenerateSegs
Input: S F: seg-file, curN: the node (vertex) is processed, newR: new network radius

from this node, f : original facility
1: neighList = curN.getNeighborList()
2: for each neighN in neighList do
3: edge = 〈curN, neighN〉
4: if (edge not in f inishedEdges) then
5: if (edge.length ≥ newR) then
6: create node nN between curN and neighN, dist(curN, nN) = newR
7: newS = new Segment(curN, nN, f .weight, f .Id, edge)
8: insert newS into S F
9: else

10: f inishedEdge.add(edge)
11: newS = new Segment(curN, neighN, f .weight, f .Id, edge)
12: insert newS into S F
13: RecursiveGenerateSegs(S F, neighN, newR − edge.length, f )
14: else
15: if (newR − edge.length > 0) then
16: RecursiveGenerateSegs(S F, neighN, newR − edge.length, f )

Algorithm 5, denoted by RecursiveGenerateSegs, de-
scribes the process of generating segments in case the net-
work radius r is greater than the distance between f and the
start node or the end node (Algorithm 4 – lines 14 and 23).
The procedure is started from the start node or end node (i.e.,
curN) with the new shorten network radius (i.e., newR). Re-
cursiveGenerateSegs generates segments on all edges cre-
ated from the neighbor list of curN (line 1). For each edge
created by curN and its neighbor node (i.e., neighN), Re-
cursiveGenerateSegs checks two situations. First, the edge
does not exist in f inishedEdges (line 4). If the length of the
edge is greater than or equal to newR, RecursiveGenerate-
Segs creates a new segment between curN and the neigh-
bor node (i.e., neighN) with its length being equal to newR.
Then, RecursiveGenerateSegs inserts the segment into the
seg-file (lines 6–8). If the length of the edge is smaller
than that of newR, RecursiveGenerateSegs creates a new
segment between curN and neighN, and insert the new seg-
ment into the seg-file, after which RecursiveGenerateSegs
continuously generates segments from neighN with the new

Fig. A· 1 Generating segments of a facility

shorten network radius (line 13). Second, the edge existed
in f inishedEdges (lines 14–16). If the length of the edge is
smaller than that of newR, RecursiveGenerateSegs generates
segments from neighN with the new shorten network radius
(line 16). This process continues until the generated seg-
ments cover the network range f (r) of the original facility
f . Figure A· 1 shows four segments of facility f2: s1, s2, s3,
and s4. These segments are inserted into the HRT seg-file. In
the figure, MBRs123 and MBRs4 are the MBR of {s1, s2, s3}
and s4, respectively.
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