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Online Weight Balancing on the Unit Circle∗

Hiroshi FUJIWARA†a), Takahiro SEKI††, Nonmembers, and Toshihiro FUJITO†††, Member

SUMMARY We consider a problem as follows: Given unit weights ar-
riving in an online manner with the total cardinality unknown, upon each
arrival we decide where to place it on the unit circle in R2. The objective is
to set the center of mass of the placed weights as close to the origin as pos-
sible. We apply competitive analysis defining the competitive difference as
a performance measure. We first present an optimal strategy for placing
unit weights which achieves a competitive difference of 1

5 . We next con-
sider a variant in which the destination of each weight must be chosen from
a set of positions that equally divide the unit circle. We give a simple strat-
egy whose competitive difference is 0.35. Moreover, in the offline setting,
several conditions for the center of mass to lie at the origin are derived.
key words: online algorithm, competitive analysis, computational geome-
try, online optimization

1. Introduction

Suppose that we are given a series of points, each with unit
weight, one by one with the total cardinality unknown in
advance. Our task is to place the points one by one on the
unit circle in R2 while keeping a good balance. We are not
allowed to move the point any more, once it is placed. The
balance is measured by the Euclidean distance between the
center of mass of the placed points and the origin.

The difficulty is that we do not know how many points
will arrive in total. If we guess the total cardinality somehow
at the beginning, then we may try to place the points, for ex-
ample, in such a way that they equally divide the unit circle.
If the guess is correct, the center of mass comes to the origin.
However, if the guess fails, say, if one extra point arrives, we
have to place it somewhere and then lose the good balance.
Also in the case of fewer points than expected, we cannot
achieve the balance as planned. In this paper we consider
this problem from the viewpoint of competitive analysis.
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1.1 Our Contribution

We apply competitive analysis adopting the competitive dif-
ference as a criterion of competitiveness of a strategy. The
competitive difference is defined as the maximum difference
between the cost incurred by the strategy and the cost in-
curred by an optimal offline strategy that knows the total
cardinality of points in advance. Our results are summarized
as follows:

(a) We present a non-trivial optimal strategy whose
competitive difference is 1

5 . This means that according to
our strategy, the cost is guaranteed to be at most the optimal
offline cost plus 1

5 .
(b) We impose the n-cyclotomic constraint on the prob-

lem that for fixed n, the destination of each point has to be
chosen from {(cos 2kπ

n , sin 2kπ
n ) | 0 ≤ k ≤ n − 1, k ∈ Z} and

each position is occupied by at most one point. Depending
on the parity of n, we give a simple and competitive strategy.
Our strategy guarantees a competitive difference of 0.35 for
odd n and 1

3 for even n.
(c) We investigate the n-cyclotomic constrained prob-

lem in the offline setting, in which the cardinality of points
is informed at the beginning. Even with the information of
the cardinality, it is not clear whether there is a placement of
points that lets the center of mass come exactly to the ori-
gin. We reveal several conditions for the existence of such a
placement.

1.2 Related Work

To the best of our knowledge, this paper seems the first to
focus on the placement of weighted objects that arrive in
an online manner in terms of the optimal placement of their
center of mass. One can find many studies with similar pur-
poses in the offline setting: Kurebe et al. [1] considered the
placement of weighted rectangles on R2 to let their center of
mass approach the target position. Teramoto et al. [2] stud-
ied the insertion of points into the unit square in Rd in such
a way that the Euclidean distance between any pair of points
becomes as uniform as possible. Recently, Barba et al. [3]
considered the problem that given a set of weights, a closed
connected region, and a target position, we are asked to
place the weights on the boundary of the region so that the
center of mass lies at the target.

In consistent hashing, one can think that items and
caching machines are both mapped to points on the unit cir-
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cle [4], [5]. In the context of the space science, satellite con-
stellation design for covering the Earth’s sphere has been of
great interest, for example [6], [7].

2. Problem Statement and Preliminaries

Throughout this paper a point denotes an individual object
that is to be placed (or has been placed) on R2, while a po-
sition stands for where to place a point on R2. Each point
has unit weight unless we specify otherwise. We sometimes
identify a position on R2 and its xy coordinate, such as the
origin O = (0, 0). AB denotes the Euclidean distance be-
tween the positions A and B.

We define the online weight balancing problem as fol-
lows. We are given a series of points, each with unit weight,
in an online manner where the points arrive one by one and
the total cardinality is unknown in advance. Our task is to
place each point, upon its arrival, somewhere on the unit
circle in R2. Once a point is placed, it cannot be moved any
more. The objective is to minimize the cost which is defined
as the Euclidean distance between the center of mass of the
placed points and the origin, that is, the center of the unit
circle.

A strategy for placing points is denoted by a sequence
θ := (θ1, θ2, . . .) ∈ S in the sense that it places the j-th point
at Pθ( j) := (cos θ j, sin θ j), where S is the set of feasible
strategies (specified later). The reason why a strategy is de-
noted thus simply is that any adaptive decision based on the
history of the configuration does not help in this problem.
When k points have arrived so far and been placed accord-
ing to the strategy θ, the center of mass of the points lies
at

Gθ(k) :=
(1
k

k∑
j=1

cos θ j,
1
k

k∑
j=1

sin θ j

)
.

Then, the cost of the strategy θ is written as

Cθ(k) := OGθ(k) =

√√√(1
k

k∑
j=1

cos θ j

)2
+

(1
k

k∑
j=1

sin θ j

)2
.

On the other hand, the optimal offline cost, that is, one with
the cardinality known to be k in advance, is

Copt(k) := inf{Cθ(k) | θ ∈ S }.
The performance of strategies for online problems is

usually measured by the competitive ratio (see [8] for exam-
ple), which would be defined as supk≥1

Cθ(k)
Copt(k) for our prob-

lem. However, this is inconvenient here since Copt(k) = 0
and Cθ(k) > 0 happen often in the same time. We thus de-
fine and use the competitive difference instead. We say that
the strategy θ has a competitive difference of d if

Cθ(k) −Copt(k) ≤ d

holds for all k ≥ 1. Apparently, d ≥ 0. A smaller competi-
tive difference means a better strategy.

In this paper we consider the online weight balancing
problem under two different settings:

(A) The basic problem. We are allowed to place a point
on an arbitrary position on the unit circle. Namely, the set
of feasible strategies S is

{(θ1, θ2, . . .) | 0 ≤ θ j < 2π for j ≥ 1}.
(B) The n-cyclotomic problem. For fixed n, the desti-

nation of each point is chosen from {(cos 2kπ
n , sin 2kπ

n ) | 0 ≤
k ≤ n − 1, k ∈ Z}, that is, a set of n positions that equally
divide the unit circle into n arcs. Any position should not be
occupied more than once. Formally, we set S to

{(2m1π

n
,
2m2π

n
, . . . ,

2mnπ

n

) ∣∣∣∣
0 ≤ mj ≤ n − 1,mj ∈ Zn for 1 ≤ j ≤ n;

mj � mk for 1 ≤ j < k ≤ n
}
.

We assume in addition that the cardinality of the arriving
points is at most n.

3. The Basic Problem

3.1 Optimal Online Strategy

We first show a lower bound on the competitive difference
and then give a strategy whose competitive difference co-
incides with that value. We begin by presenting a simple
lemma on the offline cost.

Lemma 1: For the basic problem, it holds that

Copt(k) =

⎧⎪⎪⎨⎪⎪⎩1, k = 1;

0, k ≥ 2.

Proof: It is trivial that Copt(1) = 1 since the cost is one
wherever we place a single point. For k ≥ 2, just adopt the
strategy (0, 2π

k ,
4π
k , . . . ,

2(k−1)π
k ). �

By rotational symmetry, we can assume that an optimal
strategy satisfies θ1 = 0 and 0 ≤ θ2 ≤ π. Let α := 2 arccos 1

5
(≈ 157 degrees), which is a key angle for obtaining an op-
timal strategy. The next lemma gives a lower bound on the
competitive difference.

Lemma 2: Any strategy for the basic problem has a com-
petitive difference of at least 1

5 .

Proof: Fix a strategy θ arbitrarily. By rotational symmetry,
we can assume that θ1 = 0 and 0 ≤ θ2 ≤ π. We will show
that the competitive difference is at least 1

5 regardless of the
value of θ2.

(i) Case 0 ≤ θ2 < α. We have

Gθ(2) :=
(1
2

(1 + cos θ2),
1
2

sin θ2
)
.

Since x �→ cos x
2 is a decreasing function on [0, π],
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Cθ(2) =
1
2

√
(1 + cos θ2)2 + sin2 θ2

= cos
θ2
2
> cos

α

2
=

1
5
.

On the other hand, Copt(2) = 0 by Lemma 1. Therefore, the
competitive difference is greater than 1

5 .
(ii) Case α ≤ θ2 < π. We evaluate the cost after the

third point has been placed. For ease of analysis, we square
the cost:

Cθ(3)2 =
(1
3

3∑
j=1

cos θ j

)2
+

(1
3

3∑
j=1

sin θ j

)2

=
2
9

sin θ2 sin θ3 +
2
9

cos θ3 cos θ2

+
2
9

cos θ2 +
2
9

cos θ3 +
1
3
.

Let us think of Cθ(3)2 as a function of θ3 with a fixed
parameter θ2. By differentiating Cθ(3)2 with respect to θ3,
we obtain

∂Cθ(3)2

∂θ3
= −2

9
sin θ3 +

2
9

sin θ2 cos θ3 − 2
9

sin θ3 cos θ2

=
4
9

sin
(θ2

2
− θ3

)
cos
θ2
2
.

This implies that when θ3 =
θ2
2 + π, the function Cθ(3)2

achieves a minimum of

2
9

sin θ2 sin
(θ2

2
+ π

)
+

2
9

cos
(θ2

2
+ π

)
cos θ2+

2
9

cos θ2 +
2
9

cos
(θ2

2
+ π

)
+

1
3

=
1
9

(
1 − 2 cos

θ2
2

)2
.

(Geometrically speaking, the optimal position of the third
point is the midpoint of the longer arc connecting Pθ(1) and
Pθ(2).) Hence, for general θ3, it holds that

Cθ(3) ≥ 1
3

(
1 − 2 cos

θ2
2

)
=

1
3

(
1 − 2

5

)
=

1
5
.

Again by Lemma 1, we know Copt(3) = 0. Therefore, the
competitive difference is at least 1

5 . �
The strategy θ defined below turns out to be optimal.

Note that the choice of placement for the fourth and later
points is a matter of taste; any placement is acceptable as
long as the resulting cost does not exceed 1

5 . Here we choose
a placement for the fourth and later points so that the analy-
sis is easy to handle. See Fig. 1.

θ j =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

0, j = 1;

α, j = 2;
α
2 + π, j is odd, j ≥ 3;
α
2 , j is even, j ≥ 4.

Lemma 3: Cθ(1) = 1, and Cθ(k) ≤ 1
5 for all k ≥ 2.

Fig. 1 Placement of points P(1), P(2), . . . according to the optimal online
strategy θ in Theorem 1 for the basic problem. G(i) is the center of mass
when i points have been placed so far.

Proof: Cθ(1) = 1 is trivial. For ease of notation we write
Pθ(·) and Gθ(·) simply as P(·) and G(·), respectively. Al-
though the lemma can be proved by explicitly calculating
the coordinate of G(k) for general k ≥ 2, we here give
a simpler proof based on geometric arguments. Applying

the strategy θ, we calculate G(2) = ( 1
25 ,

2
√

6
25 ) and G(3) =

(− 1
25 ,− 2

√
6

25 ). (See Fig. 1.) It is thus observed that the origin

O lies on the segment G(2)G(3) and OG(2) = OG(3) = 1
5 .

Therefore, the proof is done if G(k) lies on the segment
G(2)G(3) for all k ≥ 2.

We begin by proving that every G(k) is on the line
G(2)G(3), not necessarily on that segment. Please note that

P(3) = P(5) = P(7) = · · · = (− 1
5 ,− 2

√
6

5 ) and P(4) = P(6) =

P(8) = · · · = ( 1
5 ,

2
√

6
5 ) are on the line G(2)G(3). For k ≥ 4,

G(k) can be calculated as the center of mass of a point with
weight k − 1 at G(k − 1) and one with weight unity at P(k).
Hence, G(k) lies on the line G(2)G(3) if G(k − 1) does so.
Thus, we know inductively that every G(k) is on the line
G(2)G(3).

We next show by induction that for odd k ≥ 2, G(k)
is on the segment OG(2). The claim is trivial for k = 2.
Suppose that G(k − 2) lies on the segment OG(2) for some
odd k(≥ 4). Consider that two points are added at P(k − 1)
and P(k) at once. The center of mass of these two points is
obviously at the origin. Then, G(k) is regarded as the center
of mass of a point with weight k−2 at G(k−2) and one with
weight two at the origin. Therefore, G(k) is on the segment
OG(2).

We can show similarly that for even k ≥ 3, G(k) is on
the segment OG(3). The proof is thus completed. �

Theorem 1: The strategy θ is optimal for the basic prob-
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lem. Its competitive difference is 1
5 .

3.2 Structure of Optimal Offline Strategies

In the proof of Lemma 1, we have claimed that for k ≥ 2, the
strategy (0, 2π

k ,
4π
k , . . . ,

2(k−1)π
k ) achieves a cost of zero. What

should be remarked upon here that this is one of optimal
offline strategies. A natural question here would be: What
other strategy achieves Copt(k) = 0? In what follows, we
do not distinguish strategies with reflection and/or inversion
symmetry or those having the same set of angles.

For k = 2, there does not exist such a strategy except
for the strategy (0, π). For k = 3, it is seen that (0, 2π

3 ,
4π
3 )

is a unique optimal offline strategy. For k = 4, by a ba-
sic manipulation of equations, it is derived that any optimal
strategy has the form (0, π, θ3, θ3 + π). Geometrically speak-
ing, Cθ(4) = 0 if and only if Pθ(1)Pθ(2)Pθ(3)Pθ(4) forms a
rectangle.

What if k = 5? Apparently, the strategy (0, 2π
5 ,

4π
5 ,

6π
5 ,

8π
5 ), which forms a regular pentagon, is optimal. We also

have (0, π, θ3, θ3+ 2π
3 , θ3+

4π
3 ), for which the points compose

a diameter and a regular triangle. Note that since the cen-
ter of mass of a diameter and that of a regular triangle lie
both at the origin, the center of mass of the five points lies at
the origin as well. Then, is there any strategy that satisfies
Cθ(5) = 0 but does not form either a regular pentagon or
the combination of a diameter and a regular triangle? The
answer is yes. For π5 > ε > 0, we can choose δ > 0 such
that the strategy (0, 2π

5 − δ, 4π
5 + ε,

6π
5 − ε, 8π

5 + δ) has a cost
of zero.

4. The n-Cyclotomic Problem

For each of the cases of odd n and even n, we provide a
simple strategy and analyze its competitive difference. Un-
fortunately, the both strategies are not optimal in general.
We mention it after each proof.

4.1 Simple Online Strategy for Odd n

We first give a helper lemma for Theorem 2.

Lemma 4: For k = 1, . . . , n, it holds that

k∑
j=1

cos
( j − 1)(n − 1)π

n
=

1
2 cos π2n

(
cos
π

2n
+ sin

(2k − 1)(n − 1)π
2n

)
,

and

k∑
j=1

sin
( j − 1)(n − 1)π

n
=

1
2 cos π2n

(
sin
π

2n
− sin

(2k(n − 1) + 1)π
2n

)
.

Proof: Let

ck :=
k∑

j=1

cos
( j − 1)(n − 1)π

n
−

1
2 cos π2n

(
cos
π

2n
+ sin

(2k − 1)(n − 1)π
2n

)
,

and

sk :=
k∑

j=1

sin
( j − 1)(n − 1)π

n
−

1
2 cos π2n

(
sin
π

2n
− sin

(2k(n − 1) + 1)π
2n

)
.

We immediately have c1 = 1 − 1
2 cos π2n

(
cos π2n + cos π2n

)
= 0.

If ck = 0 holds, then

ck+1 =ck + cos
k(n − 1)π

n
+

1
2 cos π2n

·(
sin

(2k + 1)(n − 1)π
2n

− sin
(2k − 1)(n − 1)π

2n

)

= cos
k(n − 1)π

n
+

1
2 cos π2n

·

2 cos
k(n − 1)π

n
sin

(
π

2n
− π

2

)
= cos

k(n − 1)π
n

− 1
2 cos π2n

·

2 cos
k(n − 1)π

n
cos
π

2n
=0.

By induction, we conclude ck = 0 for k = 1, . . . , n. Simi-
larly, we have s1 = 0− 1

2 cos π2n

(
sin π

2n − sin π
2n

)
= 0. If sk = 0

holds, then

sk+1 =sk + sin
k(n − 1)π

n
− 1

2 cos π2n

·
(
− sin

(2(k + 1)(n − 1) + 1)π
2n

+

sin
(2k(n − 1) + 1π

2n

)
= sin

k(n − 1)π
n

− 1
2 cos π2n

·

2 cos

(
k(n − 1)π

n
+
π

2

)
sin

(
π

2n
− π

2

)

= sin
k(n − 1)π

n
− 1

2 cos π2n

·

2 sin
k(n − 1)π

n
cos
π

2n
=0.
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Therefore, sk = 0 holds for k = 1, . . . , n. �

Theorem 2: For the n-cyclotomic problem with odd n(≥
3), the strategy θ defined as

θ j =
( j − 1)(n − 1)π

n
, 1 ≤ j ≤ n

achieves a competitive difference of zero for n = 3 and n =
5, and a competitive difference of 1

3 cos π14
(< 0.35) for n ≥ 7.

Proof: For n = 3, our strategy is θ = (0, 2π
3 ,

4π
3 ). By ro-

tational symmetry, there is no choice of strategy. One can
easily see that our strategy achieves a competitive difference
of zero.

For n = 5, we have θ = (0, 2π
5 ,

4π
5 ,

6π
5 ,

8π
5 ). Observe

each time when the k-th item has arrived (1 ≤ k ≤ 5). One
can confirm that there is no better placement than that of our
strategy, even if the cardinality is known in advance. Thus,
our strategy achieves a competitive difference of zero for
n = 5.

In the rest of the proof we discuss n ≥ 7. We calculate
the coordinate of the center of mass using Lemma 4. We
have

Cθ(k) =
1

2k cos π2n

·
((

cos
π

2n
+ sin

(2k − 1)(n − 1)π
2n

)2
+

(
sin
π

2n
− sin

(2k(n − 1) + 1)π
2n

)2
) 1

2

=

∣∣∣sin k(n−1)π
2n

∣∣∣
k cos π2n

.

We investigate the value of Cθ(k) − Copt(k) for all k.
For k = 1, we have Cθ(1) = 1 and obviously Copt(1) = 1.
Therefore the difference is zero. For k = 2, we immediately
have Cθ(2) = sin π

2n . By a simple calculation, it turns out
that to place two points at (1, 0) and (cos (n−1)π

n , sin (n−1)π
n ) is

optimal. Thus, Copt(2) = sin π
2n . Hence, the difference is

again zero. For k ≥ 3, by applying Copt(k) ≥ 0, we have

Cθ(k) −Copt(k) ≤ Cθ(k) =

∣∣∣sin k(n−1)π
2n

∣∣∣
k cos π2n

.

We derive∣∣∣sin k(n−1)π
2n

∣∣∣
k cos π2n

≤ 1
k cos π2n

≤ 1
3 cos π2n

≤ 1
3 cos π14

,

since sin x ≤ 1 for all x, cos π2n decreases monotonically with
n, and n ≥ 7. The competitive difference of the strategy θ is
thus upper-bounded by 1

3 cos π14
(< 0.35) for n ≥ 7. �

See Fig. 2 for the behavior. We here remark that
our strategy is not optimal: For n = 7, the strat-
egy (0, 6π

7 ,
10π

7 ,
4π
7 ,

12π
7 ,

2π
7 ,

8π
7 ) has a competitive difference

of zero, while the competitive difference of our strat-
egy (0, 6π

7 ,
12π

7 ,
4π
7 ,

10π
7 ,

2π
7 ,

8π
7 ) is approximately 0.08. For

n = 9, the strategy (0, 8π
9 ,

14π
9 ,

4π
9 ,

12π
9 ,

2π
9 ,

6π
9 ,

16π
9 ,

10π
9 ) has

a better competitive difference than that of our strategy

Fig. 2 Behavior of the online strategy in Theorem 2 for the 7-cyclotomic
problem.

(0, 8π
9 ,

16π
9 ,

6π
9 ,

14π
9 ,

4π
9 ,

12π
9 ,

2π
9 ,

10π
9 ). That is to say, our strat-

egy is not optimal for these cases.
In addition, our strategy is not optimal for large n;

roughly speaking, a strategy more like that presented in The-
orem 1 performs better. More specifically, one can have a
better strategy by rounding each position specified in the
strategy in Theorem 1 into some nearby position that is
feasible for the n-cyclotomic problem, in such a way that
each position does not occur more than once. Although the
rounded positions for later points may be far from those in
the original strategy, this does not matter. Recall that the po-
sitions for later points do not affect the competitiveness, as
we discussed in Sect. 3.1.

4.2 Simple Online Strategy for Even n

We have the next theorem for even n.

Theorem 3: For the n-cyclotomic problem with even n(≥
2), the strategy θ defined as

θ j =

⎧⎪⎪⎨⎪⎪⎩
( j−1)π

n , j is odd;
( j−2)π

n + π, j is even

achieves a competitive difference of zero for n = 4, and a
competitive difference of 1

3 for n ≥ 6.

Proof: For n = 4, the strategy obviously has a competitive
difference of zero; there is no choice of strategy.

For n ≥ 6 we first derive Cθ(k) in a closed form. It is
observed that every two angles in θ place two points so that
they form a diameter. Therefore, for even k, the center of
mass lies at the origin and Cθ(k) = 0. Apparently, Cθ(1) =
1. What remains is odd k ≥ 3. We have already known
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Fig. 3 Behavior of the online strategy in Theorem 3 for the 8-cyclotomic
problem.

Cθ(k − 1) = 0 for such k. The center of mass after placing
the k-th point can be considered as the center of mass of the
following two weighted points: a point with weight of k − 1
at the origin and one with unit weight at Pθ(k) on the unit
circle. Hence, the center of mass of the k points divides the
line segment OPθ(k) in the ratio 1 : k − 1. Noting OPθ(k) =
1, we have Cθ(k) = 1

1+(k−1) =
1
k for odd k.

We next check the value of Cθ(k)−Copt(k) for all k. For
k = 1, we have Copt(1) = 1 and thus the difference is zero.
For odd k ≥ 3, we obtain

Cθ(k) −Copt(k) ≤ Cθ(k) =
1
k
≤ 1

3
,

since Copt(k) ≥ 0 holds. For even k ≥ 2, we have

Cθ(k) −Copt(k) ≤ Cθ(k) = 0.

We thus conclude that the competitive difference of the strat-
egy θ is at most 1

3 . �
See Fig. 3 for the behavior. We add without proof that

not only for n = 4 but also for n = 6, 8, and 10, our strategy
is an optimal strategy. The competitive difference is 1

3 for

n = 6,
√

2−1
3 (≈ 0.20) for n = 8, and

√
5−1
6 (≈ 0.21) for n = 10.

For large n, however, it turns out that our strategy is not
optimal by the same reason as for large odd n.

4.3 Conditions for Copt(k) = 0

Unlike in the basic problem, in the n-cyclotomic problem
Copt(k) = 0 is not always true for k ≥ 2. Apart from online
optimization, there arises an interesting question: Which
pair (n, k) admits Copt(k) = 0? In this subsection we give
a partial answer. We start from easy cases.

Lemma 5: For any n, Copt(1) = 0, Copt(n − 1) = 1
n−1 , and

Copt(n) = 0.

Proof: Copt(1) = 0 and Copt(n) = 0 are trivial. We now
see why Copt(n − 1) = 1

n−1 holds. Suppose that n − 1 points
have been placed optimally (though there is no choice) and
their center of mass G(n − 1) lies somewhere. Next, add
a point at P(n), which is the unique destination without a
point yet. Then, needless to say, the new center of mass
comes to the origin O. By considering that the mass of the
n−1 points concentrates at G(n−1), the new center can also
be thought of as the position that divides the line segment
G(n − 1)P(n) in the ratio 1 : n − 1. Since OP(n) = 1, we
obtain Copt(n − 1) = OG(n − 1) = 1

n−1 . �
The next theorem gives a sufficient condition when n

belongs to a class of composite numbers.

Theorem 4: For n even and divisible by some odd number
p ≥ 3, Copt(k) = 0 holds if k is even or p ≤ k ≤ n − p.

Proof: Observe that if some set of placed points forms a
diameter of the unit circle or a regular polygon, then the
center of mass of the points lies at the origin. The idea of
our proof is thus to give a strategy that places points in such
a way that they can be decomposed into such sets. If k is
even, we can choose k

2 pairs of positions that form k
2 distinct

diameters and the proof is done.
In what follows, assume that k is odd and satisfies p ≤

k ≤ n − p. We present a strategy for such k. For ease of
presentation, only the angles appearing in the strategy are
described below. Although we give a series of angles with
length n − p in total, the strategy is constructed so that to
apply only the first k angles always leads to a cost of zero.
Let m = n

2p . Intuitively, our strategy first makes a regular
p-gon followed by (m − 1)p distinct diameters. Formally,
our strategy is to: (i) Place points at

0,
2 · 2mπ

n
,

2 · 4mπ
n
, . . . ,

2 · 2(p − 1)mπ
n

.

(ii) Then place points, repeatedly for j = 1, 2, . . . , p, at

2(( j − 1)m + 1)π
n

,
2(( j − 1)m + 1)π

n
+ π,

2(( j − 1)m + 2)π
n

,
2(( j − 1)m + 2)π

n
+ π,

. . . ,
2(( j − 1)m + m − 1)π

n
,

2(( j − 1)m + m − 1)π
n

+ π.

It is easy to see that the placement of (i) forms a regular
p-gon; the difference of the angles is all 4mπ

n = 2π
p . Now

k ≥ p is assumed, the regular p-gon is always completed.
One can see that in (ii), every pair of angles taken from

the head forms a diameter. Since k and p are odd, it does not
occur that at the end a diameter is left uncompleted.

Besides, it is seen that in (ii), each iteration with respect
to j consists of m − 1 distinct diameters. What remains is
to claim that any angle in (ii) does not coincide with the
angles in (i). Note that 2(( j−1)m+l)π

n + π = 2(( j−1)m+l+pm)π
n . For

l = 1, 2, · · · ,m − 1, both ( j − 1)m + l and ( j − 1)m + l + pm
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Table 1 Values of Copt(k) for the n-cyclotomic problem (2 ≤ n ≤ 12).

k = 1 2 3 4 5 6 7 8 9 10 11 12

n = 2 1 0
3 1 0.50 0
4 1 0 0.33 0
5 1 0.31 0.21 0.25 0
6 1 0 0 0 0.2 0
7 1 0.22 0.19 0.14 0.09 0.17 0
8 1 0 0.14 0 0.08 0 0.14 0
9 1 0.17 0 0.09 0.07 0 0.05 0.13 0

10 1 0 0.13 0 0 0 0.05 0 0.11 0
11 1 0.14 0.10 0.06 0.02 0.01 0.03 0.04 0.03 0.10 0
12 1 0 0 0 0 0 0 0 0 0 0.09 0

Fig. 4 Behavior of the offline strategy in Theorem 4 for the 40-
cyclotomic problem, applying p = 5. This figure depicts the placement
of 15 points such that their center of mass lies at the origin.

are indivisible by m, which implies that none of the angles
in (ii) has appeared in (i). �

See Fig. 4 for the behavior of the strategy for n = 40,
p = 5, and k = 15. Together with Lemma 5, we have a
corollary.

Corollary 1: For n divisible by six, Copt(k) = 0 holds if
and only if 2 ≤ k ≤ n − 2 or k = n.

For the case that n is a prime number, we show that
Copt(k) cannot be zero unless k = n through algebraic argu-
ments. We here regard R2 as the complex plane. Let ζ be
cos 2π

n + i sin 2π
n . Then, the n destinations are expressed as

1, ζ, ζ2, . . . , ζn−1. The following is a basic fact concerning
them.

Fact 1: (For example, [9]) Any element of Q(ζ), an ad-
junction of ζ to the field of rational numbers, is uniquely
expressed in a linear combination of 1, ζ1, ζ2, . . . , ζn−2 with
a j ∈ Q,

a1 + a2ζ + a3ζ
2 + · · · + an−1ζ

n−2.

It is known that when n is a prime number, ζ do not sat-
isfy an equation of degree lower than n − 2. Therefore, any
ζk in a linear combination cannot be replaced by a linear
combination of others. The fact is explained in terms of lin-
ear algebra; 1, ζ, ζ2, . . . , ζn−2 are basic vectors in that vector
space.

Theorem 5: For n prime, Copt(k) = 0 holds if and only if
k = n.

Proof: Observe that the linear combination in Fact 1 for
a j ∈ {0, 1

k } with
∑n−1

j=1 a j = 1 represents the center of mass
of k points with 1 ≤ k ≤ n − 1, placed at k distinct destina-
tions. Apply Fact 1 with the element to be expressed being
0. Then, the lemma states that we have to set a1, a2, . . . , an−1

to all zero. Back in the context of R2, this fact implies that
wherever we place fewer than n points, the center of mass
does not come to the origin. �

By a brute-force search on a computer, the numerical
value of Copt(k) for the n-cyclotomic problem is calculated
as shown in Table 1.

5. Concluding Remarks

Many questions are left open: What if arbitrary weights are
allowed? Another measure of balance? How about in R3 or
an arbitrary metric space? (As introduced, there are numer-
ous studies on satellite constellation design such as [6], [7].)
What if the destination of points is arbitrarily restricted? For
the n-cyclotomic problem, can a more sophisticated strategy
be designed? Can the problem in Sect. 4.3 be solved for gen-
eral composite numbers?
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