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Grammar-Driven Workload Generation for Efficient Evaluation of
Signature-Based Network Intrusion Detection Systems

Min SHAO†, Min S. KIM†, Victor C. VALGENTI†, Nonmembers, and Jungkeun PARK††a), Member

SUMMARY Network Intrusion Detection Systems (NIDS) are de-
ployed to protect computer networks from malicious attacks. Proper eval-
uation of NIDS requires more scrutiny than the evaluation for general net-
work appliances. This evaluation is commonly performed by sending pre-
generated traffic through the NIDS. Unfortunately, this technique is of-
ten limited in diversity resulting in evaluations incapable of examining the
complex data structures employed by NIDS. More sophisticated methods
that generate workload directly from NIDS rules consume excessive re-
sources and are incapable of running in real-time. This work proposes a
novel approach to real-time workload generation for NIDS evaluation to
improve evaluation diversity while maintaining much higher throughput.
This work proposes a generative grammar which represents an optimized
version of a context-free grammar derived from the set of strings match-
ing to the given NIDS rule database. The grammar is memory-efficient
and computationally light when generating workload. Experiments demon-
strate that grammar-generated workloads exert an order of magnitude more
effort on the target NIDS. Even better, this improved diversity comes at
much smaller cost in memory and speeds four times faster than current
approaches.
key words: workload generation, intrusion detection

1. Introduction

Network security threats have continued to rise over the past
decade with more than 70% of reported vulnerabilities re-
motely exploitable in 2014 [1]. Network Intrusion Detection
Systems (NIDS) guard against such security threats by ex-
amining network packets entering a protected network. One
of the major category of NIDS, signature-based NIDS, iden-
tifies attacks through comparison of the network packets to
known attack patterns (also termed signatures). Given pre-
cise patterns describing attacks, such “signature-based in-
trusion detection” provides reliable results with few false
positives. (For convenience all references to NIDS in this
work imply signature-based NIDS.) However, large signa-
ture databases combined with high-speed traffic make com-
paring each signature against each network packet time and
resource intensive. This implies the need to understand the
limits of NIDS before deployment.

The performance of NIDS varies dependent on the na-
ture of the traffic examined. Modern NIDS employ sophisti-
cated algorithms which may be vulnerable to Denial of Ser-
vice (DOS) attacks when traffic fits a specific pattern. For
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example, in Snort [2] specifically crafted network traffic can
exploit the pattern matching algorithm resulting in inspec-
tion times up to 1.5 million times longer than that of benign
packets [3]. Attackers can use weaknesses such as these to
bypass or neutralize NIDS [4].

Evaluation of NIDS is commonly performed using pre-
generated traffic that is transmitted directly into the NIDS.
These pre-generated files are created either as a snapshot
of traffic in a real network, or as carefully controlled mali-
cious and benign traffic as first illustrated in the MIT Lin-
coln Laboratory DARPA data sets [5]. The NIDS perfor-
mance then becomes a function of read-time and number of
correctly identified attacks. Unfortunately, these techniques
suffer severe disadvantages. First, for synthetically created
traffic there often exist unintended phenomena that can mark
the traffic as suspicious or benign [6]. This can cause NIDS
evaluation to have misleading results if those phenomena are
targeted. Worse, such pre-generated traffic often exerts little
burden on NIDS as the vast majority of the traffic is both be-
nign and disjoint to the set of rules used by the NIDS. Thus,
the traffic can be processed at maximum efficiency provid-
ing an overly optimistic evaluation of the NIDS capabilities.

Generating traffic derived from the NIDS rules
database has been proposed as a more effective evaluation
of NIDS [7], [8]. These methods produce payloads as part
of a random walk through a finite automata derived from
the NIDS rules. The resultant data matches, or partially
matches, many of the NIDS patterns which increases the
NIDS effort in matching; requiring orders of magnitude
more effort to process than traffic that is disjoint to the
rules. However, this diversity in evaluation comes at the
cost of large internal memory required for data generation.
This, coupled with the random nature of the data genera-
tion, makes the generation process very slow; far below the
speed of commonly-used multi-Gbps links. Use of special-
ized hardware for traffic generation can improve matters, but
comes at significant monetary cost, and such systems are not
always designed for reproducible test results.

This paper describes a novel approach to workload gen-
eration for NIDS evaluation using a generative grammar.
The generative grammar represents an optimized context-
free grammar equivalent to a subset of all the strings match-
ing the given rule database. Payload generation is up to
four times faster than current rule-derived payload gener-
ation techniques, utilizes a fraction of the memory, and ex-
erts nearly 80 times more burden on the NIDS over random
traffic. Further, we adopt a flexible pipelining architecture
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Fig. 1 NFA coverage comparison out to depth of 20.

for implementation to provide for multi-core generation of
traffic while ensuring the repeatibility of experiments.

2. Workload Generation for Signature-Based NIDS

Signature-based NIDS describe rules in specific formats.
These rule formats describe traffic features including proto-
col header specifications and payload patterns. Header fea-
tures have efficient traffic generation under current method-
ologies [4], [8]. Payload generation, however, can prove
complex especially if it is necessary to exert load on a target
NIDS.

To visualize the operation of the matching engine of a
NIDS, we use the simple diagram in Fig. 2 as a representa-
tion of an automaton. In the diagram we omit details, such
as labels on transitions, for simplicity. The label of each
node represents the depth of the node (the shortest distance
from the root to that node). Any traversal must pass through
shallower nodes prior to reaching deeper nodes. Further, any
non-match traversal will return to the root. Thus, shallower
nodes are much more likely, and more often, visited than
deeper nodes.

Given Fig. 2 it is easy to derive that if traffic never
moves deep into the automata then only those states near the
root will ever be traversed. An example shallow traversal is
marked with the grid pattern in Fig. 2. Since there exist only
a small number of such states near the root then all of these
states will likely fit in the cache. Thus, a shallow traversal
of the automaton can run at maximum efficiency as there
are very few cache misses. Uniformly distributed payloads,
where each byte is in the interval [0, 255], will demonstrate
such a shallow traversal. The probability of random in-
put matching more deeply with any rule diminishes expo-
nentially as the traversal extends deeper into the automa-
ton. This causes continuous shallow traversals with the rare
deeper traversal. In fact, most benign traffic is largely dis-
joint to the patterns described in the NIDS rules and thus
mimics the shallow traversal of random traffic. This stems
from the fact that NIDS target outliers rather than average
traffic and thus normal traffic is unlikely to match deeply
with the rules.

Traversal for a matching packet, however, demands
more time and resources. The states marked with slanted
lines in Fig. 2 represent such a traversal ending at depth i+1.
It goes deeper into the automaton, passing through the shal-
low area. If the path is long the later transitions likely cause

Fig. 2 Automata traversal (thick circles signify final states).

cache misses which increase the matching latency. It is sim-
ple for an attacker to send a packet that matches to a depth
of i but not i+ 1 and thus not fully matching a rule [4]. Such
a packet has a matching latency almost as long as the match-
ing packet, but does not trigger an alarm. By sending a
large number of such packets for various rules an attacker
can overburden some NIDS [3], [4].

Since the NIDS is most burdened under matching traf-
fic a rule-derived traffic generator is the logical choice for
imposing load on the target system [7], [8]. The rule-derived
traffic model fills the payload of a packet using a sequence
of bytes built through a random traversal of the very automa-
ton used by the NIDS to match traffic. This model may use
a single pattern, or the automaton for all of the rules. In ei-
ther case, there exists an automaton of one or more patterns
from the NIDS rule database. The traversal follows a sim-
ple strategy. Given a variable p, 0 < p ≤ 1, a traversal goes
deeper into the automaton with probability p, and with prob-
ability (1− p) returns to the start (or optionally selects a new
rule). At each step deeper into the automaton, a valid traver-
sal (i.e a valid byte to move deeper) is randomly selected
and appended to the generated payload string. This process
continues until a payload string L in length is generated for
some predetermined L > 0.

Figure 1 shows the coverage of a non-deterministic fi-
nite automaton (NFA) under zero-filled payloads (each byte
is zero), random payloads, and rule-derived payloads. The
automaton is an NFA built using GPP-Grep [9] with regular
expressions randomly selected from the Snort rule set [10].
The NFA recorded the counts of each state visit as it tra-
versed the payloads. After processing the payloads the
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nodes were sorted in ascending order by depth, then in de-
scending order by number of visits at each depth in order
to plot a heat map as illustrated in Fig. 1. In the heat map,
a coordinate (x, y) corresponds to the xth state (according to
the number of visits) at depth y. The temperature reflects the
number of visits to the state.

Figure 1 (a) illustrates the heat map for matching
against zero-filled payloads. Because the zero-filled pay-
load causes the NFA to visit exactly the same set of states
for every packet, and since the number of states is small,
this is a best-case scenario for the matching engine. Only
a small number of states within the depth of 5 are visited.
The random payloads, as shown in Fig. 1 (b), cause more
states to be visited though the bulk of all visits still re-
side in those few states clustered near the root of the NFA.
Finally, Fig. 1 (c) demonstrates how payloads generated by
random walks over the same automaton cause much wider
and deeper coverage of the matching automata.

Random traffic, and even network snapshots, are eas-
ily generated but are insufficient to evaluating a NIDS under
load. Rule-derived traffic, however, can generate traffic that
will intersect with the NIDS rules out to some ratio defined
by p enabling a systematic evaluation of the NIDS matching
automata. Unfortunately, this method is both memory inten-
sive and slow as it must perform multiple traversals of the
automata as well as maintain that automata in memory. Any
non-trivial rule set will create a large automata that cannot
be efficiently traversed and which may make multi-Gigabit
traversal unfeasible.

Workload for NIDS evaluation must be created such
that it imposes the maximum load on the target NIDS which
includes not only generating traffic that burdens the match-
ing automata, but also generating traffic at line speeds. Thus,
the workload generation problem that this paper addresses
is to create network packets with payloads derived from the
given rule set with the following properties.

• Burden Every payload must cause the NIDS to exert a
maximum amount of effort to match.
• Scalable Since payload generation is a computation-

ally intensive task it is necessary that any solution pro-
vide a natural path for parallelism.
• Reproducible True evaluation must be reproducible

such that one test given a specific set of configurations
can be reproduced exactly, every time, so long as the
configuration does not change.

3. A Rule-Derived Generative Grammar

To meet the aforementioned criteria we propose a rule-
derived generative grammar that is optimized for fast and
reproducible payload generation. The grammar is a simpli-
fication of the normal rule-derived process and, as such, can
create payloads that exert heavy burden on the target NIDS.
The grammar is constructed according to following steps.
First, build a parse tree for each rule. Second, each parse
tree is converted into a context-free grammar (CFG). Third,

Fig. 3 Annotated parse tree

and final, each context-free grammar is optimized for effi-
ciency during payload generation.

3.1 Building a Parse Tree from a Regular Expression Rule

The patterns used in Signature-based NIDS can be repre-
sented as regular expressions (even if they are not originally
in such a syntax). Given a regular expression it is a simple
process to parse the regular expression, using a library like
Perl Compatible Regular Expressions (PCRE) [11], to cre-
ate a sequence of opcodes that can be translated into a parse
tree of the regular expression [12]. Figure 3 (a) illustrates an
example parse tree built using this methodology.

3.2 Building a Grammar from a Parse Tree

T is an abstract syntax tree of the given regular expression,
and n is a node in T at which the subtree to convert to pro-
ductions is rooted.

Regexp-Productions(n)

1 if n.type = epsilon
2 P = {S n.id → ε}
3 elseif n.type = symbol
4 P = {S n.id → n.value}
5 elseif n.type = concatenation
6 P = {S n.id → S n.left.idS n.right.id}∪

Regexp-Productions(n.left)∪
Regexp-Productions(n.right)

7 elseif n.type = alternation
8 P = {S n.id → S n.left.id, S n.id → S n.right.id}∪

Regexp-Productions(n.left)∪
Regexp-Productions(n.right)

9 elseif n.type = Kleene-star
10 P = {S n.id → S n.left.idS n.id, S n.id → ε}∪

Regexp-Productions(n.left)
11 return P

A CFG is constructed from the parse tree through a
depth-first search where each node in the tree is recur-
sively translated into a corresponding grammar production
as defined by the steps in Regexp-Productions. Regexp-
Productions takes a node as an argument with the root node
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Fig. 4 Flattening examples

the initial argument. As an example, we take the regular
expression a(b|c)d*e and show its parse tree in Fig. 3 (a).
Each node is decorated with an ID, representing a depth-first
search ordering of the nodes. Figure 3 (b) shows a grammar
built by the Regexp-Productions.

3.3 Grammar Optimization

A grammar built by the Regexp-Productions generates pay-
loads that match a given regular expression. However, gen-
erating a large payload may require an excessive amount of
time as each production can produce at most one byte of
payload with potentially multiple productions to arrive at a
single byte of payload. More productions cause more over-
head which can make for slower generation. Thus, it is de-
sirable to combine productions, where appropriate, to limit
the impact of productions on generation efficiency. How-
ever, care must be maintained to ensure that the merging of
productions does not serve to reduce the quality (in terms of
load caused on the target NIDS) of the payload generated.

3.3.1 Production for a Fixed String

A notable characteristic of regular expressions in NIDS
rules is that they contain many long fixed strings. For exam-
ple, a rule from the Snort rule set has a regular expression

\x2edefinition\s*\x28

where \x2e and \x28 are the hexadecimal representa-
tion of the ASCII characters “.” and “(”, respectively.
Note that the regular expression starts with a fixed string
“.definition”. Converting this string into productions us-
ing Regexp-Productions will result in a skewed binary tree.
Traversing such a tree at run-time to generate the same string
will consume a lot of time. Thus, we flatten the tree and
merge the corresponding productions into a single produc-
tion. Figure 4 (a) is the result of flattening. As is shown,
using a leaf node that can generate a fixed string instead will
reduce the number of productions that are involved during
workload generation.

3.3.2 Production for Alternation

Many regular expressions in NIDS rules have alternations so
as to capture variations of the same attack in a single rule.
For example, the following regular expression is part of a
Snort rule.

(<em>|<dfn>|<code>)

The result of Regexp-Productions for this rule will be a tree
with a root alteration node that has another alteration node
as a child. One fixed string is attached to the first alternation
node, and two to the second. A major drawback of this tree
is that it leads to a biased selection among alternatives if
the generation algorithm takes each branch of an alternation
node with equal probability. The node closer to the root has
a higher probability to be selected over those further from
the root. However, we note that this tree can be flattened
into a single alternation, with three choices, as illustrated in
Fig. 4 (b). Flattening the tree not only removes productions
but also provides an equal probability to each alternative.

3.3.3 Production for Repetition with a Range

Repetition is another common feature of regular expressions
used for NIDS. Strictly speaking, a Kleene star is the only
operator for a repetition. In practice, however, many al-
ternations can be considered as repetitions with lower and
upper bounds on the number of repetitions. For example,
“?” means zero or one occurrence, and in general, “{n,m}”
means n or more repetitions up to m. The following is a reg-
ular expression selected from the Snort rule set that contains
a bounded repetition.

\s/3001[0-9A-F]{262,304}\s

The parse tree of this regular expression will have a subtree
consisting of 261 concatenations followed by an alternation
node with 43 child nodes. To reduce the size of memory
used to store the productions, we define a special produc-
tion that contains the repetition boundaries together with the
symbol to be repeated as shown in Fig. 4 (c).

4. Workload Generator Implementation

In order for payload generation to meet the demands of high
speed environments where it may be necessary to generate
as many as 14.88 million packets per second to saturate a 10
Gb link, it is necessary that all workload generator compo-
nents are as efficient as possible. In particular, the following
items are of significant importance.

• Minimal generation time. The time spent generating
each packet must be a small as possible while still
maintaining the quality of content.
• Minimal data/input overhead. Where possible avoid

copies of data or added layers of abstraction that may
slow down writing packets.
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Fig. 5 Workload generator architecture

• A careful parallel design. Minimize blocking among
threads to allow for seamless addition of cores as well
as reproducibility of tests.

The overall architecture of the proposed workload gen-
erator is presented in Fig. 5. It has two kinds of entities:
Writers and Senders. Packets, b0 to bn−1, are represented by
large rectangles divided into four pieces, each of which is
assigned to a different writer. For example, Wh, the Header
Writer is filling the header of bn−1, pointed to by the ar-
row. Payload Writers like Wg1 generate part of the payload
according to the loaded generative grammar. As packets
are completed, they are then flagged for the Sender, pack-
ets prior to bn−3 are such packets and are ready to be sent
by the Sender. Because a Writer conducts a CPU-intensive
task, each Writer should run on its own processor/core in
a multiprocessor/multi-core system, and its implementation
must be optimized for CPU time. On the other hand, the
main task of the Sender is to move packets from the ring
buffer to the network medium, and minimizing I/O band-
width is its optimization goal. Finally, multiple Writers must
coordinate their packet generation to avoid conflicts in ac-
cessing memories.

4.1 Pre-Selection in Alternation

As noted earlier, burden for the matching automata of NIDS
is primarily a function of how many unique states are vis-
ited during traversal (i.e., moving deeper into the automata
causes more burden). The productions outlined in Sect. 3 are
simplifications of the rule-derived method of payload gen-
eration yet still produce payloads that will intersect deeply
with the target NIDS matching automata. Some produc-
tions, however, do not contribute to increasing load on the
target NIDS while requiring much computational work dur-
ing generation. For instance, a character class, such as \d,
creates ten different transitions between the same pair of
states. The corresponding production will have ten alterna-
tives, one for each terminal symbol, and the generator must
choose one at run-time. Regardless of the choice of symbol
the next state remains the same in the automaton; providing
more choices does not always lead to larger state coverage
in the automaton. Such a production offers limited value at
a significant cost in generation time.

We analyzed 700 regular expressions from the Snort

Table 1 Alternations and repetitions in the Snort rule set

# of occurrences / rule Total
Alterations Character Class 6.18 6.87

Case-insensitive 0.69
Repetitions * 4.12 6.03

+ 1.21
? 0.51

Open Interval 0.02
Closed Interval 0.18

Fig. 6 Pre-selection in NFA

Fig. 7 Pre-selection in parse tree

rule set and present in Table 1 the number of occurrences
of alterations per rule. As is shown in the table, on av-
erage, 6.87 productions per rule can be simplified by pre-
selecting one of the choices and omitting the other transi-
tions as shown in Fig. 6 (a). Considering the large rule base
generally adopted by NIDS, pre-selection has great potential
to minimize redundancy caused by the alternation.

To apply pre-selection for alternation, we identify pro-
ductions having alternation with terminal symbols and ε
only. Then we randomly select one of the symbols and dis-
card the rest. We replace the parent node with the chosen
node as shown in Fig. 7 (a).

4.2 Pre-Selection in Repetitions

We observe that repetitions also appear frequently in NIDS
rule sets. For example, as shown in Table 1, the Snort rules
examined have, on average, 6.03 instances of repetitions per
rule. An unbounded repetition creates a state with a self-
loop. Taking a transition over the loop keeps the active
state in the same state, and does not increase the burden
on the matching. As a matter of fact, it only prevents the
traversal process from exploring a deeper and broader area
of the NFA. It is helpful to remove such loops in the pre-
generation stage as demonstrated in Fig. 6 (b).
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NFA may be constructed differently. For exam-
ple, Thompson automata [13] are constructed with ε-
transitions, Glushkov automata [14] are constructed without
ε-transitions. For different NFA construction, the impact of
the same payload can be different as well. For NFA con-
structed without ε-transition, using an empty string to re-
place unbounded repetition will lead to visiting fewer states
during matching. To try to explore all the states in the
NFA, during pre-selection, one instance of the operand of
unbounded repetition is generated instead as in Fig. 6 (b).
The pre-selection process for the Kleene star is also demon-
strated in Fig. 7 (b). Instead of having the recursive produc-
tion created by the Kleene star node in the parse tree, we
retain only the base case.

In the case of a bounded repetition, there are at least as
many states as the upper bound of the repetition. For exam-
ple, Fig. 6 (c) shows the NFA traversal of a{1,3}. It is clear
that, by selecting the maximum number of repetitions, the
string will cause the matching engine to visit the maximum
number of states. Thus, we replace the bounded repetition
production with one generating a string according to the up-
per bound as illustrated in Fig. 7 (c).

4.3 Randomness

There are multiple occasions during the traffic generation
process where random numbers are necessary to ensure the
unpredictability of the generated content. These occasions
include protocol selection, rule selection, and alternation
and repetition in the grammar. However, pseudo-random
number generation is a CPU-intensive task, which becomes
a bottleneck in high-speed traffic generation. This can be al-
leviated by pre-generating a random sequence and using the
sequence at run-time instead of computing a new pseudo-
random number each time as needed. To maintain a cer-
tain degree of unpredictability, a relatively long random se-
quence must be available in the traffic generator at run-time.

4.4 Transmission

Once packets are created, the next step in workload genera-
tion is to transmit those packets to the network. Handling the
generated packets through the network stack in an operating
system involves a large amount of data transfer between the
user space and the kernel space. With the size of the data
we need to pass along the system, the copying latency can
be larger than 100 ns [15] which can become a bottleneck.

The predominant solution to avoid this data transfer
cost is to use dedicated hardware devices optimized for data
generation and transfer. This approach is used by many
commercial vendors, like Ixia [16], who create hardware de-
vices that can generate traffic at multi-Gigabit rates. How-
ever, hardware implementations are typically difficult to
adapt and use and often cost-prohibitive. These issues can
serve as serious drawbacks when evaluating NIDS. In order
to minimize latency for data transmission and avoid pro-
tocol processing overhead a number of architectures have

been proposed including Intel’s Data Plane Development
Kit (DPDK) [17], PF RING [18], and netmap [15]. They
adopt a common strategy that allows packet buffer sharing
between the operating system kernel and a user application.
Any of these architectures can be used to gain most of the
advantage of hardware implementation while retaining the
advantage of developing in the user space on a general pur-
pose processor.

The workflow of the proposed workload generation
system is as follows. The workload generator randomly se-
lects a rule and fills the protocol header fields in a shared
packet buffer. To minimize run-time computations most of
the protocol headers are pre-generated in the form of a tem-
plate for each protocol. At run-time, this template is copied
into the buffer, and only the variable fields are modified. The
payload of the packet is written into the packet buffer using
the generative grammar corresponding to the selected rule.
The cursor in the packet buffer is then incremented to point
to the next slot in the buffer. When there are no more empty
slots available, the workload generator notifies the Ethernet
device driver of the availability of packets which then trans-
mits the packets out the interface. As soon as the slots are
emptied, the traffic generator resumes packet generation.

4.5 Parallel Generation

Generating traffic at 10 Gbps link speeds is challenging with
as small a time budget as 70 nanoseconds within which to
generate a 64 byte packet. As such, parallelism is an im-
portant, even necessary, aspect of any workload generation
scheme that seeks to saturate high-speed links. However,
there is an added constraint for workload generators in that
the generated traffic must be reproducible given the same
initial configuration. Naı̈ve applications may introduce ran-
domness to packet ordering. This is caused by contentions
among threads. This poses great difficulties in reproducing
test results. Therefore, multiple threads in the traffic genera-
tor must coordinate to maintain the order of packets in every
run. This is an impossible goal if each thread works inde-
pendently. Instead, we propose pipelining of packet genera-
tion so that the order of packets is determined solely by the
first stage of the pipeline.

Figure 5 demonstrates a snapshot of the pipelining pro-
cess. Wh fills in the header of packet bn−1. Packet bn−2 has
already had its first section, the header section, filled and is
thus assigned to writer Wg1 where the second section i.e.,
the first section of the payload, is written to the packet. In
a similar fashion, Wg2 fills the third section for packet bn−3

while Wg3 completes the last section for packet bn−4. The
shadowed regions in the figure represent the completed sec-
tions for each packet. Each writer only writes a specifically
set section of the packet (i.e., the header section or one of
the payload section—in Fig. 5 a payload is divided into 3
sections). At each time point the writers are all working on
different packets.

The context of the content generation must follow the
packet through the pipeline. This includes both the sequence
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Fig. 8 Coverage, depth, and burden on NIDS.

of grammar symbols derived up to that point in the pipeline
as well as the position of the next byte to be written in the
slot. Wg1 starts payload generation with the start symbol,
generating payload using left-most derivation, and when it
fills the given portion of the packet, the derivation status is
passed to the next writer Wg2 . As shown in Fig. 5, to com-
plete the second data portion of packet bn−3, represented by
the rectangle in the third row and the third column, Wg2 has
to start from where Wg1 ends. Therefore the entire context
information should be passed to the writer in the next stage.

Each thread must maintain state for their tasks in or-
der to distribute workload and avoid conflicts. Each writer
needs its own pseudo-random number generator state and an
independent cursor in the ring buffer. Such information is
crucial for avoiding race conditions, isolating their memory
accesses and, eventually, guaranteeing the maximal resource
utilization.

5. Evaluation

To evaluate the proposed solution we first examine how well
the generated traffic covers the target NIDS matching au-
tomata. Second, we look at the run-time aspects of the work-
load generation including generation speed and memory us-
age. Comparisons are made between zero-filled payload
generation, random-payload generation, rule-derived pay-
load generation, and the generative grammar proposed in
this work. The evaluations were conducted on a server with
an Intel Xeon CPU E5-26500 @ 2.00 GHz, and 8200 MB
RAM running a target NIDS that is based on GPP-Grep [9],
which utilizes an NFA as a matching automata. The match-
ing automata provides counters for tracking the number of
visits to each state in the NFA. The NFA is constructed from
a set of regular expressions. The results shown here repre-
sent a proprietary rule set provided by a commercial NIDS
vendor. We use these rules in this paper as they contain def-
initions for the most recent attacks. For completeness, we
have conducted the same experiments with other rule sets
and observed identical trends.

5.1 NFA Coverage and Depth

To compare NFA coverage between different workload
types, we count the number of visits to each NFA state for
the four workload types. In Fig. 8 (a), we order the states in

the NFA according to the frequency of visits, and plot how
many visits each state receives during matching. Note that
both axes use log scale. Zero-filled payload covers a very
small number of states. Random payload covers more, but
still less than 1% of the NFA. On the other hand, the rule-
derived traffic and the grammar-based traffic cover consider-
ably more states in the NFA. In fact, the generative grammar
payload nearly mirrors the rule-derived payload while cov-
ering 124,978 states out of the 136,275 states in the NFA,
or more than 90%. This demonstrates that the generative
grammar payload is as effective as the rule-derived payload
generation in NFA coverage.

To further demonstrate the influence of payload types
on NFA traversal we present Fig. 8 (b). It shows the cumu-
lative number of states visited as a function of the depth of
the states. In Fig. 8 (b) the “Total” curve shows the maxi-
mum number of states that could be visited dependent on the
depth. As such, Fig. 8 (b) shows that the generative grammar
payload follows the “Total” curve quite closely illustrating
that it is very close to exploring all states in the NFA. The
rule-derived payloads also perform well, but less so than the
generative grammar payloads. This is due to the fact that
the traversal in the NFA can get caught in loops that do not
necessarily move deeper into the NFA. Further, we note
that the zero-filled and random payload generation does not
reach deeper than a depth of 9 and visit no more than a few
thousand states and do not even register on Fig. 8 (b).

5.2 Burden

Next we examined the burden exerted on the NFA given the
four payload generation techniques. The expectation is that
the payload generation techniques that have a larger NFA
coverage will exert greater burden on the target NIDS.

Figure 8 (c) shows the throughput of the target NIDS.
Zero-filled payload cause little burden to the target NIDS
while random payloads incur more burden, though they are
still matched in excess of 800 Mbps. The target NIDS
matches the rule-defined payload at half the speed of ran-
dom payload, but that is still much faster than the generative
grammar payload which causes the NIDS to match at barely
10 Mbps. This demonstrates that the generative grammar
is actually more effective at generating load on the target
NIDS by a factor of forty. Once again, this stems from the
fact that the generative grammar will randomly select a rule
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Table 2 Performance of workload generator

Generation Speed (Kpps) Memory Usage (KB)
Zero-filled 812.750 8312
Random 155.590 8312

NFA 6.440 290000
Grammar 26.400 13490

and follow that rule to its completion while the rule-derived
approach can get caught in loops or end up following more
common paths through the NFA (as a result of multiple tran-
sitions between particular states).

5.3 Workload Generation Speed

Given a minimum-sized Ethernet frame of 64 bytes (with-
out payload), our workload generator is able to send 14.88
million pps on a 10 Gbps link (saturating the link) on a sin-
gle core. As such, the overhead from header generation
and writing to the network interface offers no bottleneck.
Table 2 illustrates the speed of generation, in packets per
second, for 1518 byte frames using the specified payload
generation technique on a single core. The zero-filled pay-
load generation saturated the 10 Gbps link with a rate higher
than 800 Kpps (Kilopackets per second) while the random
payload generation shows a speed fast enough to saturate
a gigabit link. The rule-derived generation is the slowest
with a throughput of 6.44 Kpps. The grammar-based work-
load generator achieves 26.4 Kpps, four times as fast as rule-
derived payload generation, yet in comparison with random
traffic, is still too slow. Despite the efforts to make the run-
time generation faster for the generative grammar it is still
too slow for multi-gigabit generation. Future work will seek
methods to remedy this issue.

5.4 Memory Consumption

Table 2 presents the amount of memory consumed by each
workload generation technique. The zero-filled and random
payload generation consume little memory during genera-
tion. The rule-derived workload generator consumes an ex-
cessive amount of memory. Interestingly, the generative
grammar consumes only about half-again as much mem-
ory as the random payload generator, which is orders of
magnitude less than the rule-derived payload generation.
This illustrates that memory considerations for the gener-
ative grammar have been successful.

5.5 Scalability

To demonstrate scalability through pipelining we present
Fig. 9 which demonstrates workload generation throughput
increases as the number of pipeline stages increases. We
see a linear increase as the number of pipeline stages are
added with four stages demonstrating a 2.5 times speedup
implying that a gigabit link could be saturated with roughly
8 threads assuming the linear speedup holds.

Fig. 9 Scalability

6. Background

NIDS use a variety of techniques to detect malicious traffic.
These techniques are often divided into two specific types:
anomaly detection and signature-based detection. Anomaly
detection applies algorithms to specific network features to
detect anomalous behaviors and misuse. Signature-based
systems employs sets of rules that define suspicious traffic
and alert whenever the criteria of these rules are met. Most
modern NIDS use a combination of both methods.

As discussed in Sect. 2 evaluation techniques for NIDS
are often inadequate. The makeup of the traffic typically
lacks the diversity to sufficiently evaluate the NIDS [7],
[8], [19]. The primary problem is that most traffic gen-
erators focus on creating realistic traffic, not on creat-
ing traffic to specifically stress the detection algorithms of
NIDS. Brauckhoff et al. offer FLAME (a Flow-Level
Anomaly Modeling Engine) [20] and Sommers et al offer
Trident [21], [22]. These tools are great for creating traffic
and attacks but are designed with the purpose of evaluating
accuracy rather than other performance metrics and do not
offer much support for burdening detection algorithms.

Replaying captured traffic, with a tool like Tcpre-
play [23], is the simplest way to generate network traffic
that resembles real traffic. Unfortunately, traffic captures
suffer from a host of issues from privacy to a general lack
of diversity in the traffic such that using them for anything
other than determining fitness for a particular environment
is largely inadequate [19]. In fact, nearly all packet-capture
based evaluation methods suffer from a lack of diversity as
well as other issues [6], even if they offer a good opportunity
for testing detection accuracy.

There are numerous traffic generators, such as
OSNT [25], Caliper [26], SWORD [27], rule2alert [24], and
StreamGen [28] that are excellent for evaluating packet
headers and verifying protocol implementations but lack ad-
equate algorithms for generating payloads to burden NIDS
pattern matching algorithms. A common tactic to circum-
vent this problem is to insert attack samples in random pay-
loads, as done by Ixia [16] and Xena [29]. The majority of
traffic, however, remains random, and the inserted attacks
are still not systematic in their evaluation of the NIDS pat-
tern matching and may retain levers that can be exploited for
trivial detection of suspicious traffic [6].

The only way to sufficiently test a NIDS is to develop
a systematic method to examine the ranges of possible in-
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put [19]. Becchi et al demonstrated a workload genera-
tion model for evaluating regular expression matching en-
gines [7] and Valgenti et al expanded this model for NIDS
in general [8]. These techniques employ the rule sets of the
target NIDS to generate traffic that can systematically exam-
ine the boundaries of the NIDS. However, these generation
techniques are resource intensive and often slow and thus
motivate the work outlined here.

7. Conclusion

We demonstrated the deficiency of using random traffic, or
traffic disjoint from the NIDS rules, in evaluating a NIDS
operation under load. To address this issue we have pro-
posed a generative grammar to maintain a balance between
efficiency and effectiveness of workload generation for the
NIDS evaluation. The approach achieves higher speed while
using less memory and exerts many times more load on the
target NIDS. We have implemented the proposed model,
using a pipeline architecture for multi-core generation and
have demonstrated linear speed-up as cores are added to the
pipeline. Generation speeds on a single core are still too
slow to meet multi-gigabit link-speed requirements but are
sufficient to saturate gibabit links without the need of high-
cost hardware. We believe that future refinements to the
workload generation will provide the necessary keys to ef-
fective NIDS workload generation, at multi-gigabit speeds,
on General Purpose Processor platforms.
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