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Modified t-Distribution Evolutionary Algorithm for Dynamic
Deployment of Wireless Sensor Networks

Xiaolei LIU†, Nonmember, Xiaosong ZHANG††a), Member, Yiqi JIANG††, and Qingxin ZHU†, Nonmembers

SUMMARY Optimizating the deployment of wireless sensor networks,
which is one of the key issues in wireless sensor networks research, helps
improve the coverage of the networks and the system reliability. In this pa-
per, we propose an evolutionary algorithm based on modified t-distribution
for the wireless sensor by introducing a deployment optimization opera-
tor and an intelligent allocation operator. A directed perturbation operator
is applied to the algorithm to guide the evolution of the node deployment
and to speed up the convergence. In addition, with a new geometric sen-
sor detection model instead of the old probability model, the computing
speed is increased by 20 times. The simulation results show that when
this algorithm is utilized in the actual scene, it can get the minimum num-
ber of nodes and the optimal deployment quickly and effectively.Compared
with the existing mainstream swarm intelligence algorithms, this method
has satisfied the need for convergence speed and better coverage, which is
closer to the theoretical coverage value.
key words: t-distribution, evolutionary algorithm, wireless sensor net-
works

1. Introduction

Wireless sensor networks (WSNs) are self-organizing net-
works consisted of a large number of tiny sensor nodes.
They are widely used in many fields, such as environmental
monitoring, target tracking, data collection, etc. [1]. How-
ever, how to give full play to their roles highly depends on
the sensors’ positions, known as the deployment of the net-
works [2].

The specific research of deployment is how to use the
method of node deployment and routing to make the op-
timal allocation of resources in WSNs, and then improve
the quality of monitoring, sensing and communication and
other services, in the case that sensor network node energy
and other resources are generally limited. Therefore, the
coverage problem reflects the degree of the sensor network
node to the designated monitoring area, and it is a basic in-
dex to measure the quality of the service of the sensor net-
work. For example, in the use of forest fire in the sensor
network, the key problem is how to monitor the fire in the
shortest time. As the sensor network environment is usually
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unknown, sensor deployment is usually not carried out man-
ually. All the sensors mentioned in this paper are uniformly
moving.

At present, many scholars have conducted this re-
search, and made many achievements in the wireless
sensor networks deployment optimization by using the
swarm intelligence algorithms [3]–[5]. Li et al. proposed
a method [6] of improved particle swarm optimization to
solve the sensor node deployment problem. This algorithm
can quickly find an excellent solution, but it is easy to fall
into extreme point and ending without the global optimal
solution. Liao et al. consider the problem of sensor deploy-
ment to achieve complete coverage of the service region
based on the ant colony optimization algorithm [7]. It has
a good local search capability, but there is a problem that
the solving speed is very slow. An approach based on an
optimized artificial fish-swarm algorithm for wireless sen-
sor networks deployment optimization scheme is proposed
by Wang et al. [8]. However, from the simulation results
we can see, with the increase of the number of iterations,
the optimization results are not significantly improved. This
algorithm tends to be premature. Liao et al. present a sen-
sor deployment scheme [9] based on glowworm swarm op-
timization to enhance the coverage after an initial random
deployment of the sensors. In some cases this algorithm can
achieve satisfactory optimization results, however, its sta-
bility is poor. Affected by the initial value, the result will
occasionally be terrible.

To solve the dynamic deployment problem for WSNs, a
new approach which is based on the modified t-distribution
evolutionary algorithm (MtDEA) is proposed. By introduc-
ing a directed perturbation operator, this approach can not
only avoid plunging local extreme, but also accelerate the
convergence rate. Using a new geometric sensor detection
model, the computational complexity is reduced and the op-
erational efficiency is greatly improved.

The rest of the paper is organized as follows. Section 2
describes the dynamic deployment problem of WSNs and
proposes a new sensor detection model. The MtDEA al-
gorithm is introduced in Sect. 3. We present and discussed
the simulation experiments and results in Sect. 4. Section 5
concludes this paper and remarks the future work.
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2. WSN Dynamic Deployment Problem and Sensor De-
tection Model

2.1 WSN Dynamic Deployment Problem

In the WSN dynamic deployment problem, people typi-
cally improve coverage by increasing the number of sensors.
However, excessive number of sensor nodes will produce a
large number of redundant nodes, causing data transmission
conflict, affecting the network stability and wasting the re-
sources. Thus, in the WSN dynamic deployment stage, the
number of nodes and network coverage both need to be con-
sidered. Algorithm chosen must be able to calculate the op-
timal deployment using minimal number of sensors under
the premise of meeting the specified coverage.

Suppose the same type of sensor is arranged, with
the same communication distance and measuring radius.
S = {s1, s2, . . . , sn} is a group of wireless sensor set. The
coordinates of wireless sensor node si are (xi, yi) and target
area is a two-dimensional rectangular area. For any target
point p j at

(
x j, y j

)
, the euclidean distance between sensor si

and target point p j is shown in Eq. (1).

d
(
si, p j

)
=

√(
xi − x j

)2
+
(
yi − y j

)2
(1)

The detection probability of sensor si to target point
p j [10] is shown in Eq. (2).

P
(
p j, si

)
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

1, d ≤ r − re

e

−λ1α
β1
1

α
β2
2 + λ2, r − re ≤ d ≤ r + re

0, otherwise

(2)

where r is the detection radius, re is a detection uncer-
tainty radius, λ1, β1, β2 are parameters measuring detection
probability, λ2 is the disturbing effect, α1 = re − r + d(si, p j)
and α2 = r + re − d(si, p j).

2.2 Traditional Sensor Detection Model

Consider the computational complexity when building a
wireless sensor detection model, the probability of detection
in Eq. (2) reduces to:

P
(
p j, si

)
=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1, d(si, p j) ≤ r

0, otherwise
(3)

The joint measuring probability of all sensor nodes si-
multaneously detecting the target point p is shown in Eq. (4).

Punion(S all, p) = 1 −
∏
i=n

(1 − P(p, si)) (4)

The area to be measured is generally divided into l ∗ h
grids in traditional sensor detection model. Then the cells

Fig. 1 The schematic diagram of sensor geometry model.

are simplified as pixels, furthermore the coverage ratio of
the WSN is defined as the ratio of the number of cells which
can be detected and the total number of cells and shown in
Eq. (5).

Parea =

l∑
x=1

h∑
y=1

Punion(S all, p)

l ∗ h
(5)

2.3 Geometric Sensor Detection Model

The traditional sensor detection model has many flaws such
as high computational complexity, long computational time
and imprecise computational accuracy and so on. To avoid
these problems, we propose a geometric sensor detection
model. The covering area of N sensor nodes is shown in
Eq. (6).

S nsensor =

n∑
i=1

S i =

n∑
i=1

(S single − S overlap)

=

n∑
i=1

(S single −
n∑

j=i

S i j + λ1) (6)

where S single is the coverage area of a single sensor, S i j is
the area of the overlapped portion between the i-th and j-th
sensors, d is the distance of the center points between the i-
th and j-th sensors. The overlapping coverage areas of more
than three sensors are defined as λ1. In the actual program-
ming calculation, we just need to take λ1 as a penalty term
instead of calculating its specific value. In this way, a lot of
sensors can avoid overlapping together.

Here, suppose we need to calculate S 34 which is shown
in Fig. 1.

S 34 = 2 × (S sectorABC − S �ABC)

= 2 × (0.5 × r× �
AB −2 × S �ACE)
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= 2 × (0.5r × 2α
2π
× 2πr − 2 × 1

2
× d

2

√
r2 − (

d
2

)2)

= 2r2 · arccos
d
2r
− d ·

√
r2 − (

d
2

)2

From S 34 we can derive the formula of S i j which is
shown in Eq. (7).

S i j =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
n∑

j=i+1
(2r2 · arccos d

2r − d · l), d ≤ 2r

0, otherwise
(7)

where l =
√

r2 − ( d
2 )2.

When using the N sensor nodes monitoring a specific
area, the real effective coverage area S realcover equals to
S nsensor minus S cut which is the area outside monitoring
area. And a penalty term λ2 is introduced which is shown in
Fig. 1.

Finally, the WSN coverage Parea is defined as the ratio
of the real effective coverage area S realcover and the monitor-
ing area S monitor and is shown in Eq. (8).

Parea =
S realcover

S monitor
=

S nsensor − S cut − λ2

l ∗ h
(8)

2.4 Contrast Detection Model

In order to compare the accuracy of the results between the
traditional model and the new model, we carried out the fol-
lowing experiment.

1. Save arbitrary time WSN deployment optimization re-
sults in image format. The place which is covered is in
black and the place uncovered is indicated with white.

2. Save the result of the corresponding sensor layout vec-
tor.

3. Respectively use traditional model and new model to
calculate the vector to get the coverage.

4. Get the binary image which is obtained through mak-
ing black and white into matrix 0-1. By calculating the
percentage of matrix 0-1, obtain accurate sensor cover-
age.

5. Compare the results.

One of the WSN deployment optimization schematic
diagrams is shown in Fig. 2 (a). Figure 2 (b) is the corre-
sponding binary image and the place which is covered is
black and the place uncovered indicated with white. The ac-
curate WSN coverage, obtained by calculating the percent-
age of matrix 0-1, is 0.4523. 0.4738 and 0.4739 are obtained
by the traditional sensor detection model and the geometric
sensor detection model.

To further compare the running time and error range
between the two sensor detection models, we randomly gen-
erated 500 independent deployment diagrams and the calcu-
lating results are shown in Table 1.

From the average obtained by 500 times independent
deployment results, it is clearly that there is little difference

Fig. 2 The schematic diagram of using binary image to calculate the ac-
curate coverage. The place which is covered by sensors is black and the
others is white.

Table 1 The calculating results of the two detection models.

Traditional Sensor
Detection

Model(100*100)

Geometric Sensor
Detection Model

Elapsed Time/ms
(500 times)

848 40

Error Range/% 2.2149 1.9322

between the calculating error of the two detection models.
However, the calculating speed varies widely. The speed of
geometric sensor detection model is 20 times faster than the
speed of traditional sensor detection model. The reason is
that the algorithm complexity of traditional sensor detection
model is O(MN), where M is the number of grids, while the
other one just O(N2). In most cases, M is larger than N and
O(N2) is the theoretical maximum of our algorithm, it will
never be reached.

3. Dynamic Deployment of WSNs with Modified t-
Distribution Evolutionary Algorithm

3.1 Deployment Optimization Operator

The deployment optimization operator is responsible for ob-
taining the sensor deployment which makes the maximum
coverage under the situation that the scope of the monitor-
ing region, the number of sensor and the detection radius.

The steps of this operator are as follows.

1. Initialize the population P.
2. Apply the directed perturbation operator for P.
3. Apply the random jump operator for P.
4. Choose the next generation P′ by roulette wheel

method.
5. If the termination condition is satisfied then the algo-

rithm ends. Otherwise, skip to step 2.

Among them, the most important part is directed per-
turbation operator, which is obtained by the modified t-
distribution. It is known that the t-distribution can be consid-
ered as a mixture of normal distribution and gamma distribu-
tion, so when n is 1, this distribution reduces to the Cauchy
distribution, when n tends to positive infinity, this distribu-
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Fig. 3 The modified t-distribution

tion is Gaussian distribution.Therefore, the directed pertur-
bation operator which is based on the modified t-distribution
owns both of stability and freedom. It can be a good balance
of linear and nonlinear behavior. The image of modified t-
distribution is shown in Fig. 3 and the formula of directed
perturbation operator is shown in Eq. (9). On the one hand,
from Fig. 3 we can see if x is far away from y-axis, that
is, the difference between the evolutionary individual and
the best individual is large, MtDEA can make poor individ-
ual have a relatively faster speed of evolution. This shows
the fast convergence at the beginning of the algorithm. On
the other hand, when the difference between individuals is
small, the heavy-tailed characteristic of the t-distribution is
beginning to play a role. At the same time, with the ran-
dom jump operator, MtDEA can jump out of local optimal
value and continue to evolve, and finally get better results
than other algorithms.

Xi+1 = Xi + Zi (9)

Xi = (xi1, xi2, . . . , xin) (10)

Zi = {λi j · zi j}, ( j = 1, 2, · · · , n) (11)

λi j = step × (xi j − xbest, j) (12)

zi j =
Γ( n+1

2 )√
nπΓ( n

2 )
[1 + α × ( xi j−xbest, j

max−min )2

n
]−

n+1
2 (13)

where Xi is the position vector of sensors. If xi j = k
means the i-th sensor coordinates of the j-th dimension is k.
Zi is the position vector delta and step is the unit perturba-
tion step. If the sensor coordinates xi j is beyond the mon-
itoring area after being directed perturbation, the algorithm
will recursively reduce the value of the step until the coor-
dinates of new generation meet the requirements. max and
min respectively represent the upper and lower bounds of
coordinate xi j. xbest represents the coordinate vector of the
optimal fitness, and the direction of perturbation is judged
by the positive and negative result of (xi j − xbest, j).

The pseudo code of the directed perturbation operator
is as follows.

After the directed perturbation, select some individuals
to apply the random jump operator. The pseudo code of
the random jump operator is as follows. By random jump,
we can avoid the algorithm go into local extreme value and

Algorithm 1 Directed perturbation operator
Require: Population Size pop size, Disturbance Probability dp, Lower

bounds Lb, Upper bounds Ub
1: for i = 0→ pop size do //This loop is for iterating the population.
2: if rand < dp then
3: repeat//If the progeny Xi+1 doesn’t meet the boundary require-

ments, then compute again.
4: Compute:Xi+1 = Xi + λdir ⊕ P

′
i (x)

5: until boundarycheck(Xi+1, Lb,Ub)==suitable
6: end if
7: end for

Algorithm 2 Random jump operator
Require: Population Size pop size, Jump Probability jp, Lower bounds

Lb, Upper bounds Ub
1: for i = 0→ pop size do //This loop is for iterating the population.
2: if rand < jp then
3: repeat//If the progeny Xi+1 doesn’t meet the boundary require-

ments, then compute again.
4: Compute: jump = (rand(0, 1) − 0.5) ∗ (Ub − Lb)
5: Compute:Xi+1 = Xi + jump
6: until boundarycheck(Xi+1, Lb,Ub)==suitable
7: end if
8: end for

causing “premature”.

3.2 Intelligent Allocation Operator

The Intelligent allocation operator is based on the deploy-
ment optimization operator. By introducing the number per-
turbation operator, the minimum number of sensors and the
corresponding deployment are solved in the case of the mon-
itoring region range and the detection radius of the sensor.

The process of this intelligent allocation operator is
shown in Fig. 4. First the algorithm is initialized accord-
ing to the data of user input, and the chromosome length is
obtained by the number perturbation operator, and then it is
transformed into a single objective deployment optimization
problem. When the single objective optimization operator
is pulled out, the intelligent allocation operator can decide
whether to satisfy the condition of the final exit, and then
choose whether to continue to produce a better chromosome
length.

The number perturbation operator is shown in
Eq. (14).

Numi+1 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

maxN, Cover(maxN)
eCover < 0.95

minN, Cover(minN)
eCover > 1

pert(Numi), otherwise

(14)

pert(Numi) = Numi + k(maxN − minN) (15)

× eCover −Cover(Numi)

1 + e−10× Cover(Numi)
eCover

where maxN is the maximum allowable number of sen-
sors and minN is the minimum one. eCover indicates the
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Fig. 4 Flow chart of intelligent allocation operator

expected coverage inputed by user. k is the step size adjust-
ment factor of the number perturbation operator.

The exit condition of the intelligent allocation operator
is as follows:

1. If the number of sensors is maxN, the eCover is not
satisfied, then exit.

2. If the number of sensors is minN, the eCover is satis-
fied, then exit.

3. If the number of sensors which is Numi is used to
achieve the eCover reached 98% to 102%, then exit.

4. Simulation Results

All the experiments are done under the Windows7-64 oper-
ating system, Core i3, 8G memory conditions, based on Java
simulation.

4.1 Simulation I

A WSN including 80 mobile sensors is simulated. The de-
tection radius of each sensor r is 1m, the size of area is
256m2, the perturbation probability is 0.85 and the jump
probability is 0.08. The best dynamic deployments obtained
by MtDEA for each number of iterations are shown in Fig. 5.

4.2 Simulation II

A WSN including 80 mobile sensors is simulated and the
size of area is 25600m2.

Comparison of Modified t-distribution evolution-
ary algorithm (MtDEA), Particle Swarm Optimization
(PSO) [11], Cuckoo Search Algorithm (CS) [12], Artificial
Bee Colony Algorithm (ABC) [13] and Firefly Algorithm

Table 2 The parameters of five algorithms.

Algorithms Parameters

MtDEA
Iterations:1000;Population:80;Perturbation

Probability:0.85;Jump Probability:0.08

PSO
Iterations:1000;Particle Number:100;Maximum Moving

Speed:2;ω:1.0;c1:2;c2:2
CS Iterations:1000;Nest Number:25; pa:0.25;α:1.0

ABC Iterations:3000;Population:30;limit:50
FA Iterations:1000;Population:50;γ:1.0;β0:1;step:0.1;

Table 3 The simulation results for average operation time(s).

MtDEA PSO CS ABC FA
r = 9 6.36 13.2 6.55 11.83 101.46

r = 10 8.76 15.17 7.49 14.63 135.32
r = 11 9.77 18.83 8.37 18.12 141.23
r = 12 10.91 20.87 9.26 20.76 156.51

(FA) [14] in the deployment optimization of WSNs are
shown in follows.

We carried out 100 separate simulation experiments
with five algorithms. The parameters of each algorithm are
shown in Table 2. The simulation results for average cov-
erage of each algorithm are shown in Fig. 6 and the average
operation time are shown in Table 3. At the same time, we
got the convergence curves of the 100 times of each algo-
rithm, and the rate convergence curves of the algorithms are
shown in Fig. 7.

The parameters shown in the Table 2 are either experi-
ence value or optimal value determined by conducting sev-
eral preliminary experiments. For both PSO and FA, the
parameters are experience value. For CS, the experimental
results show that, nestnumber=25, pa=0.25, this combina-
tion is able to satisfy most of the optimization problems [13].
For ABC, limit is determined by experience value. Due to
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Fig. 5 Best deployments obtained by MtDEA

the iteration time of each generation of ABC is far less than
that of the other algorithms, it will be unfair if we com-
pare it with other algorithms in the same number of iter-
ations. After many experiments, when the number of itera-
tions reaches 3000, ABC can get better results, and the over-
all computation time is close to that of other algorithms.

As seen in Fig. 6, MtDEA and FA can calculate out
better deployment of WSNs than PSO, CS and ABC. How-
ever, the optimization effect of FA is very unstable. The 100
independent solutions of each radius show very strong insta-
bility. The optimization results are greatly influenced by the
initial random solution, which is easy to fall into local op-
timum. By comparison, the MtDEA has good stability, and
the results of the simulation experiments with different ra-
dius have little fluctuation. The optimization results are also
good. This is in line with the characteristics of the proposed
modified t-distribution evolutionary algorithm.

In comparison with the average running time, MtDEA
and CS have great advantages. However, the optimization
effect of CS is very poor. Due to the introduction of a num-
ber of adaptive parameters, MtDEA is slightly slower than
CS, while compared with other algorithms, there are still a
lot of advantages, especially for FA, which has better opti-
mization result, and the speed is 15 times higher than it.

Table 4 The simulation results of intelligent allocation operator.

Sensor number Coverage(%)
Running
time(s)

Intelligent
allocation
operator

Computational
result=>21

90.69 7.17

Deployment
optimization

operator

Initial input=>
20

88.18 0.93

Deployment
optimization

operator

Initial input=>
21

90.77 0.96

Deployment
optimization

operator

Initial input=>
22

91.89 1.08

It can be seen from the fitting line chart in Fig. 7 that
MtDEA with nearly 240 iterations has been completed from
55% to 85% of the coverage, the convergence rate is very
fast, and the final optimization result which is best of these
five algorithms is satisfactory. Benefit from the good dis-
tribution characteristics of t-distribution, MtDEA is able to
evolve in a relatively large range of distance in the early
stage of evolution.When the difference between individuals
is small in the late evolution, the heavy-tailed characteris-
tic of the t-distribution start to become effective, with the
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Fig. 6 The simulation results for average coverage of each algorithm.

Fig. 7 The fitting line chart for average coverage of each algorithm.

random jump operator, MtDEA can jump out of local opti-
mal and continue to evolve, and get better results than other
algorithms.

4.3 Simulation III

A WSN including up to 40 at least 2 mobile sensors is sim-
ulated. The detection radius of each sensor r is 1m, the size

of area is 64m2, the expected coverage inputed is 90%, the
perturbation probability is 0.85 and the jump probability is
0.08. The simulation results are shown in Table 4.

From the experimental results, we can see that the in-
telligent allocation operator can find the minimum number
of sensors needed to meet the desired coverage in a short
time, and can give the excellent deployment method of these
sensors. The feature of the intelligent allocation operator,
which greatly satisfies the actual needs of decision making,
has a strong practical significance.

5. Conclusion

The deployment optimization of sensor nodes in WSN is
beneficial to improve the coverage and reliability of the
WSN. In this study, a modified t-distribution evolutionary
algorithm is applied to the dynamic deployment problem in
WSNs with mobile sensors. Simulation results show that
MtDEA gives good deployment for WSNs and the geomet-
ric sensor detection model greatly improves the operation
speed. Compared with some other common intelligent op-
timization algorithms, MtDEA is able to find the optimal
solution in a very short period of time, it has faster conver-
gence speed and more stable optimization effect. In future
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work, we plan to apply MtDEA for dynamic deployment of
WSNs, including both mobile and stationary sensors.
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