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SUMMARY Visual tracking has been studied for several decades but
continues to draw significant attention because of its critical role in many
applications. Recent years have seen greater interest in the use of correla-
tion filters in visual tracking systems, owing to their extremely compelling
results in different competitions and benchmarks. However, there is still a
need to improve the overall tracking capability to counter various tracking
issues, including large scale variation, occlusion, and deformation. This
paper presents an appealing tracker with robust scale estimation, which
can handle the problem of fixed template size in Kernelized Correlation
Filter (KCF) tracker with no significant decrease in the speed. We apply
the discriminative correlation filter for scale estimation as an independent
part after finding the optimal translation based on the KCF tracker. Com-
pared to an exhaustive scale space search scheme, our approach provides
improved performance while being computationally efficient. In order to
reveal the effectiveness of our approach, we use benchmark sequences an-
notated with 11 attributes to evaluate how well the tracker handles different
attributes. Numerous experiments demonstrate that the proposed algorithm
performs favorably against several state-of-the-art algorithms. Appealing
results both in accuracy and robustness are also achieved on all 51 bench-
mark sequences, which proves the efficiency of our tracker.
key words: correlation filters, kernel methods, scale estimation, visual
tracking

1. Introduction

Visual object tracking is one of the most fundamental tasks
in the field of computer vision and is related to a wide range
of applications like surveillance and robotics. Although
great progress has been made in the past decade, it remains
a challenging problem due to baffling factors, such as illu-
mination variations, background clutter, and shape deforma-
tion.

The process of visual tracking could be described as
a dynamic state estimation problem, and the state informa-
tion is usually the appearance representation. There exist
two main approaches to handle visual tracking, namely gen-
erative and discriminative methods. The generative meth-
ods tackle the problem by searching for regions that are
most similar to the target model. The models in these meth-
ods are either based on templates or subspace models. The
discriminative approaches aim at differentiating the target
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from the background by posing tracking as a binary classi-
fication problem. To cope with natural image changes, the
classifier is typically trained with translated and scaled sam-
ple patches. Unlike generative methods, discriminative ap-
proaches use both target and background information to find
a decision boundary for differentiating the target object from
the background. This is employed in tracking-by-detection
methods, which have shown to provide excellent tracking
performance.

Recent benchmark [1]–[3] studies show that the top-
performance trackers are usually discriminative trackers
or hybrid ones. Canonical examples of the tracking-by-
detection paradigm include those based on Support Vec-
tor Machines (SVM) [4], Random Forest classifiers [5], or
boosting variants [6], [7]. Zhang et al. [8] propose a projec-
tion to a fixed random basis, to train a Naive Bayes classifier,
inspired by compressive sensing theory. Tracking-Learning-
Detection (TLD) tracker [9] exploits a set of structural con-
straints with a sampling strategy using boosting classifier.
Among more complicated trackers, recently proposed cor-
relation filter based trackers [10]–[14] have achieved appeal-
ing performance despite their great simplicity and superior
speed. Those trackers train a discriminative filter, where
convolution output can indicate the likeness between can-
didate and target. Because the element-wise operation in
Fourier domain is equal to the convolution operation in time
domain (spatial domain in tracking), they evaluate the cycli-
cally shifted candidates very efficiently. However, Mini-
mum Output Sum of Squared Error (MOSSE) tracker [10],
Circulant Structure Kernels (CSK) tracker [11], and KCF
tracker [14], are limited to only estimating the target po-
sition with the fixed size. Danelljan et al. [12] extend the
CSK tracker with color attributes to better represent the
input data, which have shown to obtain superior perfor-
mance due to their good balance between photometric in-
variance and discriminative power. Although those track-
ers [10], [12], [14] achieve very appealing performance in
terms of accuracy and robustness, they have insufficient
scale variation. In addition, Discriminative Scale Space
Tracker (DSST) [11] has proposed an efficient method for
estimating the target scale by training a classifier on a scale
pyramid, which is the best tracker in the competition [3].
However, there is still room for improvement in translation
estimation in the DSST.

In this paper, we incorporate the proposed scale esti-
mation approach in the DSST into the KCF tracker with-
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out much computational overhead. Compared to the tradi-
tional DSST and the KCF tracker, the improved algorithm is
more robust and so can deal with more challenging scenar-
ios. The key contributions of this work can be summarized
as follows. Firstly, we extend the KCF tracker with the ca-
pability of handling scale changes. Secondly, we verify that
the applied scale estimated approach is generic and can be
incorporated into the KCF tracker framework. Finally, we
perform extensive experiments on 51 sequences in the re-
cent benchmark evaluation [1]. Experimental results show
that the proposed tracker achieves outstanding performance
both in accuracy and robustness against the state-of-the-art
trackers.

The rest of this paper is organized as follows. Sec-
tion 2 reviews related trackers based on correlation filter
techniques. Section 3 introduces the proposed tracker. Sec-
tion 4 presents experimental results on different sequences.
Finally, the conclusion and our future work are summarized
in Sect. 5.

2. Related Work on Correlation Filter-Based Trackers

Conventionally, correlation filters are designed to produce
correlation peaks for each interested target in the scene
while yielding low responses to background, which are usu-
ally used as detectors of expected patterns. Correlation
filter-based trackers model the appearance of objects using
filters trained on example images. The target is initially se-
lected based on a small tracking window in the first frame
and tracked by correlating the filter over a search window
in the next frame. The location corresponding to the maxi-
mum value in the correlation output indicates the new po-
sition of the target. An online update is then performed
based on that new location. More modern approaches such
as Average of Synthetic Exact Filters (ASEF) [15] introduce
a method of tuning filters for particular tasks. Although
ASEF has shown to perform well in eye localization [15]
and pedestrian detection [16], a large number of samples
are required for training, which makes it too slow for on-
line visual tracking. David S. Bolme et al. [10] propose
the MOSSE filter, which produces ASEF-like filters from
fewer training images. Based on the basic framework of
the MOSSE filter, numerous improvements have been made
later. The CSK tracker [13] improves the MOSSE filter by
introducing kernel methods. The KCF tracker [14] extends
the CSK tracker by making use of the circulant structure
within training samples, which achieves high speed. More-
over, the KCF tracker enhances the conventional correla-
tion filters with kernel trick and supports multi-channel fea-
tures, while the scale problem remains unresolved. By fur-
ther handling the scale changes, the Scale Adaptive Multi-
ple Features (SAMF) tracker [17] and the DSST [11] have
achieved state-of-art results. They have beaten all other at-
tended trackers in terms of accuracy in the competition [3].
The SAMF tracker, as an extended version of the KCF
tracker, handles scale changes by sampling with several pre-
defined scale perturbations. The correlation filter is then ap-

plied to those samples individually to find out the best scale
and target position. Moreover, powerful features including
Histogram of Gradient (HOG) and color-naming are inte-
grated together to further boost the overall tracking perfor-
mance. The DSST proposes an efficient method for estimat-
ing the target scale by training a classifier on a scale pyra-
mid, which allows to independently estimate the target scale
after the optimal translation is found. Compared to an ex-
haustive scale space search scheme, the DSST provides im-
proved performance while being computationally efficient
by learning discriminative correlation filters for estimat-
ing translation and scale independently. With more cor-
relation filter-based trackers [18]–[21] developed recently,
correlation filter-based tracking model has proven its great
strengths in efficiency and robustness, and has considerably
accelerated the development of visual object tracking.

3. The Proposed Tracker

In this section, we give the details of our proposed tracker.
In order to incorporate the scale estimation approach in the
DSST into the KCF tracker, we decompose the task into
translation and scale estimation of objects. Section 3.1
presents the translation estimation based on the KCF tracker
for its competitive performance and efficiency. In Sect. 3.2,
the scale estimation is carried out by learning a discrimina-
tive correlation filter applied in the DSST. At last, Sect. 3.3
provides a brief outline of our proposed tracker and dis-
cusses the differences in our proposed tracker compared to
the KCF tracker and DSST.

3.1 Translation Estimation with KCF

Recently, the tracking system based on the Kernelized Cor-
relation Filter (KCF) achieves favorable performance with
high speed. In that work, Henriques et al. [14] demonstrate
that it is possible to analytically model natural image trans-
lations, which shows that the resulting data and kernel matri-
ces become circulant under some conditions. The diagonal-
ization by the Discrete Fourier Transform (DFT) provides a
general blueprint for creating fast algorithms that deal with
translations. By considering correlation filters as classifiers,
the goal of training is to find a function f (z) = wT z that min-
imizes the squared error over samples xi and their regression
targets yi according to:

min
w

∑

i

( f (xi) − yi)
2 + λ‖w‖2, (1)

where w denotes the parameters, and λ is the regularization
parameter to prevent over fitting. The Ridge Regression has
the close-form solution according to:

w = (XT X + λI)−1XT y, (2)

where the data matrix X has one sample per row xi and each
element of y is a regression target yi. I is an identity matrix.

To introduce the kernel functions for improving the
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performance, input data x can be mapped to a non-linear-
feature space as ϕ(x), and w =

∑
i αiϕ(xi). Then the solution

to the kernelized version of Ridge Regression in the KCF
tracker is given by:

α = (K + λI)−1y, (3)

where K is the kernel matrix and α is the vector of coef-
ficients αi, that represents the solution. With the help of
circulant matrix, all the translated samples around the tar-
get can be collected for training with no significant decrease
in the speed. Given a base sample x = (x0, . . . , xn−1), all
the cyclic shift visual samples are concatenated to form the
circulant matrix X = C(x). Then the solution of α can be
expressed as follows with the various interesting properties
of circulant matrices

α̂ =
ŷ

k̂ + λ
. (4)

where α̂, ŷ and k̂ denote the DFT of α, y and k, respec-
tively. It has been proven that the kernel function of a cir-
culant kernel matrix should be unitarily invariant [14]. Al-
though dot-product, radial basis kernel and polynomial ker-
nels functions are found to satisfy this condition, we apply
the Gaussian kernel which can be expressed as follows:

kxx
′
= exp(− 1

σ2
(‖x‖2 + ‖x′ ‖2 − 2F−1(x̂∗ � x̂

′
))), (5)

where x̂ denotes the DFT of the base sample x, and x̂∗ repre-
sents complex conjugation. In a new frame, the target can be
detected by the trained parameter α and a maintained base
sample x. If the new sample is z, a confidence map ytrans

can be obtained by:

ytrans = C(kxz)α. (6)

The position with a maximum value in ytrans can be pre-
dicted as new position of the target.

3.2 Scale Estimation with Discriminative Correlation Fil-
ter

The Kernelized Correlation Filter (KCF) in Sect. 3.1 is used
for estimating the translation, then we can find the accurate
position of the target without scale change. According to the
DSST [11], the proposed discriminative correlation filter for
scale estimation is generic and can be incorporated into any
tracking framework. In addition, this discriminative correla-
tion filter is closely related to the MOSSE filter [10], which
produces stable correlation filters when trained on a small
number of image windows. Consequently, the discrimina-
tive correlation filter is an efficient and ideal approach for
robust scale estimation. After finding the accurate position
with the KCF tracker, we apply the discriminative correla-
tion filter for scale estimation. Firstly, the MOSSE filter
needs a set of training images fi, as well as a set of training
outputs gi. Training is conducted in the Fourier domain to
take advantage of the simple element-wise relationship be-
tween the input and the output. To find a filter that maps

training inputs to the desired training outputs, MOSSE finds
a filter h that minimizes the sum of squared error. The min-
imization problem takes the form according to:

min
ĥ∗

∑

i

| f̂i � ĥ∗ − ĝi|2, (7)

where f̂i, ĝi and the filter ĥ are the Fourier transform of fi,
gi and h, respectively. ĥ∗i represents complex conjugation.
By solving for ĥ∗, a closed form expression for the MOSSE
filter is found

ĥ∗ =
∑

i ĝi � f̂ ∗i∑
i f̂i � f̂ ∗i

. (8)

where f̂ ∗i represents complex conjugation.
In the DSST, the MOSSE filter has been extended to

multi-dimensional features. Assuming the feature dimen-
sion number l ∈ {1, 2, . . . , d}, the solution for the optimal
correlation filter ĥ, which consists of one filter ĥl per fea-
ture, is obtained in the DSST as follows:

ĥl =
ĝ∗ � f̂ l

∑d
k=1 f̂ k � f̂ k∗ + λ

, (9)

where λ is the regularization parameter to prevent over fit-
ting, and ĝ∗ represents complex conjugation. To obtain a
robust approximation, Danelljan et al. [11] update the nu-
merator Al

t and denominator Bl
t of the correlation filter ĥl

t at
time step t separately as follows:

Al
t = (1 − η)Al

t−1 + ηĝ
∗
t f̂ l

t

Bl
t = (1 − η)Bl

t−1 + η
∑d

k=1 f̂ k∗
t f̂ k

t ,
(10)

where η is a learning rate parameter. Considering a three-
dimensional scale space correlation filter, the filter size is
fixed to M × N × S , where M and N are the height and the
width of the filter, respectively. S is the number of differ-
ent scales. After finding the accurate position by the con-
ventional KCF tracker, we extract a three-dimensional scale
sample Z with the size M × N × S . The correlation scores
yscale between scale filter and sample are then computed as
follows:

yscale = F−1

⎛⎜⎜⎜⎜⎝
∑S

l=1 Al∗Zl

B + λ

⎞⎟⎟⎟⎟⎠ . (11)

The scale with a maximum value in yscale can be predicted
as the new scale of the target.

3.3 Tracking Algorithm

The main steps of our tracker are presented in Algorithm 1
(see Table 1). We use two independent correlation filters for
translation and scale estimation. The Kernelized Correla-
tion Filter (KCF) is only applied for translation estimation
and the discriminative correlation filter cooperates on scale
estimation. Unlike our tracker, the DSST [11] uses sepa-
rate filters for translation and scale estimation, which are all
based on discriminative correlation filters. In addition, we
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Table 1 Main steps of our algorithm.

Algorithm 1:Proposed tracking algorithm: iteration at time t
1: Inputs:
• A bounding box with previous target position pt−1 and scale st−1

in Image It .
• Training sample feature Xtrans

t−1 and parameter αtrans
t−1 for translation

model.
• Training scale model Ascale

t−1 and Bscale
t−1 .

2: Translation estimation:
• Extract a translation sample ztrans with fixed size at pt−1 in It .
• Compute the translation response ytrans using ztrans, Xtrans

t−1 and
αtrans

t−1 .
• Set pt to the target position that maximizes the response ytrans.
3: Scale estimation:
• Extract a scale sample zscale with scale st−1 at pt in It .
• Compute the scale response yscale using zscale, Ascale

t−1 and Bscale
t−1 .

• Set st to the target scale that maximizes the response yscale.
4: Model update:
• Extract sample feature with fixed size at pt in It to update Xtrans

t
and αtrans

t .
• Extract sample feature with scale st at pt in It to update Ascale

t and
Bscale

t .
5: Output:
• Estimated target position pt and scale st .
• Updated the translation model Xtrans

t , αtrans
t and scale model Ascale

t ,
Bscale

t .

extract translation sample with fixed size to find the target
position without considering the scale, whereas the DSST
extracts translation sample according to the previous scale.
Thus, we really separate the translation and scale estima-
tion in a way. Furthermore, the major difference between
the KCF tracker and our tracker is that the KCF tracker is
unable to deal with the challenge of scale change.

The main reasons that our algorithm performs favor-
ably can be attributed to three factors. Firstly, both the KCF
tracker and DSST have already achieved very appealing per-
formance both in accuracy and robustness against the state-
of-the-art trackers. Secondly, we apply the KCF tracker for
translation estimation independently, which obtains an accu-
rate position of the target. In addition, we take advantage of
the discriminative correlation filter in the DSST for scale es-
timation specially. Thirdly, we combine the strengths of the
KCF tracker and DSST to improve the performance. Conse-
quently, the improved algorithm is more accurate and robust.

4. Experiments

In this section, our proposed algorithm is evaluated with
other 13 state-of-the-art methods on 51 challenging se-
quences. The compared trackers include other correlation
filter-based trackers, such as SAMF tracker [17], DSST [11],
CSK tracker [13] and KCF tracker [14]. Moreover, the
top five trackers reported in the recent benchmark [1]
are compared in the experiments, e.g., Structure tracker
(Struck) [24], Sparsity-based Collaborative Model (SCM)
tracker [25], TLD [9], Adaptive Structural Local Appear-
ance (ASLA) tracker [22] and Context Tracker (CXT) [27].
The other compared trackers are L1 Accelerated Proxi-
mal Gradient (L1APG) tracker [23], Incremental Learning

Tracker (IVT) [28], Distribution Fields Tracker (DFT) [29]
and Compressive Tracking (CT) tracker [8]. In most case,
we use the corresponding ground truth files, the compared
code library in the benchmark [1]. However, the SAMF
tracker, DSST and the KCF tracker are proposed after the
benchmark. Thus, we utilize the source code released by
these three trackers to test benchmark sequences. For each
tracker, we use the default parameters which are tuned well
by the authors to evaluate all sequences. The proposed al-
gorithm runs at 70 frame per second (FPS) with a matlab
implementation on an Intel Xeon(R) E5-2650 2 core 2.00
GHz CPU with 64 GB RAM without any optimizing.

4.1 Experiment Setup and Evaluation Criteria

In our experiments, we use a Gaussian function to initialize
the desired translation and scale filter output, respectively.
The regularization parameter is set to 10−4, the learning
rate is set to 0.02. The bandwidth of the Gaussian kernel
σ = 0.5, spatial bandwidth for the desired translation fil-
ter output is

√
mn/10 for a m × n target, and the standard

for the desired scale filter output is 0.25. In addition, we
use Principal Component Analysis Histogram of Gradient
(PCA-HOG) [30] for target representation. The cell size of
HOG is 4 × 4 and the orientation bin number of HOG is 9.
In order to get fair experimental results, all the parameters
are kept constant for the following experiments.

We use two metrics to evaluate the performance. The
first one is the precision plot which is based on the location
error. The other one is the success plot which is based on
the overlap rate. The location error is defined as the aver-
age Euclidean distance between the center locations of the
tracked targets and the manually labeled ground truths. The
precision plot shows the percentage of the frames whose
tracking location is within the given threshold distance of
the ground truth. To compare the performance of different
trackers, the results at error threshold of 20, as well as in
the benchmark [1], are used to ranking in the precision plot.
Another evaluation metric is the overlap rate of the bounding
box. Given the tracked bounding box rt and the ground truth
bounding box ra, the overlap rate is defined as S = | rt

⋂
ra

rt
⋃

ra
|,

where
⋂

and
⋃

represent the intersection and union of two
regions, respectively, and | · | denotes the number of corre-
sponding pixels. The success plot shows the ratios of suc-
cessful frames while the overlap thresholds vary from 0 to
1. We use the area under the curve (AUC) of each success
plot to rank the tracking algorithms. To analyze the robust-
ness to initialization, each sequence is partitioned into 20
segments and each tracker is performed on around 310,000
frames. This evaluation metric is referred as temporal ro-
bustness evaluation (TRE) in the benchmark [1].

4.2 Robust Scale Estimation

We use the 28 sequences [1] annotated with “scale variation”
to evaluate the scale adaptability of our proposed algorithm.
Precision plots and success plots with temporal robustness
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Fig. 1 Precision plots over all 28 sequences annotated with scale varia-
tion. The results at error threshold of 20 are used to ranking as shown in
the top right corner.

Fig. 2 Success plots over all 28 sequences annotated with scale variation.
The AUC scores of each plot are used to ranking as shown in the top right
corner.

evaluation (TRE) are shown in Fig. 1 and Fig. 2, which show
our tracker is superior compared to other trackers. Due to
the success plot represents the overlap score between the
tracked bounding box and the ground truth bounding box,
the scale adaptability of trackers can be presented excel-
lently. Experimental results show that our tracker achieves
54.8% on the AUC score, which is 6% improvement over
the KCF tracker. So the discriminative correlation filter can
be indeed incorporated into the KCF tracker framework to
improve the scale estimation. Furthermore, experimental re-
sults show that our tracker is 0.9% improvement over the
DSST. Our tracker performs more favorable than DSST be-
cause we apply the KCF tracker to find the optimal transla-
tion before scale estimation, which is more accurate than the
DSST and can improve the scale estimation. The intuitive
illustration is shown clearly in Fig. 3. However, if the scale
of the target is changed abruptly and frequently, our tracker
performs unfavorably as shown in Fig. 4. Because the scale
change is estimated after the translation estimation, which

Fig. 3 Performance on (a) ‘carScale’ and (b) ‘dog1’ sequences by 6
trackers. The sequences include scale variation at a different level. Our
algorithm results are marked with red line as shown in the up panel.

Fig. 4 Performance on the ‘doll’ sequence by 6 trackers. The sequence
includes abrupt scale variation. Our tracker performs inaccurately as shown
in the second row.

performs inaccurately when the fast move and scale change
happen at the same time.

4.3 Experiments with Sequence Attributes

There are many factors affect the experimental results when
evaluating tracking algorithms. For better analysis of our
tracker, we use the sequences annotated with the other 10
attributes in the benchmark [1] to evaluate how well the
tracker handles different attributes. The name of the at-
tributes are listed as follows: fast motion (FM), motion blur
(MB), deformation (DEF), in-plane rotation (IPR), occlu-
sion (OCC), out-of-plane rotation (OPR), out-of-view (OV),
illumination variation (IV), background clutter (BC) and
low resolution (LR). The AUC score of success plots in each
attribute are demonstrated in Table 2. According to the ex-
perimental result, the proposed algorithm is close to the best
performance to 7 of the 10 attributes. Moreover, the results
at error threshold of 20 in precision plots are presented in
Table 3. Our tracker achieves second-best performance to
8 of the 10 attributes. The intuitive illustration is shown
clearly in Fig. 5. Because the SAMF tracker combines the
HOG feature and color-naming to represent the target, the
tracking performance is superior to our method. However,
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Table 2 The AUC scores of success plots in 10 attributes. The best result is highlighted in bold type
and the second result is highlighted in red color.

Attris Ours KCF DSST SAMF TLD Struck SCM CSK ASLA CXT IVT DFT CT L1APG
FM 48.6 45.5 45.1 51.6 39.2 46.4 28.2 33.0 28.5 37.5 22.8 34.9 29.9 31.9
MB 51.4 49.2 48.4 54.3 38.8 48.5 29.0 33.6 29.6 38.5 22.5 37.4 28.0 30.1
DEF 59.4 57.0 57.1 65.7 42.5 50.0 51.5 44.0 46.6 39.4 38.7 47.2 42.4 41.2
IPR 55.3 51.9 54.8 56.5 40.6 47.3 45.3 42.6 45.1 45.3 35.2 40.0 32.8 40.5
OCC 57.4 54.6 56.0 61.5 42.6 46.2 50.2 42.0 44.4 41.0 37.7 41.1 36.3 40.2
OPR 56.1 53.0 54.3 58.7 42.5 47.7 48.0 43.0 46.5 44.4 37.4 41.6 34.9 40.4
OV 52.9 53.8 50.0 58.4 43.4 41.7 34.4 32.8 32.5 40.3 26.9 30.7 32.9 30.2
IV 55.4 52.7 56.5 59.1 40.2 48.6 47.5 43.5 46.8 40.3 35.3 38.5 35.6 37.3
BC 57.2 56.4 53.1 57.3 37.2 47.8 46.9 43.2 44.5 37.4 34.1 41.7 34.0 39.8
LR 44.0 38.3 44.2 43.9 29.9 45.6 30.4 36.7 27.8 31.3 26.3 28.7 19.5 36.0

Fig. 5 Performance on 10 attributes by 6 trackers. We select 6 se-
quences to illustrate the performance. The different attributes including
in 6 sequences are listed as follows: (a) ‘DEF’+‘OCC’; (b) ‘FM’+‘BC’;
(c) ‘IPR’+‘OPR’; (d) ‘IV’; (e) ‘LR’+‘OCC’; (f) ‘OV’+MB.

the speed of the SAMF tracker is 14.0 FPS on average due
to the complicated feature representation. Our tracker uses
only the HOG feature and is more than 5 times faster than

Fig. 6 Precision plots over all 51 benchmark sequences. Results at error
threshold of 20 are used to ranking as shown in the top right corner.

Fig. 7 Success plots over all 51 benchmark sequences. AUC scores of
each plot are used to ranking as shown in the top right corner.

the SAMF tracker.

4.4 Experiments on the Whole Dataset

To further evaluate the robustness and efficiency of our
tracker, we set up a comparison on the whole dataset. Re-
sults are shown in Fig. 6 and Fig. 7, where our tracker out-
performs the other trackers except the SAMF tracker. In ad-
dition to high accuracy, our tracker runs efficiently at an av-
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Table 3 The results at error threshold of 20 of precision plots in 10 attributes. The best result is
highlighted in bold type and the second result is highlighted in red color.

Attris Ours KCF DSST SAMF TLD Struck SCM CSK ASLA CXT IVT DFT CT L1APG
FM 59.8 57.9 52.3 64.6 48.7 58.0 30.2 37.9 30.5 47.9 24.8 41.9 33.6 37.1
MB 64.7 62.7 58.7 68.3 49.1 61.7 32.3 39.0 33.2 52.0 26.4 46.8 33.2 35.2
DEF 76.7 75.7 71.9 85.1 57.1 65.5 63.5 56.9 57.1 51.5 50.7 58.7 53.2 51.3
IPR 73.8 72.8 72.1 77.3 56.9 65.0 58.1 57.4 58.2 61.7 47.9 52.9 42.6 54.0
OCC 76.2 75.8 72.5 82.8 57.9 63.1 63.3 56.9 56.0 53.7 50.5 52.8 46.2 52.2
OPR 75.3 74.9 71.5 80.4 59.7 66.0 61.7 59.1 60.5 60.1 51.3 55.0 45.8 53.9
OV 63.3 64.3 57.7 70.4 48.5 48.4 37.1 33.6 33.9 46.8 28.2 33.7 31.1 32.2
IV 72.6 72.9 72.4 79.3 54.3 64.3 58.5 57.5 58.4 53.7 46.6 49.1 44.1 47.4
BC 77.1 77.6 69.3 76.4 48.8 62.2 60.0 57.3 57.5 51.5 46.3 52.1 43.0 50.6
LR 58.8 50.2 56.3 57.4 37.6 62.8 35.0 48.2 32.5 40.8 32.1 35.1 23.4 44.1

erage speed of 70.0 FPS. As a comparison with scale adap-
tive correlation filter trackers, our tracker is more than 2.4
times faster than the DSST and 5 times faster than the SAMF
tracker. Although the speed of the KCF tracker is 260.0 FPS
on average and is faster than ours, it is not able to handle
scale changes.

5. Conclusion

In this paper, we propose a robust tracking algorithm which
combines the method of discriminative correlation filters
with the Kernelized Correlation Filter (KCF) tracker. Our
tracker handles the problem of fixed template size in KCF
tracker without much decrease in the speed. Experiments on
benchmark sequences demonstrated that the proposed algo-
rithm performs favorably in terms of accuracy and robust-
ness. Recently, N. Wang et al. [26] propose that the feature
extractor is the most important part of a tracker and the ob-
servation model is not that important if the features are good
enough. Considering that our tracker uses only the HOG
feature, we plan to incorporate more robust features into our
tracker in the future.
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