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Preemptive Real-Time Scheduling Incorporating Security
Constraint for Cyber Physical Systems

Hyeongboo BAEK†, Student Member, Jaewoo LEE††a), Yongjae LEE†, and Hyunsoo YOON†, Nonmembers

SUMMARY Since many cyber-physical systems (CPSs) manipulate
security-sensitive data, enhancing the quality of security in a CPS is a crit-
ical and challenging issue in CPS design. Although there has been a large
body of research on securing general purpose PCs, directly applying such
techniques to a CPS can compromise the real-time property of CPSs since
the timely execution of tasks in a CPS typically relies on real-time schedul-
ing. Recognizing this property, previous works have proposed approaches
to add a security constraint to the real-time properties to cope with the in-
formation leakage problem that can arise between real-time tasks with dif-
ferent security levels. However, conventional works have mainly focused
on non-preemptive scheduling and have suggested a very naive approach
for preemptive scheduling, which shows limited analytical capability. In
this paper, we present a new preemptive fixed-priority scheduling algorithm
incorporating a security constraint, called lowest security-level first (LSF)
and its strong schedulability analysis to reduce the potential of informa-
tion leakage. Our simulation results show that LSF schedulability analysis
outperforms state-of-the-art FP analysis when the security constraint has
reasonable timing penalties.
key words: cyber-physical system, security, real-time scheduling, schedu-
lability analysis

1. Introduction

Embedded systems have been designed to perform specific
functionalities and they have been evolving in very com-
plex structures as computing and control technology have
developed. Such physical systems need to meet various
requirements simultaneously, including high performance,
real-time functioning, and a high level of reliability and se-
curity. A cyber-physical system (CPS) is a computer system
that controls multiple physical devices. A unmanned aerial
vehicle surveillance system (UAV) is a compelling example
of a CPS because it manipulates various physical devices
to navigate a route avoiding obstacles, to control surfaces
to maintain flight, to adjust propulsion speeds, and to pro-
cess video streams. A CPS executes such tasks in a timely
manner with a real-time scheduling algorithm to meet its
deadlines.

As many CPSs manipulate security-sensitive data, en-
hancing the quality of security in CPSs is a very critical
and challenging issue in CPS design [1]. Although there
has been a large body of research related to general purpose
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PCs, applying such techniques that provide confidentiality,
integrity protection and availability to CPS is not an effec-
tive approach. As timely execution of tasks in CPS typically
relies on real-time scheduling, direct adoption of existing
security techniques in CPSs may compromise the real-time
property of CPSs. Thus, in securing CPSs, satisfying the
real-time requirement is a fundamental issue that should be
considered in CPS design.

To cope with such issues, some previous works have
proposed approaches to add a security constraint to the real-
time properties [2]–[4]. In particular, some researches have
focused on maximizing the level of security while meet-
ing real-time deadlines by improving earliest deadline first
(EDF) scheduling [2], [4]. These approaches have advan-
tages over other techniques. Because they are software
based approaches, they are easier to deploy than hardware
based approaches, they do not require many additional re-
sources and the existing analytical tools for real-time sys-
tems allow analysis of how security requirements influence
the real-time property because security is incorporated as a
part of the constraint of real-time scheduling.

Taking advantage of such approaches, several re-
searches resolved the information leakage problem that can
arise between real-time tasks with different security lev-
els [5], [6]. It is well known that information leakage can
occur between tasks sharing resources without explicit com-
munication [7], [8]. A previous work [6] suggested a pre-
flush mechanism in which the state of shared resources such
as cache, DRAMs and even I/O bus are flushed if there is a
possibility of information leakage after a real-time task fin-
ishes its execution. It also proposed an improved fixed pri-
ority (FP) [9] scheduler incorporating a security constraint
and schedulability analysis techniques that are aware of the
pre-flush task to reduce the potential for information leakage
via shared resources. However, this mechanism is limited
to non-preemptive scheduling [10] and there is still room to
narrow the wide gap between the analytic result and the re-
sult of scheduling.

In this paper, we present a new preemptive fixed prior-
ity scheduling algorithm incorporating a security constraint,
called lowest security-level first (LSF) and its schedulabil-
ity analysis to reduce the potential of information leakage.
LSF assigns higher priority to a task that has a lower se-
curity level. We also discuss why conventional techniques
can not be directly applied to the scheduling model consid-
ering both security and real-time constraint to resolve in-
formation leakage problem, and its analytic results have not

Copyright c© 2016 The Institute of Electronics, Information and Communication Engineers



2122
IEICE TRANS. INF. & SYST., VOL.E99–D, NO.8 AUGUST 2016

been tightly bounded. Our experimental results show that,
although LSF is not a better performing real-time scheduling
algorithm than rate monotonic (RM) [11], its exact analysis
outperforms the schedulability analysis of RM when the se-
curity constraint has reasonable timing overheads.

The contributions of our work are the following:

• We present the LSF scheduling algorithm inducing a
strong (exact) schedulability analysis.

• We investigate how the timing overhead incurred due
to security constraint influences the schedulability of
a real-time system in terms of real-time scheduling.
Based on the investigation, we propose a new pre-flush
mechanism, called flush task reservation to invoke pre-
flushing tasks not in a greedy manner.

• Using the combination of LSF scheduling algorithm
and flush task reservation, we derive strong schedula-
bility condition and suggest an algorithm for schedula-
bility analysis.

• We conducted experiments to compare our techniques
with conventional approaches and we discuss how vari-
ation of the timing overhead value for the security con-
straint affects the performance of each technique.

2. Adversary and System Models

We follow the adversary model and the system model pro-
posed in [6] derived from actual examples of real-time
systems such as an avionics system designed by the DO-
178B model [12] and the “RePLACE” system of Northrop
Grumman [13]–[15]. Operation of some sub-systems in
these systems depends on another sub-system designed by
a less trustworthy vendor, which can cause an information
leakage problem. For example, the navigation system in
an avionics system can be made by less trustworthy vendor
since it is less critical than the flight control system. In this
case, the compromised navigation system can glean sensi-
tive data from shared resources while the navigation system
and the flight control system are scheduled according to the
given scheduler and actively communicate with each other.

2.1 Adversary Model

We assume that an adversary can insert new tasks and com-
promise some tasks. We also assume that the inserted task
can consider real-time guarantee so that the task cannot be
detected immediately. The major goal of an attacker is to
obtain the information on the shared resource that multiple
tasks use. Adversaries that can tamper with the system op-
eration are out of scope for this work.

2.2 System Model

We consider a uni-processor system following Liu and
Layland’s task model [11] containing a sporadic task set τ
where a task τi ∈ τ is specified as (Ti,Ci,Di) such that
Ti is the minimum inter arrival time, Ci is the worst-case

execution time requirement, and Di is the relative deadline
(Ci ≤ Di ≤ Ti). Since considering the exact cost of preepm-
tion is out of this paper, we assume that the worst-case ex-
ecution time Ci includes the preemption cost. Here, S i is
defined as the security level of a task τi. A greater number
of S i means a higher security level of τi. Task τi releases its
instance called job periodically and jki denotes the kth job of
the task. Each job jki is released at rk

i . Here, Rk
i and Ri are de-

fined as the response time of jki and the worst-case response
time of τi respectively.

3. Security and Scheduling

To motivate our works, let us take a simple example consid-
ering two real-time tasks; a task τH with high priority and a
high security level, and a task τL with low priority and a low
security level. Let us consider a flight control module for τH

and a sensing module for τL in an UAV as examples. Since
τH has a higher security level than τL, information from τH

should not leak to τL. These two tasks share resources, such
as cache, and are scheduled with a fixed priority scheduling
algorithm. According to the priority ordering, τL has a high
probability of being executed immediately after the execu-
tion of τH . Assume that an instance of τL is released but
cannot be executed due to a job of τH being executed, or a
job of τL is preempted from a newly released job of τH . If
τL executes immediately after τH , information leakage can
occur because τL can inspect the cache and obtain sensitive
information from it.

Flushing the state of shared resources previously used
by other tasks can be a solution for preventing many attacks
exploiting this vulnerability. In the case of cache, we need
some time for the flushing task to remove information on the
shared cache after execution of τH . For a disk, flushing can
move head to some initial positions to avoid exposure of the
previous state of the disk. The I/O bus is another example.
When a new task is invoked, the I/O bus can carry the in-
formation of a previous task [16]. In this case, timing delay
can be used to complete the previous task. In general, adopt-
ing the flushing task mechanism on shared resource requires
timing overhead and a real-time scheduler should be aware
of such overhead for effective scheduling and schedulability
analysis.

3.1 Flush Task Mechanisms

The real-time scheduler and schedulability analysis can ap-
ply a security constraint to address the information leakage
problem; before τL is scheduled, a timing penalty should be
spent to flush out the state of shared resources after exe-
cution of τH . To satisfy this constraint, we invoke a flush
task which should spend some execution time at all transi-
tions, τH → τL. The flush task has the highest priority, and
it flushes information on shared resource so that a following
task cannot access previous information on shared resources
recently used. We also can assume invocation of flush tasks
at all transitions, τL → τH . However, information leakage
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Fig. 1 Two cases of flush task reservation.

from τL to τH is not as critical as that from τH , and we can
increase utilization by not considering such an assumption.
Thus, we do not consider this assumption.

As we mentioned in the previous section, LSF assigns
a higher priority to a task that has a lower security level. In
addition, when a job is released, the LSF scheduler iden-
tifies the time when the earliest higher priority job will be
released and reserves flush task invocation avoiding inter-
ference to the release of the higher priority job. We call
this mechanism flush task reservation. Figure 1 illustrates
how flush task reservation works for two cases. For a job
j∗k just released or resumed its execution after preemption
from any higher priority job at time t, let us assume that the
earliest higher priority job j∗i will be released at time t′ >
t. If t ≤ t′ − C f t (the case of Fig. 1 (a)), where C f t is the
execution time of flush task, LSF scheduler reserves a flush
task FT ∗ki to prevent information leakage from j∗k to j∗i so
that FT ∗ki will be invoked at the time t′ − C f t. If t > t′ − C f t

(the case of Fig. 1 (b)), the execution of j∗k is suspended in
the interval between t and t′ so that FT ∗ki cannot interfere τi.
In both cases, security constraint is satisfied with FT ∗ki and
j∗i can execute without any interference from FT ∗ki reserved
and invoked by LSF scheduler.

Unlike LSF using flush task reservation, conventional
scheduling algorithms [6] adopt a greedy approach for flush
task invocation. When a job is released, a flush task is in-
voked if the latest finished job has a higher security level.
This naive mechanism can cause interference from the flush
task to the higher priority task because a flush task is in-
voked without consideration of release time of higher pri-
ority tasks. If we adopt existing naive approach for the the
case of Fig. 1 (b), the execution of j∗i might be hindered by
FT ∗ki invoked after execution of j∗k even though j∗i has higher
priority than j∗k. Thus, we derive a property of conventional
scheduling policy that the execution of higher priority job is
influenced by the behaviour of lower priority job.

Example. Figure 2 describes that tasks with param-
eters defined in Table 1 are scheduled according to LSF
scheduler with C f t = 2. According to the security level
ordering described in Table 1, τ1 has the highest priority
and τ3 has the lowest priority among tasks. As shown in
Fig. 2, the first flush task FT 1

21 is reserved at time 1 when
the first job j12 of τ2 starts to execute, and is invoked at time
4 avoiding interference to j21 since the second job j21 of τ1

will be released at time 6. As flush task reservation policy
is applied, all flush tasks FT ∗21 to prevent information leak-

Fig. 2 LSF exmaple.

Table 1 Task parameters of LSF example.

Ti Ci S i

τ1 6 1 1
τ2 7 1 2
τ3 9 2 3

age from τ2 to τ1 are invoked without interfering execution
of all jobs of τ1. Since τ3 has the lowest priority, all flush
tasks FT ∗31 and FT ∗32 should consider release time of jobs of
both τ1 and τ2. To prevent information leakage from job j13
to the job j21, a flush task should be reserved since j21 will
be released at time 6, which has lower security level. How-
ever, LSF does not need to reserve a flush task FT 1

31, since
FT 1

21 is already reserved and will be invoked at time 4 and
it also prevents information leakage from j13 to j21. This is

a special case of Fig. 1 (a). At time 13, the job j23 is ready

to be executed but its execution is suspended. If j23 executes
at time 13, it should be preempted by j32 at time 14. If so,
FT 1

32 should be invoked before execution of j32, which can
interfere j32. To avoid such interference, j23 suspends its ex-
ecution and resumes it at time 15. This is an example of
Fig. 1 (b) case. As we can observe in Fig. 2, all jobs are not
interfered from both execution of its lower priority jobs and
flush tasks related to lower priority jobs thanks to flush task
reservation mechanism.

3.2 Interference Relations of Flush Task Mechanisms

Figure 3 compares interference relation of tasks scheduled
by LSF using flush task reservation with greedy flush task
invocation that conventional scheduling algorithms have
adopted. We consider four tasks τA, τB, τC and τD with pri-
ority ordering τD < τC < τB < τA, where τB < τA denotes
that τA has higher priority than τB. We assume that tasks are
scheduled with the LSF scheduling algorithm. Here, FTi j

denotes flush task invocation between a job of τi and that of
τ j to prevent information leakage from τi to τ j. An ellipse
drawn with a dashed line represents a interference relation
meaning that only entities in the same ellipse can interfere
with each other according to their scheduling priorities. In
other words, entities outside the ellipse can not interfere
with entities within the ellipse. In addition, an entity can
be interfered with entities inside the ellipse that contains the
entity according to the scheduling priority of each entity.

As seen in Fig. 3 (a), all tasks are subject to interference
by both higher priority tasks and any kind of flush task FTi j
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Fig. 3 Examples of interference relations with flush task reservation
and conventional flush task invocation for priority ordering, τD < τC <
τB < τA.

in the conventional flush task invocation case. In the case of
τA, it is not subject to interference from any other task be-
cause the tasks are scheduled with a preemptive scheduling
algorithm and τA has the highest priority among the tasks.
However, execution of τA can be hindered by any kind of
flush task that is executed with the highest priority. This is
because a flush task is invoked in a greedy manner without
consideration of the release times of higher priority jobs as
we mentioned previously.

In a flush task reservation case (see Fig. 3 (b)), how-
ever, all tasks are only subject to interference from higher
priority tasks and flush tasks related to higher priority tasks.
For example, τB of the flush task reservation case is only
subject to interference from τA and FTBA but not from oth-
ers. Thanks to the policy of flush task reservation, all flush
tasks except FTBA should be reserved and invoked without
interfering with the release of jobs of τA or τB. As seen in
Fig. 3 (b) this property is applied for all tasks. Thus, it is
guaranteed that all jobs are not subject to interference from
the behavior of lower priority jobs, including the execution
of flush tasks related to lower priority jobs.

Schedulability analysis for the scheduling algorithm
using a conventional flush task invocation mechanism is ex-
clusively sophisticated. This is because the execution of
higher priority jobs is influenced by behavior of lower pri-
ority jobs that can invoke flush tasks that can interfere with
higher priority jobs. Since most strong schedulability anal-
yses for preemptive systems are based on the property that
higher priority jobs must not be influenced by the behav-
ior of lower priority jobs [10], [11], [17], those techniques
cannot be applied directly for scheduling algorithms incor-
porating security constraints. Thus, existing schedulability
analysis tests bound the number of FT invocations in a very
naive manner. LSF using flush task reservation not only re-
solves this problem by reserving the property of preemp-

tive systems but also allows strong schedulability analysis
to be adapted to the LSF scheduler incorporating security
constraints.

4. Definitions for LSF Schedulability Analysis

Based on the approach we proposed, each task τi only
needs to consider interference from higher priority tasks
and flush task invocation among those tasks for its test.
Thus, we define hyperperiod at level i, defined as Hi =

LCM{T j}τ j∈hep(τi), where hep(τi) is the set of tasks with a
priority higher than or equal to task τi and LCM{T j} is the
least common multiple of T j. τi releases its job σi times in
hyperperiod at level i, where σi is described as

σi =
Hi

Ti
=

Hi = LCM{T j}τ j∈hep(τi)

Ti
. (1)

We define Ti-mesoid as a ordered set which describes
the state of each job jki . We denote a time unit al-
ready executed or suspended by an “e”, which is called
consumption, a time unit still available by an “a” and a
time unit for a flush task invocation by “f”. For exam-
ple, {e, e, e, a, a, f , f , e, e, e, e, e, a, a} is a mesoid where the
first 3 time units have already been executed, the next 2
time units are available, followed by 2 for a flush task in-
vocation, then 5 executed time units followed by 2 avail-
able time units. We present consumptions by its cardinal
inside brackets (c), with c ∈ N+. We use another brack-
ets [r], with r ∈ N+ for execution time of flush tasks to
distinguish with brackets (c). In addition, we enumerate
the sequence of available time units according to the nat-
ural numbers. Each of these natural numbers is called an
availability. Based on the description, the previous 14-
mesoid can be re-written as {(3)1, 2, [2], (5), 3, 4}. It has
two consumption 3, 5, a reservation 2, and four availabili-
ties 1, 2, 3, 4. Since each Ti-mesoid describes the state of
each job, there are σi Ti-mesoids in Hi which are sequences
of Ti-mesoids. We define Lb

i = {Mb,1
i ,Mb,2

i , · · · ,Mb,σi
i } as

the sequence of σi Ti-mesoids before τi is scheduled. For
example, Lb

i = {{(5), 1, 2, [1], (2), 3}{1, [1], (3), 2, [1], (3), 3}}
is a sequence of σi = 2 11-mesoids.

We define the cell of the Lb
i as a set of time units be-

tween adjacent two consumptions. For the above example,
we have

Lb
i = {{(5)

[1]i

︷��︸︸��︷
1, 2, [1], (2),

[2]i

︷����︸︸����︷
3}, {1, [1], (3),

[3]i

︷︸︸︷
2, [1] , (3),

[4]i

︷︸︸︷
3 }}

where for m ∈ N [m]i denotes the mth cell in Lb
i . We call Xk

i
universe of τi to be the set which consists of all the avail-
abilities of Mb,k

i . For the previous example of a sequence
of 11-mesoids,Mb,2

i = {1, [1], (3), 2, [1], (3), 3}, and thus we
have X2

i = {1, 2, 3}.
Lb

i shows that the execution time of the first job j1i and
the second job j2i should not exceed 3 otherwise task τi can-
not be schedulable. We call La

i = {Ma,1
i ,Ma,2

i , · · · ,Ma,σi
i }
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the sequence of σi Ti-mesoids of task τi after τi is sched-
uled. La

i is resulted from Lb
i as the available time units will

have been consumed up to the response time within each
mesoid Mb,k

i , k = 1, · · · , σi of task τi after τi is scheduled.
The process of building La

i from Lb
i , and Lb

i+1 from La
i re-

spectively will be detailed in the next section.
To sum up, for every task τi, we have

τi :

⎧
⎪⎪⎨
⎪⎪⎩

Lb
i = {Mb,1

i ,Mb,2
i , · · · ,Mb,σi

i }
La

i = {Ma,1
i ,Ma,2

i , · · · ,Ma,σi
i }

Note that both Lb
i and La

i contain σi Ti-mesoids.

5. LSF Schedulability Analysis

This section derives a schedulability condition for the pro-
posed LSF scheduling algorithm using flush task reserva-
tion. We first describe how schedulability is tested for two
tasks case to motivate our result. And then we generalize it
to result stronger schedulability condition than proposed in
[6].

5.1 Scheduling of Two Tasks

To generalize our schedulability analysis process for n tasks,
we first present the analysis sequence with two tasks, τ1 =

(C1,T1, S 1) and τ2 = (C2,T2, S 2), with S 1 < S 2 which
means τ2 has a higher security level than τ1. Under LSF
scheduling, τ1 is assigned higher priority because τ1 has a
lower security level. Because τ1 has the highest priority,
each job j∗1 of τ1 can consume any availability in Ti and is
never preempted. Since it does not suffer any interference,
its response time is equal to C1, which results in C1 con-
sumptions and T1-C1 availabilities in each instance. Thus,
T1-mesoids of τ1 are described as

τ1 :

⎧
⎪⎪⎨
⎪⎪⎩

Lb
1 = {Mb,1

1 } = {{1, 2, · · · ,T1}}
La

1 = {Ma,1
1 } = {{(C1), 1, 2, · · · ,T1 −C1}}

The next step is to schedule task τ2 by taking into ac-
count the cost of flush tasks FT ∗21 invoked to prevent infor-
mation leakage from τ2 to τ1. The building process of Lb

2

consists of σ2 =
H2
T2

T2-mesoids. The construction is done
with two phases; inheritance phase and flush task reserva-
tion phase.

In the first phase, Lb
2 inherits the time units of La

1
H2
T1

times so that all availabilities in Lb
2 are filled with the time

units of La
1 in a cyclic manner. In other words, (x ∗ T1 + y)th

time unit in Lb
2 is filled with yth time unit in La

1, where
0 ≤ x < H2

T1
, and 1 ≤ y ≤ the number of time units in

La
1. After the construction of Lb

2, we can easily determine
the corresponding universe Xk

2 to each T2-mesoidMb,k
2 , k =

1, · · ·, σ2.
Let us take the following example in order to illustrate

the process of building Lb
2 from La

1. We consider a set of
two tasks τ1 and τ2 with T1 = D1 = 6, T2 = D2 = 8, and
C1 = 2, C2 = 1. We obtain

τ1 :

⎧
⎪⎪⎨
⎪⎪⎩

Lb
1 = {Mb,1

1 } = {{1, 2, 3, 4, 5, 6}}
La

1 = {Ma,1
1 } = {{(2), 1, 2, 3, 4}}

Since σ2 =
H2
T2
= 3, we construct Lb

2 which consists of a
sequence of three 8-mesoids by using the mechanism inher-
iting time units of La

1 described previously. Based on the
mechanism, we have

Lb
2 = {Mb,1

2 ,Mb,2
2 ,Mb,3

2 } = {{(2), 1, 2, 3, 4, (2)},
{1, 2, 3, 4, (2), 5, 6}, {1, 2, (2), 3, 4, 5, 6}}

With the definition of cell, Lb
2 can be also be written as

Lb
2 = {{(2)

[1]2

︷���︸︸���︷
1, 2, 3, 4, (2)},

{
[2]2

︷���︸︸���︷
1, 2, 3, 4, (2),

[3]2

︷�����︸︸�����︷
5, 6}, {1, 2, (2),

[4]2

︷���︸︸���︷
3, 4, 5, 6}}

We now perform flush task reservation phase to prevent
information leakage at all transitions τ2 → τ1. The combi-
nation of LSF and flush task reservation mechanism guaran-
tees that execution of flush task is finished at the right cor-
ner of each cell and execution of each job of τ2 starts at the
left corner of cell without flush task invocation at transitions
τ1 → τ2. This is because LSF using flush task reservation
guarantees that higher priority task must have lower security
level and flush task is invoked at t′ −C f t (see Fig. 1) to avoid
interference to higher priority task. After flush task reserva-
tion phase of our analysis, Lb

2 with C f t = 1 can be written
as

Lb
2 = {{(2)

[1]2

︷�����︸︸�����︷
1, 2, 3, [1], (2)},

{
[2]2

︷�����︸︸�����︷
1, 2, 3, [1], (2),

[3]2

︷�������︸︸�������︷
4, 5}, {1, [1], (2),

[4]2

︷�����︸︸�����︷
2, 3, 4, [1]}}

For each 8-mesoid Mb,k
2 , 1 ≤ k ≤ 3, composing Lb

2,
we build the corresponding universe Xk

2, 1 ≤ k ≤ 3. These
universe are given by

τ2 :

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

X1
2 = {1, 2, 3}
X2

2 = {1, 2, 3, 4, 5}
X3

2 = {1, 2, 3, 4}
Now each job jk2 of τ2 is ready to execute without any

information leakage and invocation of flush task hindering
the execution of higher priority tasks. The amount of C2

availability in each universe Xk
2, 1 ≤ k ≤ σ2 are consumed

by execution. The response time Rk
2, 1 ≤ k ≤ σ2 of task

τ2 in its kth job is computed by summing consumptions of
higher priority tasks and execution of flush task faced before
jk2 finishes its execution. As C2 = 1 and first job j12 of τ2 is
the only one interfered from the execution of higher priority
job, response times of j12, j22 and j32 are R1

2 = 3, R2
2 = 1, and

R3
2 = 1. Then, the worst-case response time R2 of task τ2 is

obtained by

Ri = max{1≤k≤σi}(R
k
i ) (2)
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With computed worst-case response time R2, τ2 is
schedulable if and only if

Ri ≤ Di (3)

Based on the Eq. (2), the worst-case response time R2

is 3 and it satisfies schedulability condition described by
Eq. (3). Thus, we verify that task τ2 is schedulable. For
more than two tasks, we derive La

2 deduced from Lb
2 as fol-

lows

Lb
2 = {{(3), 1, 2, [1], (2)}, {(1), 1, 2, [1], (2), 3, 4},
{(1), [1], (2), 1, 2, 3, [1]}}

5.2 Scheduling of n > 2 Tasks

The analysis test algorithm for more than two tasks is con-
ducted by a mechanism similar to that described in the previ-
ous section. Thanks to the property of LSF using flush task
reservation, testing of a task τi does not take into account
the behavior of lower priority tasks including their execu-
tion and flush tasks associated with them.

Algorithm 1 presents our schedulability test in detail.
Since the highest priority task τ1 is never preempted, the
loop starts from the index of the second priority task τ2 as
we conduct analysis towards lower priority task. LSF anal-
ysis first compute hyperperiod at level i and the number of
instance within hyperperiod (Line 2 in Algorithm 1). Then
it builds Ti-mesoids where all time units are available com-
posing Lb

i (Lines 3–5 in Algorithm 1). The sequence Lb
i is

derived fromLa
i−1 with inheritance phase (Lines 6–10 in Al-

gorithm 1) and flush task reservation phase (Lines 11–20 in
Algorithm 1). Then we can easily determine the universes
Xk

i ∀k ∈ 1, · · · , σi from availabilities in Lb
i (Lines 21–23 in

Algorithm 1). After construction of Lb
i , schedulability of τi

is tested with Eq. (3). If τi is schedulable, La
i will be built

based on the sequence Lb
i and the amount of execution Ci

consuming availabilities in universes Xk
i , for the schedula-

bility test of τi+1 (Lines 25–32 in Algorithm 1). If all tasks
satisfy the schedulability condition, then we conclude that
the task set is schedulable.

Complexity. As LSF schedulability analysis is a per
job test, the time complexity of the analysis includes the
number of jobs in a hyperperiod at level i. To compute
the exact amount of interference from higher priority jobs
and flush task invocations to each job, we need to con-
sider the number and positions of available time units in
advance. Then we take into account the number of higher
priority jobs in each mesoid since the number of potential
flush task invocation is equal to the number of higher prior-
ity tasks. Thus the complexity of LSF schedulability analy-
sis is O(σi · σhp · m0) where, σi is the number of jobs and
σhp is the number of higher priority jobs in a hyperperiod at
level i, and m0 is the number of time units in the sequence
of mesoids of each task.

Since the time complexity of LSF schedulability anal-
ysis adds a factor m0, the time required for the analysis can

Algorithm 1 LSF Schedulability Analysis
1: for i = 2 to n do
2: σi ←

Hi=LCM{T j}τ j∈hep(τi )

Ti

3: for x = 1 to σi do
4: Build emptyMb,x

i composing Lb
i

5: end for
6: for x = 0 to Hi

Ti−1
-1 do

7: for y = 1 to the number of time units in La
i−1 do

8: ((x ∗ Ti−1 + y)
th time unit in Lb

i ) ← (yth time unit in
La

i−1)
9: end for

10: end for
11: Build all cells in Lb

i

12: for m = 1 to the number of cells in Lb
i do

13: if [m]i does not contain a flush task then
14: if [m]i is large enough to contain a flush task then
15: a flush task is reserved in [m]i

16: else
17: all availabilities in [m]i are consumed
18: end if
19: end if
20: end for
21: for x = 1 to σi do
22: Build Xx

i from availabilities inMb,x
i

23: end for
24: Compute worst-case response time of τi and test schedula-

bility of τi with Eq. (3)
25: if τi is deemed schedulable according to schedulability test

then
26: for x = 1 to σi do
27: first Ci units in Xx

i are consumed
28: end for
29: else
30: return unschedulable
31: end if
32: Build La

i by duplicating Lb
i

33: end for
34: return schedulable

be longer if the least common multiple of periods of tasks is
a very large value. In this case, we can use the least common
multiple reduction mechanism under an assumption that re-
duced periods do not degrade the functionality of the target
systems. The experimental results of the common multi-
ple reduction mechanism proposed in [18] showed that least
common multiples derived by 20 sets of five randomly gen-
erated periods taking values in the interval [0, 1000] reduced
by a factor of 112,722,685 on average. Also, the mecha-
nism bounds the least common multiples of the five periods
by 151,200 which is an acceptable value for schedulability
analysis. It is worth noting that for the harmonic sequence
of periods of tasks, the time complexity of LSF schedula-
bility analysis is O(n) where n is the number of tasks in the
task set.

6. Evaluation

In this section, we evaluate our approaches by simulation.
We first describe the simulation environment, including the
task generation method and task parameters. Then, we dis-
cuss the performance of the LSF scheduling algorithm and
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Table 2 Parameters for experiments.

Parameter Value
Number of tasks, N N ∈ {3, 4, · · · , 10}
Task period, pi pi ∈ {50, 100, · · · , 1000}
Task execution time, ei, ei ∈ {5, 6, · · · , 50}
Security level of task, S i, S i ∈ {3, 4, · · · , 10}
FT overhead, C f t C f t ∈ {1, 5, 10}

its schedulability test compared to conventional techniques.

6.1 Simulation Environment

We randomly generated 2000 tasks based on the task set
generation method used in [6]. We set 10 base utilization
groups [0.02 + 0.1 · i, 0.08 + 0.1 · i] for i = 0, · · · , 9, i.e.,
200 instances per group. For example, the first group of
base utilization has a range from 0.02 to 0.08, and the last
group has a range from 0.92 to 0.98. Base utilization of
an instance is defined as the total sum of task utilizations.
Table 2 describes the task parameters used for our evalua-
tion. Each task set can contain at least 3 tasks and at most
10 tasks. Each task has period pi ∈ {50, 100, · · · , 950, 1000}
and an execution time ei ∈ {5, 6, · · · , 49, 50}. The deadline
of each task is equal to its period. Each task has security
level S i ∈ {3, 4, · · · , 9, 10} avoiding cyclic ordering of se-
curity levels of tasks in a task set. The overhead of flush
task (FT) has a value in the set of {1, 5, 10}. The values are
derived on the actual resources in actual architecture (e.g.
in the case of a cache, size of cache

cache refill bandwith from the core i7 or
Tegra 3 device) as described in [6].

6.2 Simulation Results

We chose an RM scheduling algorithm as a base line, since
it is a well known optimal preemptive fixed priority schedul-
ing algorithm for Liu and Layland’s task model showing
high performance on a uni-processor.

The following scheduling algorithm and schedulability
tests were considered:

• the preemptive RM scheduling algorithm using con-
ventional FT invocation (RM − P)

• the preemptive LSF scheduling algorithm using flush
task reservation (LSF − P)

• the non-preempitve RM analysis with the obviously
bounded number of FT invocations proposed in [6]
(RM − ob − NP)

• the RM analysis with the number of FT invocations
bounded by Max-Flow approach for non-preemptive
RM scheduling proposed in [6]
(RM −maxflow − NP)

• the RM analysis with the obviously bounded number
of FT invocations for preemptive RM scheduling, pro-
posed in [6] (RM − ob − P)

• the LSF analysis with the obviously bounded num-
ber of FT invocations for preemptive LSF scheduling
(LSF − ob − P)

• our LSF test with the exactly bounded number

Fig. 4 Experimental result for C f t = 5.

of FT invocations for preemptive LSF scheduling
(LSF − ours − P)

All analysis except LSF-ours-P use response time anal-
ysis with the bounded number of FT invocations. The num-
ber of FT invocations Nf t of non-preemptive and preemp-
tive systems can be bounded by taking account the num-
ber of preemptions in each system [6]. For the former,
Nf t = Nhepi + 1 and for the latter, Nf t = 2 ∗ Nhepi + 1 (Nhepi

is the number of higher or equal priority jobs for each task
τi). RM − ob − NP uses the former one and, RM − ob − P
and LSF − ob − P use the latter one. RM −maxflow − NP
bounds the number of Nf t tighter than the obvious ap-
proaches. Note that LSF-P and LSF-ours-P show the same
performance as LSF-ours-P is exact analysis.

All simulated tasks in a task set execute from time 0 to
the hyperperiod of the task set. The simulator determines the
schedulability of a task set with the obtained response time
of each task when the execution of all tasks is completed.
The analysis engines calculate the worst-case response time
of each task with its own approaches (i.e. in case of LSF-
ours-P, we use Algorithm 1 described in the previous sec-
tion). If all tasks in a task set are schedulable, the analysis
engine deems that the given task set is schedulable.

We first evaluated our approach compared to state of
the art techniques for C f t of 5. The X-axis plots the utiliza-
tion groups for the experiments while the Y-axis represents
the total percentage of schedulable task sets for each bin.
As seen in Fig. 4, RM-P performs well even though it is not
carefully designed with consideration of the security con-
straint. However, RM-ob-P designed for RM-P, shows poor
performance compared to RM-P due to its naive bound of
the number of FT invocations. RM-maxflow-NP performs
better than RM-ob-NP which uses naive bound of FT, but
it is limited to non-preemptive scheduling, which frequently
suffers from the priority inversion problem [19]. Due to the
limitation, RM-maxflow-NP may not perform better than a
naive approach, RM-ob-P for C f t of 5. In terms of schedul-
ing capability, LSF-P shows worse performance than RM-P
for all base utilizations but in the exact analysis test, LSF-
ours-P conditionally performs better than RM-ob-P. As seen
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Fig. 5 Experimental result for C f t = 1.

Table 3 Total percentage of schedulable task set of each technique and
its performance comparisons.

C f t = 1 C f t = 5 C f t = 10
RM-P (%) 95 85 75
LSF-ours-P (%) 76 72 66
RM-ob-P (%) 88 66 46
RM-ob-P/RM-P 0.93 0.77 0.61
LSF-ours-P/LSF-P 1.0 1.0 1.0
LSF-P/RM-P 0.80 0.84 0.87
LSF-ours-P/RM-ob-P 0.86 1.09 1.42

in Fig. 4, the performance of RM-ob-P is better before base
utilization is 0.65 then it drops rapidly after that. This is be-
cause the higher based utilization is, the more tasks and jobs
a task set has. For RM-ob-P, overheads resulting from pes-
simistic bound of FT invocations become severe because the
overheads in the analysis are proportional to the number of
jobs in the tasks. In case of LSF-ours-P, however, it does not
suffer from such problem thanks to its exact analysis capa-
bility. As shown in Fig. 4, LSF-ours-P performs best among
the considered analysis techniques when the base utilization
is higher than 0.65.

We also investigated the relation between the size of
C f t and the schedulability of each approach. As expected,
the performance of scheduling algorithm and its analyses is
degraded as C f t increases. As shown in Fig. 5, RM-ob-P is
close to RM-P when the overhead of FT is 1. This is because
C f t is very low compared to the execution times of tasks so
it does not significantly affect to the schedulability of the
system. Thus, it can be shown that RM-ob-P performs well
even though it bounds the number of FT in a naive manner.
However, its performance drops sharply as the FT overhead
goes up. Although LSF-ours-P conditionally performs bet-
ter than RM-ob-P according to the base utilization, the total
percentage of the schedulable task set is higher than RM-ob-
P when we take into account all base utilization for C f t of
5. The total percentage of the schedulable task set of each
technique is derived by the average of that of utilization bins.
For C f t of 10, the gap between two tests becomes larger (see
Figs. 4 and 6).

Table 3 displays the total percentages of the schedula-

Fig. 6 Experimental result for C f t = 10.

ble task sets for all of the considered techniques and gives
a detailed comparison of their performance according to
variations of the FT overhead. As seen from the second
row to fourth row in Table 3, the total percentages of the
schedulable task sets of RM-P, LSF-ours-P, and RM-ob-P
decrease with different dropping rates as C f t increases from
1 to 10. In the case of RM-P, 95% of tasks are schedula-
ble for C f t = 1, while only 75% of tasks are schedulable
for C f t = 10. Due to the pessimistic FT bound of RM-ob-P,
the performance of RM-ob-P decreases by 42% while RM-P
drops 20% of its performance. For the C f t of 10, RM-ob-P
only gets 61% of predictability to its scheduling algorithm,
RM-P while LSF-ours-P gets 100% of it (the fifth and sixth
rows in Table 3). In the performance aspect of scheduling
algorithms (the seventh rows in Table 3), LSF-P attains 80%
of RM-P when C f t is 1, and it reaches to 87% of RM-P when
C f t is 10. From the evaluation results, we can see that LSF-P
well capturing properties of security constraint is less influ-
enced by the increase in C f t. In comparison of analysis tests
(The last row of Table 3), LSF-ours-P performs worse than
RM-ob-p for C f t=1, but it produce 42% better results than
RM-ob-P when C f t is 10.

In general, our analysis technique outperforms conven-
tional techniques when the FT overheads increases. This is
because our techniques represented by LSF and flush task
reservation well analyze how the security constraint affects
the schedulability of real-time systems, especially regarding
interference relations between tasks.

7. Related Work

There have been some studies dealing with the real-time
requirement incorporating security mechanisms. Xie and
Lin considered periodic task scheduling requiring security
service which has varying overhead in relation to the level
of service [2], [4]. They enhanced the conventional sched-
uler to satisfy the real-time requirement and proposed new
scheduler while maximizing the level of security service.
Mohan [6] resolved the information leakage problem on
shared resource of real-time tasks, by incorporating the se-
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curity constraint into the real-time requirement. They im-
proved FP scheduling and schedulability analysis to prevent
information leakage while satisfying both the real-time re-
quirement and security constraint. However the proposed
analysis techniques are limited to non-preemptive schedul-
ing and there is a wide gap between the performance of
scheduling algorithm and analysis result since the number
of flush task invocation is not tightly bounded.

Some works have considered the information leakage
problem in real-time database systems which have secu-
rity constraints [20]–[22]. Son [21] proposed transaction
scheduling and a concurrency control algorithm satisfying
security and real-time requirements. This work included
metrics to measure the fulfilment of the security requirement
and the concurrency control algorithm allowing a trade-
off between the security and real-time requirements [20].
Son [22] also proposed a notion of partial security to enable
a trade-off between two.

Calculation of the number of flush task invocations is
closely related to calculation of the number of preemptions
of a given task. A previous work [23] proposed a mecha-
nism to count exactly how many times the given task is pre-
empted while the task is executed by fixed priority schedul-
ing. When a task is preempted by a higher priority task that
has a different security level, a flush task should be invoked
before the preemption or after the preemption according to
the security level of the higher priority task to prevent infor-
mation leakage. Thus, the previous work gave many hints to
bound the number of flush tasks in schedulability analysis.
However, it did not consider the security constraint, and the
mechanism is only applicable to fully preemptive schedul-
ing, in which higher priority tasks should not be influenced
by the behavior of lower priority tasks.

8. Conclusion

In this paper, we presented a new preemptive fixed prior-
ity scheduling algorithm called LSF and a schedulability
analysis, which consider security constraint. We focused
on understanding the costs involved in integrating a secu-
rity constraint with the real-time property. We proposed a
flush task reservation mechanism to lead strong schedula-
bility analysis. Our experimental results demonstrated that
LSF schedulability analysis outperforms state-of-the-art FP
analysis when flush tasks have reasonable overhead.

Our long-term goal is to design real-time scheduling
algorithms and schedulability analysis that are more suitable
for CPSs. As mixed criticality is one of the main features of
CPSs [24], we plan to extend our work to a mixed-criticality
model in our future work. We also intend to consider other
security issues such as availability and integrity.
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