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PAPER

HISTORY: An Efficient and Robust Algorithm for Noisy 1-Bit
Compressed Sensing

Biao SUN†a), Member, Hui FENG†, and Xinxin XU††, Nonmembers

SUMMARY We consider the problem of sparse signal recovery from
1-bit measurements. Due to the noise present in the acquisition and trans-
mission process, some quantized bits may be flipped to their opposite states.
These sign flips may result in severe performance degradation. In this
study, a novel algorithm, termed HISTORY, is proposed. It consists of
Hamming support detection and coefficients recovery. The HISTORY al-
gorithm has high recovery accuracy and is robust to strong measurement
noise. Numerical results are provided to demonstrate the effectiveness and
superiority of the proposed algorithm.
key words: 1-bit compressed sensing, sign flips, Hamming distance

1. Introduction

Compressed sensing, as introduced in [1]–[3], addresses the
problem of estimating high dimensional signals from a set
of relatively few linear measurements. It was demonstrated
that a sparse signal can be reconstructed exactly if the mea-
surement matrix satisfies the restricted isometric property
(RIP) [4]. It was also shown that random matrices will sat-
isfy the RIP with high probability if the entries are chosen
according to independent and identically distributed (i.i.d.)
Gaussian distribution.

In practical CS architectures, the measurements must
be quantized to a finite number of bits. The extreme quan-
tization setting where only the sign is acquired is known
as 1-bit compressed sensing (1-bit CS) [5]. It has become
increasingly popular due to its low computational cost and
easy implementation for hardware [6]. In 1-bit CS, measure-
ments of a signal x ∈ RN are computed via

y = sign(Ax), (1)

where x ∈ RN is the signal, A ∈ RM×N is the measurement
matrix, y ∈ RM is the set of 1-bit measurements, and func-
tion sign(·) maps the signal from RN to the Boolean cube
BM := {−1,+1}M . Since signs of real-valued measurements
are used, one loses the ability to recover the magnitude of
x and thus assumes that the signal has a unit norm, i.e.,
‖x‖2 = 1. The 1-bit CS has been studied by many people
and several algorithms have been developed to recover the
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sparse signals [5], [7]–[12].
Despite the attractive attributes of 1-bit CS, the major

disadvantage is that measurements are susceptive to noise
during both acquisition and transmission [13]–[15]. In the
noisy scenario, the output bit is randomly perturbed from the
sign of the real-valued measurement, and the so-called sign
flips seriously degrade recovery performance. The noise
model is random sign-flip with probability ρ, i.e.,

yi = b · sign(Ai x), (2)

where b equals −1 with probability ρ, 1 with probability
1 − ρ. yi denotes the ith element of y, and Ai denotes the
ith row of A. To date, researchers have developed numer-
ous approaches for noisy 1-bit CS. Yan et al. [16] proposed
a greedy method which detects the positions of sign flips
iteratively, and recovers the signals using correct measure-
ments. However, it requires the prior knowledge of noise
level, which is often intractable in practical applications.
Plan et al. [17] proposed a constrained optimization method
with a linear objective. This convex formulation can work
with a general notion of noise and achieve error for both
exactly and approximately sparse signals. Ai et al. [18] ex-
tends [17] to sub-Gaussian measurements, and gets an irre-
ducible component in the error and cannot be reduced by
increasing the sample size or otherwise. However, they are
computationally inefficient and difficult for hardware imple-
mentation. Recently, Zhang et al. [19] developed an effi-
cient passive algorithm with closed-form solution, which
improves the recovery performance for exactly K-sparse
signals. Due to its high performance, robustness, and com-
putational efficiency, they can be seen as the state-of-the-art
algorithm for noisy 1-bit CS.

This study focuses on recovering EXACTLY K-sparse
signals that have K nonzero coefficients in the noisy setting
for 1-bit CS. We define ΣK to be the set of all exactly K-
sparse signals with unit norm as

ΣK
def
= {v ∈ RN : ‖v‖0 = K, ‖v‖2 = 1}. (3)

A novel algorithm is proposed in this paper. Termed HIS-
TORY, it consists of two key parts, namely HammIng Sup-
port deTection, and cOefficients RecoverY. The former aims
to construct a candidate supports set by detecting possible
supports of nonzero entries. The latter aims to calculate the
coefficients belonging to the candidate supports set. Experi-
mental results show that the proposed algorithm has high re-
covery performance than the state-of-the-art. Also, because
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containing no iterative step, it is computationally efficient
and easy to implement.

2. HISTORY Algorithm

The main objective of this section is to characterize the HIS-
TORY algorithm. Notations used throughout this paper are
first described, then the two key parts of HISTORY are in-
troduced in sequence.

2.1 Notations

Boldfaced capital letters such as A are used for matrices.
Italic capital letters such as S denote sets. For a matrix A,
the notations Ai, A j, Ai

j, AT, and AS denote its ith row, jth

column, i jth element, transpose, and sub-matrix that con-
tains the columns with indices in S , respectively. Small let-
ters such as x are reserved for vectors and scalars. A vector x
is called exactly K-sparse if K of its coefficients are nonzero.
For a vector x, x j, ‖x‖p, and xS denote the jth element of the
vector, its p-norm, and sub-vector that contains the elements
with indices in S , respectively. For two vectors u ∈ RN and
v ∈ RN , the notation H(u, v) denotes the Hamming distance
between them, which is defined as

H(u, v)
def
= #

(
u j � v j

)
, j ∈ 1, 2, . . . ,N. (4)

For an event E, the notation P(E) denotes its probability. For
a random variable a, the notations E(a) and D(a) denote its
expectation and variance, respectively.

2.2 Hamming Support Detection

To detect possible supports of nonzero coefficients from
noisy 1-bit measurements, a Hamming support detection
method is developed based on Angle Proportional Proba-
bility (APP), which is outlined as follows.

Theorem 1 (Angle Proportional Probability). Let x ∈ ΣK be
an exactly K-sparse signal with ‖x‖2 = 1. Let φ be a Gaus-
sian random vector which is drawn uniformly from the unit
�2 sphere in RN (i.e., each element of φ is firstly drawn i.i.d.
from the standard Gaussian distribution N(0, 1). Define an
event E to be

E : sign(xTφ) � sign(φ j), (5)

then it holds,

P(E) =
1
π

arccos(x j). (6)

The proof can be found in Appendix A. In particular, it
shows that P(E) has a cosine function relationship with the
j-th element of φ. Thus, x j can be uniquely identified by
P(E). In addition, the probability can be estimated from the
instances of the random variable sign(xTφ), which are ex-
actly the 1-bit measurement vector y defined in (1). There-
fore, y contains sufficient information to reconstruct x j from

the estimation of P(E).
In the noisy setting, due to the fact that the signs of

y are randomly perturbed, x j cannot be computed directly
from (5) and (6). However, given the noise level (sign flip
ratio) as a prior knowledge, we have the following lemma.

Lemma 1. Given an exactly K-sparse signal x ∈ ΣK with
‖x‖2 = 1, a standard Gaussian measurement matrix A ∈
R

M×N, and a 1-bit measurements vector y = sign(Ax). In
the noisy setting, suppose the sign flip ratio ρ < 0.5, define
P ∈ [0, 1]N as a probability vector with Pj denoting its j-th
element as

Pj
def
= P

(
sign (yi) � sign

(
Ai

j

))
, (7)

and it holds

Pj =
1 − 2ρ
π

arccos(x j) + ρ. (8)

The proof can be found in Appendix B. From
Lemma 1, we note that the Hamming distance between y
and A j obeys the binomial distribution, i.e.,

H{y,A j} ∼ B(M, Pj). (9)

Moreover, by the definition of binomial distribution, we
have

E
(
H{y,A j}) = M

(
1 − 2ρ
π

arccos(x j) + ρ

)
. (10)

Consequently, given the noise level and a relatively high
measurement dimension, Pj can be well estimated by com-
puting the Hamming distance, then x j can be estimated ac-
cordingly. However, directly estimating x j from (8) is in-
tractable. For one thing, with the decrease of measure-
ment dimension, the coefficients estimation performance de-
grades significantly. For another, (8) requires the sign flip
ratio ρ as prior knowledge, which is often unknown in prac-
tical applications. To address the first problem, we only de-
tect possible supports in current part and leave the coeffi-
cients estimation to the next one. To address the second
problem, we propose the following lemma.

Lemma 2. Given a finite measurement dimension M and a
sign flip ratio ρ < 0.5, for any two different elements of x,
denoted by xu, xv, u � v, if xu − xv > ε, where ε is a small
positive constant, we have

P
(
H{y,Au} < H{y,Av}) ≥ 1 +C1 −C2ε

−2, (11)

where C1 and C2 are constants and

C1 =
1

4M
,

C2 =
π2

4M(1 − 2ρ)2
.

(12)

The proof can be found in Appendix C. Note that with
the increase of M, the probability P

(
H{y,Au} < H{y,Av})

also increases, and when M → ∞, we have
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P
(
H{y,Au} < H{y,Av})→ 1, ∀ xu − xv > ε. (13)

From Lemma 2, it is easy to verify that despite the
value of ρ, Pj in (8) is a monotone decreasing function with
respect to x j. The main point is that despite the noise level,
the amplitude order of nonzero coefficients will maintain,
while the dependencies in ρ will vanish in the correspond-
ing Hamming distance. Therefore, we can set ρ to be an
arbitrary value (e.g. ρ = 0) and compute approximate am-
plitudes of each coefficient via (8), then form the candidate
supports set by selecting the supports with largest ampli-
tudes.

2.3 Coefficients Recovery

Providing the candidate supports set, denoted by S , the next
part is coefficients recovery, which aims to compute the am-
plitudes of nonzero coefficients. In this paper, we try to
compute the coefficients vector c by solving the following
constrained least squares problem,

c∗ = minimize
c∈R|S |

‖y − AS · c‖2 s.t. ‖c‖0 = K, (14)

where ‖c‖0 denotes the 0-norm of c, i.e., counting the num-
ber of nonzero coefficients in c. Note that (14) is an overde-
termined system when |S | < M. Thus, the sparsest solution
to (14) is given by

c∗ = AS \ y, (15)

where “\” denotes the left matrix divide operation. (15) can
be solved via the QR decomposition [20] efficiently.

Based on the two parts described above, the HISTORY
algorithm is fully summarized in Algorithm 1, where abs(h)
denotes the absolute value of each element of the vector h,
FindSupp

(
abs(h), αK

)
returns the supports of the largest αK

elements in abs(h), and HK(·) denotes the hard-thresholding
operator who only preserves the largest K coefficients in
magnitude and set others to 0. α is a parameter that con-
trols the redundancy of support detection. For α > 1, Al-
gorithm 1 first selects more than K supports to form the
candidate set. After computing the coefficients vector, the
final K-sparse solution is obtained by hard-thresholding as
in step 10. Note that when M is small, a high α is necessary
to ensure the support detection accuracy. With the increase
of M, a small α is sufficient to detect the supports accurately.
In addition, a small α can decrease the computational com-
plexity of (14), thus boost the whole algorithm. Based on
the above analysis, we propose selecting α adaptively as

α = 1 + α0e−τ
M
N , (16)

where α0 is the initial quantity and τ is the exponential decay
constant.

It is worth noting that Algorithm 1 is a nearly-linear
time algorithm, with its computational complexity to be
O(MN). Therefore, the proposed algorithm runs signifi-
cantly faster than iterative algorithms.

Algorithm 1 HISTORY
Input: y,A,K, α
1: Initialize: x∗ = Zeros(N)
2: for each j ∈ 1, . . . ,N do
3: P j = H{y,A j}/M
4: h j = cos(πP j)
5: end for
6: S = FindSupp

(
abs(h), αK

)
7: c∗ = AS \ y
8: x∗S = c∗
9: if α > 1 then

10: x∗ = HK(x∗)
11: end if
12: x∗ = x∗/‖x∗‖2
Output: recovered sparse signal x∗

3. Experiments

3.1 Experimental Setup

The target vector x ∈ RN is generated by drawing its nonzero
elements from the standard Gaussian distribution, and then
normalized to have unit norm. The locations of the K
nonzero coefficients of x are randomly selected. The ele-
ments in the measurement matrix A ∈ RM×N are also drawn
from the standard Gaussian distribution. To generate sign
flips, the measurement vector y is firstly acquired as in (1),
then the sign of every element in y is flipped with probability
ρ. For each setting of M, N, K, and ρ, the recovery exper-
iment is repeated for 100 trials, and the average recovery
error, denoted by ‖x − x∗‖2/‖x‖2, is reported. In all experi-
ments, The parameter α is selected adaptively as in (16) with
α0 = 4 and τ = 1.

The HISTORY algorithm is compared with the follow-
ing three algorithms,

• BIHT-�2: a heuristic algorithm proposed in [14], which
has been proved to have better performance than BIHT
in the noisy setting. The maximum iterative number
and step size are set to 200 and 1, respectively†.
• Convex: a provable algorithm proposed in [17], which

solves a convex optimization problem to recover the
sparse signal††.
• Passive: an efficient optimization algorithm with

closed-form solution proposed in [19], experimental
results illustrated that their passive algorithm outper-
forms other baselines. The regularization parameter γ

is set to
√

log N
M , which is the optimal choice in [19].

†A matlab implementation of BIHT-�2 algorithm can be down-
loaded from http://perso.uclouvain.be/laurent.jacques/index.php/
Main/BIHTDemo.
††The CVX package is used to solve this optimization problem.

The package can be downloaded from http://cvxr.com/cvx/.
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Fig. 1 (a) Evaluate support detection accuracy with different α, (b) eval-
uate CPU time with different α, when N = 1000, K = 10, ρ = 0.1, and M
is varied from 200 to 4000.

3.2 Results

3.2.1 Support Detection Accuracy and Computational Ef-
ficiency of the Adaptive α

Firstly, the support detection accuracy with different α is
studied. Parameters are set as N = 1000, K = 10, ρ = 0.1,
and M is varied from 200 to 4000. The parameter α is se-
lected adaptively as in (16) with parameters α0 = 4 and
τ = 1. α is also selected with fixed values as α = 1, 2, 4, 8 for
comparison. The support detection accuracy (SDA) is em-
ployed to quantify the percentage of detection success be-
tween the original supports and the reconstructed supports.
The SDA is defined as

SDA =
#
(
supp(x∗) ∩ supp(x)

)
#
(
supp(x)

) × 100%. (17)

The support detection accuracy curve with different α is
shown in Fig. 1 (a). It’s observed that the adaptive α has
the highest SDA. Although α = 8 has better performance
than α = 1, 2, 4 with small M, all α values have same SDA
after M > 1500. Therefore, a high α is not necessary when
M is large.

To study the computational efficiency of the adaptive
α, the CPU time of HISTORY with different α is evaluated.

Fig. 2 Evaluate recovery error of each algorithm versus measurement
dimension M, when N = 1000, K = 10, and ρ = 0.1.

For each point, the recovery experiment is repeated for 100
trials, and the total cpu time is reported in Fig. 1 (b). It is
observed that larger α costs more computational resource.
HISTORY with α = 8 costs more than double CPU time of
that with α = 1 to recover the signals. The adaptive α costs
least CPU time, i.e., almost same with α = 1. Therefore,
the adaptive α has better computational efficiency than fixed
ones.

3.2.2 Recovery Error versus Measurement Dimension

Then the recovery error at different measurement dimension
M is studied. Parameters are set as N = 1000, K = 10,
ρ = 0.1, and M is varied from 200 to 4000. The recov-
ery error curve is shown in Fig. 2. It is observed that with
the increase of M, the recovery errors of all algorithms de-
crease. In particular, BIHT-�2 has the worst performance
among these algorithms, that is because it is very sensitive
to noise in the 1-bit measurements. In contrast, HISTORY
has the best performance, especially when M is relatively
large. The recovery errors of Convex and Passive are very
similar.

3.2.3 Recovery Error versus Sparsity

Then the recovery error at different sparsity K is evaluated.
Parameters are set as N = 1000, ρ = 0.1, M = 4000, and
K is varied from 10 to 200. The recovery error curves are
shown in Fig. 3. Results show that with the increase of K,
the recovery errors of all algorithms increase. In particu-
lar, among these algorithms, HISTORY has the best perfor-
mance while BIHT-�2 has the worst one. In addition, Passive
and Convex almost have the same performance. Finally, we
would like to emphasize that HISTORY increases its advan-
tage with the increase of K, i.e., it is less sensitive to sparsity
than other algorithms.

3.2.4 Recovery Error versus Sign Flip Ratio

Next, the recovery error at different sign flip ratio ρ is eval-
uated. Parameters are set as N = 1000, K = 10, M = 4000,
and ρ is varied from 0 to 0.5. The recovery error curves
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Fig. 3 Evaluate recovery error of each algorithm versus sparsity K, when
N = 1000, ρ = 0.1, and M = 4000.

Fig. 4 Evaluate recovery error of each algorithm versus sign flip ratio ρ,
when N = 1000, K = 10, and M = 4000.

are shown in Fig. 4. Though BIHT-�2 had the minimum re-
covery error when ρ is small, with the increase of ρ, its re-
covery error increased very quickly, making it be the worst
algorithm at the high sign flip ratio. Passive and Convex had
almost the same performance, which are better than that of
BIHT-�2. HISTORY has the best performance both at high
and low sign flip ratio. Thus, HISTORY has the best noise
robustness among these algorithms.

3.2.5 Recovery Error under Misspecified Model

Next, we study the error of each algorithm under the mis-
specified model, i.e., the sparsity of original signal is un-
known. Parameters are set as N = 1000, K = 10, M = 4000,
ρ = 0.1, and we select Kselect from 1 to 20 to evaluate the al-
gorithms. The recovery error curves are shown in Fig. 5.
Results show that the recovery error of HISTORY sharply
drops at the correct Kselect = K. Moreover, HISTORY per-
forms better than Passive and Convex in a neighborhood of
K. Under misspecification with Kselect < K, the recovery er-
ror is large since the error from unrecovered coefficients is
large. For Kselect > K, the nonzero coefficients are correctly
recovered so that the corresponding error is small, but there
is some additional error due to noise. To further improve the
performance of HISTORY when K is unknown, many ap-
proaches can be used to estimate the sparsity level. For ex-

Fig. 5 Evaluate recovery error of each algorithm when K is unknown.
Parameters are set to N = 1000, K = 10, M = 4000, and ρ = 0.1. K is
selected from 1 to 20.

Table 1 Running time of each algorithm, when N = 1000, K = 10,
M = 4000, and ρ = 0.1. For BIHT-�2, there is no formal stoping criterion,
and we report the running time after 100 iterations.

Algorithm BIHT-�2 Convex Passive HISTORY

Time (s) 331.29 155.47 3.04 3.22

ample, we can select a regularization parameter γ first, and
then use the thresholding method to estimate K as proposed
in [19]. Other approaches such as 1-bit one scan [21] and
sudocodes-based method [22] can also be used for sparsity
estimation. We will leave this part for future research.

3.2.6 Computational Complexity

To evaluate the computational complexity of each algo-
rithm, we study the running time of them. Parameters are set
as N = 1000, K = 10, M = 4000, and ρ = 0.1. The running
time of those algorithms can be found in Table 1. Results
show that the running time of HISTORY and Passive are
similar, while that of Convex and BIHT-�2 are significantly
higher.

4. Conclusion

In this paper, we have developed an efficient and robust algo-
rithm for noisy 1-bit compressive sensing. Compared with
the existing methods, the proposed algorithm has several im-
portant advantages. It is robust to noise, it is computation-
ally efficient, it has lower sample complexity, and it is easy
to implement. Experimental results provide sound support
to our theoretical development.
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Appendix A: Proof of Theorem 1

It is worth noting that

P(sign(xTφ) = sign(φ j))

= P(xTφ > 0, φ j > 0) + P(xTφ ≤ 0, φ j ≤ 0).
(A· 1)

We can divide xTφ into two parts as

m = xTφ = mj + mc, (A· 2)

where

mj = φ j x j,

mc = xTφ − φ j x j.
(A· 3)

In addition, it can be easily verified both mj and mc satisfy
Gaussian distribution, i.e.,

mj ∼ N(0, x2
j ),

mc ∼ N(0, 1 − x2
j ).

(A· 4)

Depending on x j, we have three situations as follows, (1)
when x j = 0, we have

P(xTφ > 0, φ j > 0)

= P(mc > 0,mj > 0)

= P(mc > 0)P(mj > 0)

=
1
4
.

(A· 5)

In the same way, we have

P(xTφ � 0, φ j � 0) =
1
4
. (A· 6)

Therefore,

P(sign(xTφ) = sign(φ j)) =
1
2
. (A· 7)

(2) when x j > 0, we have

P(xTφ > 0, φ j > 0) = P(mc + mj > 0,mj > 0) (A· 8)

The joint probability density function of mc and mj is

p(mc,mj) =
1

2πx j

√
1 − x2

j

exp

⎛⎜⎜⎜⎜⎜⎝−1
2

(m2
j

x2
j

+
m2

c

1 − x2
j

)⎞⎟⎟⎟⎟⎟⎠
(A· 9)

Assume that
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mc = r cos θ,

mj = r sin θ,
(A· 10)

then we have,

P(mc + mj > 0,mj > 0)

=
1

2πx j

√
1 − x2

j

∫ 3
4 π

0
dθ

∫ ∞

0
exp

⎛⎜⎜⎜⎜⎜⎝−1
2

( r2cos2 θ

1 − x2
j

+
r2sin2 θ

x2
j

)⎞⎟⎟⎟⎟⎟⎠ rdr

=
1
2
− 1

2π
arccos(x j).

(A· 11)

In the same way, we have

P(xTφ ≤ 0, φ j ≤ 0)

= P(mc + mj ≤ 0,mj ≤ 0)

=
1
2
− 1

2π
arccos(x j).

(A· 12)

Therefore, we have

P(sign(xTφ) = sign(φ j)) = 1 − 1
π

arccos(x j). (A· 13)

(3) when x j < 0,

P(sign(xTφ) = sign(φ j))

= P(xTφ > 0, φ j > 0) + P(xTφ ≤ 0, φ j ≤ 0)

= P(mc + mj > 0,mj < 0) + P(mc + mj ≤ 0,mj ≥ 0).

(A· 14)

The first part can be computed via

P(mc + mj > 0,mj < 0)

=
1

2πx j

√
1 − x2

j

∫ 0

− 1
4 π

dθ

∫ ∞

0
exp

⎛⎜⎜⎜⎜⎜⎝−1
2

( r2

1 − x2
j

cos2 θ +
r2

x2
j

sin2 θ
)⎞⎟⎟⎟⎟⎟⎠ rdr

=
1
2
− 1

2π
arccos(x j).

(A· 15)

In the same way, we calculate the second part as

P(mc + mj < 0,mj > 0) =
1
2
− 1

2π
arccos(x j). (A· 16)

Therefore, we have

P(sign(xTφ) = sign(φ j)) = 1 − 1
π

arccos(x j). (A· 17)

Synthesize the above three situations, we have

P(sign(xTφ) = sign(φ j)) = 1 − 1
π

arccos(x j) (A· 18)

P(sign(xTφ) � sign(φ j)) =
1
π

arccos(x j). (A· 19)

This concludes the proof.

Appendix B: Proof of Lemma 1

In the noiseless setting, we define an event E1 to be

E1 : sign (yi) � sign
(
Ai

j

)
. (A· 20)

From Theorem 1, we have

P(E1) =
1
π

arccos(x j). (A· 21)

In the noisy setting, we define an event E2 that yi has its sign
flipped, i.e.,

E2 : yi = −1 · sign(Ai x), (A· 22)

and by the definition of sign flip ratio, we have

P(E2) = ρ. (A· 23)

It is easy to verify that E1 and E2 are independent events,
and we have

Pj = P
(
E1E2

)
+ P

(
E1E2

)
= P

(
E1

)
P (E2) + P (E1) P

(
E2

)

=

(
1 − 1
π

arccos(x j)

)
ρ +

1
π

arccos(x j)(1 − ρ)

=
1 − 2ρ
π

arccos(x j) + ρ.

(A· 24)

Then the proof completes.

Appendix C: Proof of Lemma 2

For any xu − xv > ε, because Pj is continuous on the
closed interval [xv, xu] and differentiable on the open inter-
val (xv, xu), by using the Lagrange’s mean value theorem,
there exists a point xc in (xv, xu) such that

Pv − Pu =
∂Pj

∂x j

∣∣∣∣∣∣
x j=xc

(xv − xu)

= − (1 − 2ρ)

π
√

1 − x2
c

(xv − xu)

>
(1 − 2ρ)ε
π

.

(A· 25)

Because both H{y,Au} and H{y,Av} obey the binomial dis-
tribution, i.e.,

H{y,Au} ∼ B(M, Pu),

H{y,Av} ∼ B(M, Pv),
(A· 26)

therefore, the expectation and variance of H{y,Au} and
H{y,Av} are given by

E
(
H{y,Au}) = MPu,

E
(
H{y,Av}) = MPv,

D
(
H{y,Au}) = MPu(1 − Pu),

D
(
H{y,Av}) = MPv(1 − Pv).

(A· 27)
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Define a random variable z as

z
def
= H{y,Av} − H{y,Au}. (A· 28)

Because H{y,Au} and H{y,Av} are independent, the expec-
tation and the variance of z are given by

E
(
z
)
= E

(
H{y,Av}) − E(H{y,Au})

= M(Pv − Pu),

D
(
z
)
= D

(
H{y,Av}) + D(H{y,Au})

= M
(
Pv(1 − Pv) + Pu(1 − Pu)

)
.

(A· 29)

In addition, note that the probability mass function of z is
symmetrical with E

(
z
)
. By using the Chebyshev’s inequal-

ity, we have

P(z > 0) = 1 − P(z ≤ 0)

= 1 − 1
2
P
(∣∣∣z − E(z)

∣∣∣ ≥ E(z)
)

≥ 1 − D(z)
2E2(z)

.

(A· 30)

Let f (z) = 1− D(z)
2E2(z) , by substituting (A· 25) and (A· 29) into

f (z), we have

f (z) =

1 +
1

2M
+
π2Pu(Pu − 1)
Mε2(1 − 2ρ)2

+
π(Pu(2 − 4ρ) + 2ρ − 1)

2Mε(1 − 2ρ)2

(A· 31)

By computing the derivative of f (z) with respect to Pu and
set it to be 0, we compute the minimum value of f (z) to be

f (z) ≥ 1 − π
2 − ε2(1 − 2ρ)2

4Mε2(1 − 2ρ)2
. (A· 32)

By combining (A· 30) and (A· 32), we have

P
(
H{y,Av} > H{y,Au}) ≥ 1 +

1
4M
− π2

4M(1 − 2ρ)2
ε−2.

(A· 33)

Then the proof completes.
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