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Characterizing Output Locations of GSP Mechanisms to
Obnoxious Facility Game in Trees

Morito OOMINE†a), Nonmember and Hiroshi NAGAMOCHI†b), Member

SUMMARY In the obnoxious facility game with a set of agents in a
space, we wish to design a mechanism, a decision-making procedure that
determines a location of an undesirable facility based on locations reported
by the agents, where we do not know whether the location reported by an
agent is where exactly the agent exists in the space. For a location of the
facility, the benefit of each agent is defined to be the distance from the lo-
cation of the facility to where the agent exists. Given a mechanism, all
agents are informed of how the mechanism utilizes locations reported by
the agents to determine a location of the facility before they report their lo-
cations. Some agent may try to manipulate the decision of the facility loca-
tion by strategically misreporting her location. As a fair decision-making,
mechanisms should be designed so that no particular group of agents can
get a larger benefit by misreporting their locations. A mechanism is called
group strategy-proof if no subset of agents can form a group such that every
member of the group can increase her benefit by misreporting her location
jointly with the rest of the group. For a given mechanism, a point in the
space is called a candidate if it can be output as the location of the facil-
ity by the mechanism for some set of locations reported by agents. In this
paper, we consider the case where a given space is a tree metric, and char-
acterize the group strategy-proof mechanisms in terms of distribution of all
candidates in the tree metric. We prove that there exists a group strategy-
proof mechanism in the tree metric if and only if the tree has a point to
which every candidate has the same distance.
key words: mechanisms, group strategy-proof, facility location games,
trees

1. Introduction

1.1 Social Choice Theory

Social choice theory is discipline of group choices that
are based on information about preference of voters of the
group. In social choice theory, design of methods that ag-
gregate the preference of voters has been studied. It is im-
portant to add an algorithmic perspective to the design of
methods.

In social choice theory, a mechanisms is a procedure
that determines a social decision based on a vote. More
formally, for a set Ω of voting alternatives and a set N =
{1, 2, . . . , n} of selfish voters with various utilities, a mecha-
nism is a function f : Ωn → Ω as a collective decision mak-
ing system. Voters know the exact detail of the operation
of the mechanisms before they actually vote, and each voter
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can find out her expected benefit of her utility in the case
when every voter votes truthfully. Each voter may try to ma-
nipulate the decision of a mechanism by changing her voting
to increase benefit from her personal utility. A voting which
aims to manipulate the decision of a mechanism is called
a strategic-voting. To the effect of making a fair decision,
we are interested in mechanisms in which no voter can get
a larger benefit by a single-handed strategic-voting. Such a
mechanism is called a strategy-proof mechanism. Moreover,
a mechanism is called a group strategy-proof mechanism, if
there is no coalition of voters such that each member in the
coalition can simultaneously get a larger benefit by their co-
operative strategic-voting.

1.2 Facility Game

The facility game is a problem in social choice theory where
a location of the facility in a metric space will be decided
based on locations of agents (votes by voters) and each agent
tries to maximize benefit from her utility function defined
based on the distance from her location to the location of
the facility.

In previous studies of facility games [1]–[4], [6], [7],
[9], [10], mechanisms are allowed to distinguish agents. In
other words, the input of mechanisms is not only location
information (i.e., where is reported) but also agents’ infor-
mation (i.e., who reports the location). On the other hand,
there is a category of mechanisms which are called anony-
mous, that is, which do not use agents’ information.

Another important aspect of mechanisms of facility
games is how we can maximize the sum of the utilities over
all agents, called the social utility, over all strategy-proof
(or group strategy-proof) mechanisms. In general, the max-
imum value of the social utility attained by a strategy-proof
(or group strategy-proof) mechanism is smaller than that at-
tained just by choosing the best location of the facility. A
possible measurement of the performance for a mechanism
is a benefit-ratio, the ratio of the social utility attained by
the mechanism and such a best possible value to the social
utility.

We call a mechanism a randomized mechanism if the
mechanism does not output a single facility location but out-
puts a probability distribution of the facility location over
a metric space. In randomized mechanisms, the utility of
agents is defined to be the expected value by the probability
distribution. On the contrary, a mechanism which outputs a
facility location is called deterministic.
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1.2.1 Obnoxious Facility Game

In this paper we consider the obnoxious facility game, that
is, a facility game such that the facility is undesirable, such
as a garbage dump. On the contrary, a facility game such
that the facility is desirable, such as a library, is called typ-
ical facility game. Several studies have been extensively
made on the typical facility game. See Sect. 2 for related
works.

We call mechanism a p-candidate mechanism if the
number of distinct outputs is p. In the obnoxious facil-
ity game, previous studies [3]–[5] focused on mechanisms
which output the location of the facility from restricted loca-
tions in a metric space. More accurately, those studies first
choose p candidates in a set of alternatives, and then they
design p-candidate mechanisms which output a location of
the facility from these p candidates.

In this paper, we consider group strategy-proof mech-
anisms in tree metrics. In Sect. 2, we review some studies
related to social choice theory and facility game. In Sect. 3,
we formulate a model of the obnoxious facility game, and
describe our main theorem that characterizes strategy-proof
mechanisms in tree metrics in such a way that there exists a
p-candidate group strategy-proof mechanism if and only if
the tree has a point to which every candidate has the same
distance. Section 4 gives a proof to the necessary condition
in the theorem, and Sect. 5 provides a proof to the sufficient
condition in the theorem. In Sect. 6, we make a concluding
remarks.

2. Related Works

In this section, we review some previous studies related
to social choice theory and facility game. Moulin [8]
studied social choice theory under the condition that the
set of alternatives is the one-dimensional Euclidean space
and each utility function is a single-peaked concave func-
tion. Moulin [8] characterized a necessary and sufficient
condition of strategy-proofness on single-peaked prefer-
ences in the one-dimensional Euclidean space. After that,
Border and Jordan [2] extended the result to characterize
strategy-proof mechanisms in the multi-dimensional Eu-
clidean space. Schummer and Vohra [10] applied the re-
sult of Border and Jordan [2] to obtain characterization of
strategy-proof mechanisms when Ω is the set of all points in
a tree metric or the set of all points in a graph metric which
has at least one cycle.

In the typical facility game, Procaccia and Ten-
necholtz [9] proposed a group strategy-proof mechanism
which returns the location of the median agent as the facil-
ity location when all agents are located on a path. Moreover,
they designed a randomized mechanism. Alon et al. [1] gave
a complete analysis on benefit-ratios of group strategy-proof
mechanisms for the typical facility game in general graph
metrics.

Cheng et al. [4] first studied group strategy-proof

mechanisms for the obnoxious facility game in the line met-
ric. They have designed a 2-candidate group strategy-proof
mechanism and shown that for any set of locations reported
by agents, a benefit-ratio of the mechanism is at most 3.
Ibara and Nagamochi [5] gave a complete characterization
of 2-candidate strategy-proof mechanisms and 2-candidate
group strategy-proof mechanisms for the obnoxious facil-
ity game in general metrics and they proved that in arbitrary
metrics, a 2-candidate group strategy-proof mechanism with
a benefit-ratio 4 can be designed. Moreover, they have
shown that in the line metric, there exists no p-candidate
strategy-proof mechanism for any integer p ≥ 3.

3. Preliminaries

3.1 Mechanisms

LetR+ be the set of nonnegative real numbers. LetΩ be a set
of points, possibly infinite. A symmetric distance function
d : Ω × Ω → R+ holds the following conditions, for every
point x ∈ Ω, it holds that d(x, x) = 0; for every two points
x, y ∈ Ω, it holds that d(x, y) = d(y, x); and for every three
points x, y, z ∈ Ω, it holds that d(x, y) + d(y, z) ≥ d(x, z).
Throughout this paper, we use the notation d as a symmetric
distance function. Let (Ω, d) denote a metric.

Let N = {1, 2, . . . , n} be a set of agents, and assume
that exactly one location of an undesirable facility needs to
be decided. Let Ωagents ⊆ Ω denote a set of points to which
any location that can be reported by an agent in N belong,
and let Ωfacility ⊆ Ω denote a set of points such that the
facility can be located. A set of locations reported by agents
in N is denoted by a location function χ : N → Ωagents,
where χ(i) denotes the location reported by an agent i ∈ N.

Let χ be a location function. For a setΩ′ ⊆ Ω of points,
let N(χ,Ω′) denote the set of all agents i ∈ N with χ(i) ∈
Ω′. For a location y ∈ Ωfacility of the facility, the benefit
β(y, χ(i)) of an agent i ∈ N is defined to be the distance from
her location to the facility, i.e.,

β(y, χ(i)) = d(y, χ(i)).

For simplicity, for a set S ⊆ N of agents, we write by χ(S )
the multiset {χ(i) | i ∈ S } of locations reported by agents
in S , and we denote by S the set N \ S . The multiset χ(N) is
called a profile of N. Given a profile χ(N), a mechanism f
outputs a facility location based on the profile χ(N), that is,
f : Ωn

agents → Ωfacility.
In the literature on the study of facility games, the fol-

lowing mechanism model appears [1]–[4], [6], [7], [9], [10].
The input to mechanisms is a location function χ and mech-
anisms distinguish each agent’s report. For instance, for lo-
cation functions χ and χ′ of a set N = {1, 2} of agents and lo-
cations x, y ∈ Ωagents such that χ(1) = x, χ(2) = y, χ′(1) = y
and χ′(2) = x, a mechanism f can output different facility
locations, that is, f (χ(N)) , f (χ′(N)). Anonymity is an im-
portant property of mechanisms. A mechanism f is called
anonymous if it holds that f (χ(N)) = f (χ′(N)) for any two
location functions χ and χ′ of a set N of agents that admits
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a bijection σ on N such that χ(i) = χ′(σ(i)), for every agent
i ∈ N (i.e., χ(N) = χ′(N) holds as multisets). In our model,
every mechanism is anonymous, that is, the input is a multi-
set as a set of locations which all agent report.

In this paper, we consider that an intersection of mul-
tisets retains the highest multiplicity of elements in the sets.
For example, for points a, b ∈ Ω and a multiset A = {a, b, b},
it holds that A ∩Ω = {a, b, b}.

Next we review the definition of strategy-proofness and
group strategy-proofness of mechanisms [1], [4], [5].

Definition 1: A mechanism f is strategy-proof (SP for
short) if and only if no agent can benefit from misreport-
ing her location. Formally, given a set N of agents and a
location function χ, for any agent i ∈ N and any location
function χ′ such that χ({i}) = χ′({i}), it holds that

β( f (χ(N)), χ(i)) ≥ β( f (χ′(N)), χ(i)).

Definition 2: A mechanism f is group strategy-proof
(GSP for short) if and only if for any group of agents, at
least one agent in the group cannot benefit from misreport-
ing her location simultaneously with the rest of the group.
Formally, given a set N of agents and a location function χ,
for any non-empty set S ⊆ N of agents and for any location
function χ′ such that χ(S ) = χ′(S ), there exists an agent
i ∈ S satisfying

β( f (χ(N)), χ(i)) ≥ β( f (χ′(N)), χ(i)).

For a mechanism f : Ωn
agents → Ωfacility, a loca-

tion y ∈ Ωfacility is called a candidate if there is a profile
χ(N) ∈ Ωn

agents such that f (χ(N)) = y and the set of all can-
didates of f is denoted by C( f ) ⊆ Ωfacility. A mechanism
with |C( f )| = p is called a p-candidate mechanism.

3.2 Tree Metric

In this paper, we define a tree metric based on the graph
model due to Schummer and Vohra [10]. We define a graph
G to be a closed, connected subset of Euclidean space. The
graph is composed of a finite number of closed curves of
finite length, which are called edges. The extremities and
branch points of the curves are called vertices. A path is
a minimal connected subset of G that contains two points
x and y as its endpoints. A cycle in G is defined to be the
union of two paths whose intersection is equal to the set of
both their endpoints.

A tree T is defined to be a graph without cycles. A path
with two endpoints in a tree is uniquely determined. For two
points x and y in a tree, let P(x, y) denote the path with two
endpoints x and y, and the distance d(x, y) between x and
y is defined to be the length of path P(x, y), and there is a
unique point z such that d(x, z) = d(z, y). We call such a
point the middle point of x and y, and denote it by m(x, y).
Note that d(x, y) = 0 if and only if x = y. In this paper,
we consider the tree metric (T, d). Let Tagents = T be a
set of points where agents can exist and Tfacility ⊆ T be
a set of points where the facility can be located. Given a

mechanism f and a location function *** revised here ***
χ, the benefit β( f (χ(N)), χ(i)) of an agent i ∈ N is defined to
be the distance d( f (χ(N)), χ(i)) from χ(i) to f (χ(N)).

A rooted tree is a tree such that one vertex of the tree
is designated as a root. Let T be a rooted tree with rooted at
a point µ. The parent y of a vertex x is the vertex one step
closer to root r and lying on the same edge and x is called
a child of the vertex y. For a vertex u and a child v of u, let
(u, v) denote the edge joining u and v. A vertex x is called a
descendant of a vertex v if v is in path P(µ, x) between the
root µ and x. We define subtrees T [u] and T (e) specified by
a vertex u and an edge e as follows. For each vertex u in T ,
let T [u] be the set of points z in the subtrees induced from T
by u and the descendants of u, i.e., z is a point on P(u, x) for
some descendant x of u in T . For each edge e = (u, v) in T ,
let T (e) ⊆ T be the set of points in e and T [v].

We here observe a property on GSP mechanisms in the
next lemma.

Lemma 1: Let f be a mechanism in T . Let χ be a location
function and c ∈ C( f ) be a candidate such that c = f (χ(N)).
If there is a candidate c′ ∈ C( f ) such that

d(c, χ(i)) < d(c′, χ(i)) for every agent i ∈ N,

then f is not GSP.

Proof. There is a location function χ′ such that f (χ′(N)) =
c′. For the set S = N, any agent i ∈ S satisfies

β( f (χ(N)), χ(i)) = d(c, χ(i)) < d(c′, χ(i))
= β( f (χ′(N)), χ(i)).

Therefore when the agents in S misreport their locations, all
agents in S can benefit, that is, the mechanism f is not GSP
by Definition 2. □

Definition 3: We call a set C of locations in a tree T a peri-
metric distribution if |C| = 1 or there is a point µ ∈ T such
that d(µ, c) = d(µ, c′) for every two c, c′ ∈ C.

The main result in this paper is the following theorem.

Theorem 1: Let C ⊆ Tfacility be a set of p ≥ 1 points in
a tree T . There is a p-candidate GSP mechanism such that
C( f ) = C if and only if C is a perimetric distribution.

In the following two sections, we prove the necessity
and sufficiency of Theorem 1, respectively.

4. Necessity of Theorem 1

This section proves the necessity of Theorem 1. Thus we
prove the next.

Lemma 2: Let f be a p-candidate mechanism in a tree
metric (T, d) such that C( f ) is not a perimetric distribution.
Then f is not GSP.

Let f be a p-candidate mechanism such that C( f ) is not
a perimetric distribution. Hence p = |C( f )| ≥ 3 since C( f )
with p = |C( f )| ≤ 2 is always a perimetric distribution. Let



618
IEICE TRANS. INF. & SYST., VOL.E99–D, NO.3 MARCH 2016

ca and cb be a pair of two most distant candidates in C( f ).
We define point µ = m(ca, cb) and regard T as a rooted tree
by designating µ as the root. We denote r = d(ca, µ) =
d(cb, µ). Define Cr( f ) to be the set of candidates which are
at distance r from the root µ, i.e.,

Cr( f ) = {c ∈ C( f ) | d(c, µ) = r},

where |Cr( f )| ≥ |{ca, cb}| = 2. Since C( f ) is not a perimetric
distribution, it holds C( f ) \Cr( f ) , ∅. Let c1 be a candidate
such that c1 ∈ C( f ) \Cr( f ), where it holds d(µ, c1) < d(c, µ)
for any c ∈ Cr( f ). Figure 1 illustrates how root µ, points in
Cr( f ) and c1 appear on a tree T .

For each vertex u in T , let Ch(u) be the set of edges
e = (u, v) such that T (e) contains at least one candidate c ∈
Cr( f ), where |Ch(µ)| ≥ 2 by |Cr( f )| ≥ 2. For each edge
e ∈ Ch(µ) at root µ, we introduce a partition T (e) into A(e)
and B(e) = T (e) \ A(e) such that

A(e) = {u ∈ T (e) | d(u, c1) < d(u, c)
for all c ∈ Cr( f ) ∩ T (e)},

where B(e) = {u ∈ T (e) | d(u, c1) ≥ d(u, c) for some c ∈
Cr( f ) ∩ T (e)}. See Fig. 1 for an illustration of subsets A(e)
and B(e) of T (e) for an edge e ∈ Ch(µ). Note that µ ∈
A(e) and A(e) \ {µ} , ∅ for each edge e ∈ Ch(µ), since
d(µ, c1) < d(µ, c) and m(c1, c) ∈ T (e) hold for all candidates
c ∈ Cr( f ) ∩ T (e) with e ∈ Ch(µ).

We here observe a property on the structure of set B(e)
of an edge e ∈ Ch(µ).

Lemma 3: Let f be a p-candidate mechanism in a tree
metric (T, d) such that p ≥ 3 and C( f ) is not a perimetric
distribution, and let µ ∈ T , c1 ∈ C( f ) and Cr( f ) be de-
fined in the above. Let χ1 be a location function such that
f (χ1(N)) = c1 ∈ C( f ) \ Cr( f ). If N(χ1, B(e)) = ∅ for some
edge e ∈ Ch(µ), then f is not GSP.

Proof. Assume that there is an edge e ∈ Ch(µ) such that
N(χ1, B(e)) = ∅. By definition of T (e), there is a candidate
c in Cr( f ) ∩ T (e). To prove that f is not GSP by Lemma 1,

Fig. 1 An illustration of root µ, candidate c1 and sets Cr( f ), T (e), B(e)
and A(e) for an edge e ∈ Ch(µ) in a tree T .

it suffices to show that

d(c1, χ1(i)) < d(c, χ1(i)) for all agents i ∈ N.

For each agent i ∈ N(χ1,T (e)), where N(χ1,T (e)) =
N(χ1, A(e)) by N(χ1, B(e)) = ∅, we have

d(c1, χ1(i)) < d(c, χ1(i)).

On the other hand, for each agent i ∈ N \ N(χ1,T (e)), it
holds that

d(c1, χ1(i)) ≤ d(c1, µ) + d(µ, χ1(i))

(by triangle inequality)

< d(c, µ) + d(µ, χ1(i))

(by c1 ∈ C( f ) \Cr( f ))

= d(c, χ1(i)),

as required. □

Now we are ready to prove Lemma 2.

Proof of Lemma 2. Let χ1 be a location function such that
f (χ1(N)) = c1. See Fig. 2(a) for an illustration of profile
χ1(N) and point c1 in tree T rooted at µ. We can assume that

N(χ1, B(e)) , ∅ for each edge e ∈ Ch(µ),

since otherwise f is not GSP by Lemma 3, and we are done.
For each edge e ∈ Ch(µ), we select an arbitrary point te ∈
A(e) \ {µ}. To prove Lemma 2, we introduce two location
functions χk(N), k = 2, 3 by modifying χ1(N).

Let χ2(N) be the profile obtained from χ1(N) by chang-
ing the locations of all agents i ∈ N(χ1, B(e)) to te for each
edge e ∈ Ch(µ); i.e.,

For each edge e ∈ Ch(µ) and all agents i ∈ N(χ1, B(e)),
let χ2(i) = te ∈ A(e) \ {µ}; and
For all agents i ∈ N \ ∪{N(χ1, B(e)) | e ∈ Ch(µ)}, let
χ2(i) = χ1(i).

See Fig. 2(b) for an illustration of the new profile χ2(N).
Note that χ2(N) , χ1(N), because Ch(µ) , ∅ and
N(χ1, B(e)) , ∅ for each edge e ∈ Ch(µ) by assumption.

Let c2 = f (χ2(N)), and let e′ = (µ, v) be the edge in-
cident to root µ such that c2 ∈ T (e′). If e′ ∈ Ch(µ) (i.e.,
T (e′) ∩ Cr( f ) , ∅) and c2 , µ, then we define e2 to be e′.
Otherwise (e′ < Ch(µ) or c2 = µ), we choose an arbitrary
edge in Ch(µ) as e2.

Let χ3(N) be the profile obtained from χ1(N) by chang-
ing the locations of all agents i ∈ N(χ1, B(e)) to te for each
edge e ∈ Ch(µ) except e = e2; i.e.,

For each edge e ∈ Ch(µ) \ {e2} and all agents i ∈
N(χ1, B(e)), let χ3(i) = χ2(i) = te ∈ A(e) \ {µ}; and
For all agents i ∈ N \∪{N(χ1, B(e)) | e ∈ Ch(µ) \ {e2}},
let χ3(i) = χ1(i).

See Fig. 2(c) for an illustration of the new profile χ3(N). Ob-
serve that profile χ2(N) is obtained from χ3(N) by changing
the locations of all agents i ∈ N(χ1, B(e2)) from χ3(i) =
χ1(i) ∈ B(e2) to χ2(i) = te2 ∈ A(e2) \ {µ}. Note that
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χ3(N) , χ1(N), because |Ch(µ)| ≥ 2, Ch(µ) \ {e2} , ∅ and
N(χ1, B(e)) , ∅ for each edge e ∈ Ch(µ) \ {e2} , ∅ by as-
sumption. Also χ2(N) , χ3(N), since N(χ1, B(e2)) , ∅ by
e2 ∈ Ch(µ), as we have assumed that N(χ1, B(e)) , ∅ for all
edges e ∈ Ch(µ). Let c3 = f (χ3(N)).

To know how location function χk changes into χ3, k =
1, 2, we define the set Nk,3 of agents whose locations change,
i.e., Nk,3 = {i ∈ N | χk(i) , χ3(i)}, and choose a special agent
in Nk,3 as follows.

For k = 1, we see that

N1,3 = {i ∈ N | χ1(i) , χ3(i)}
= {N(χ1, B(e)) | e ∈ Ch(µ) \ {e2}} , ∅.

We can assume that there is at least one agent i1,3 ∈ N1,3

such that

d(c3, χ1(i1,3)) ≤ d(c1, χ1(i1,3)), (1)

since otherwise f is not GSP with respect to a group S =
N1,3 by Definition 2 and we are done. Let e1,3 ∈ Ch(µ) be
the edge such that χ1(i1,3) ∈ T (e1,3) for agent i1,3 ∈ N1,3.
We show that e1,3 , e2. Since N1,3 =

∪{N(χ1, B(e)) | e ∈
Ch(µ) \ {e2}}, we obtain N1,3 ∩ N(χ1,T (e2)) = ∅ and in par-
ticular agent i1,3 ∈ N1,3 satisfies χ1(i1,3) < T (e2). From this
and χ1(i1,3) ∈ T (e1,3), we have e1,3 , e2.

Let c1,3 be a candidate in T (e1,3) ∩ Cr( f ) and m1,3 be
the middle point of c1,3 and c1, i.e., m1,3 = m(c1,3, c1), where
m1,3 ∈ T (e1,3) since d(µ, c1) < d(µ, c1,3). See Figs. 2(c) and
3 for illustrations of c1,3, m1,3 and B(e1,3). In profile χ3(N), it
holds N(χ3, B(e1,3)) = ∅ by construction of χ3(N) and e1,3 ,
e2, and we see that point m1,3 is always on path P(c1,3, χ3(i))
for any agent i ∈ N. Hence

d(c1,3, χ3(i)) = d(c1,3,m1,3)
+ d(m1,3, χ3(i)) for all i ∈ N.

(2)

For k = 2, we see that

N2,3 = {i ∈ N | χ2(i) , χ3(i)} = N(χ1, B(e2)) , ∅.

We can assume that there is at least one agent i2,3 ∈ N2,3

such that

d(c3, χ2(i2,3)) ≤ d(c2, χ2(i2,3)), (3)

since otherwise f is not GSP with respect to a group S =
N2,3 by Definition 2 and we are done.

To prove Lemma 2, we derive the next inequality

d(c1,3, χ3(i)) > d(c3, χ3(i)) for all agents i ∈ N, (4)

which implies that f is not GSP by Lemma 1.
To derive Eq. (4), we distinguish two cases: Case a.

c3 < B(e1,3); and Case b. c3 ∈ B(e1,3).

Case a. c3 < B(e1,3): See Fig. 3 for an illustration of location
χ1(i1,3) in B(e1,3) ⊆ T (e1,3). Since χ1(i1,3) ∈ B(e1,3), we see
from c3 < B(e1,3) that point m1,3 lies on path P(χ1(i1,3), c3).
Hence

d(c3, χ1(i1,3)) = d(c3,m1,3) + d(m1,3, χ1(i1,3)).

Fig. 2 An illustration of profiles: (a) the original profile χ1(N) such that
f (χ1(N)) = c1 < Cr( f ), (b) profile χ2(N) obtained from χ1(N) by changing
the locations of all agents i ∈ N(χ1, B(e)) to te for each edge e ∈ Ch(µ),
and (c) profile χ3(N) obtained from χ1(N) by changing the locations of all
agents i ∈ N(χ1, B(e)) to te for each edge e ∈ Ch(µ) \ {e2}.

For edge e1,3 ∈ Ch(µ), B(e1,3) = {u ∈ T (e1,3) |
d(u, c1) ≥ d(u, c) for some c ∈ Cr( f ) ∩ T (e1,3)} by defini-
tion. Since no c ∈ Cr( f ) satisfies 0 = d(c1, c1) ≥ d(c1, c), we
know c1 < B(e1,3). Then χ1(i1,3) ∈ B(e1,3) and c1 < B(e1,3)
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Fig. 3 An illustration of points c1,3, m1,3 and the range that c3 exists.
The candidate c3 can exist in the gray thick lines.

imply that point m1,3 lies on path P(χ1(i1,3), c1). Hence we
have

d(c1, χ1(i1,3)) = d(c1,m1,3) + d(m1,3, χ1(i1,3)).

By the above two equations and Eq. (1), we obtain

d(c1,m1,3) ≥ d(c3,m1,3). (5)

We claim that χ3(i) < B(e1,3) for all agents i ∈ N. Ev-
ery agent i ∈ N(χ1, B(e1,3)) has the location χ3(i) = te1,3 ∈
A(e1,3) \ {µ} in profile χ3(N) by the definition of χ3 and
e1,3 , e2. Also every agent i < N(χ1, B(e1,3)) has a loca-
tion χ3(i) < B(e1,3) by the definition of χ3. This proves the
claim.

By noting that c3 < B(c1,3) in Case a, we see that, for
each agent i ∈ N, it holds χ3(i) < B(e1,3) and thereby path
P(χ3(i), c3) does not pass though point m1,3 ∈ B(e1,3). Hence
we have

d(c3, χ3(i)) < d(c3,m1,3) + d(m1,3, χ3(i)). (6)

Therefore by Eq. (2), for every agent i ∈ N, it holds that

d(c1,3, χ3(i)) = d(c1,3,m1,3) + d(m1,3, χ3(i))

= d(c1,m1,3) + d(m1,3, χ3(i))

(by definition of m1,3)

≥ d(c3,m1,3) + d(m1,3, χ3(i)) (by Eq. (5))

> d(c3, χ3(i)) (by Eq. (6)).

Case b. c3 ∈ B(e1,3): To handle this case, we use the next
claim, where a proof of it will be given later.

Claim 1: c3 < Cr( f ) \ T (e2).

Figure 3 illustrates the range where c3 can exist in T .
By e1,3 , e2 and Claim 1, the distance between m1,3

and c1,3 is larger than that between m1,3 and c3, i.e., it holds

that

d(c1,3,m1,3) > d(c3,m1,3). (7)

By Eq. (2), for every agent i ∈ N, it holds that

d(c1,3, χ3(i)) = d(c1,3,m1,3) + d(m1,3, χ3(i))

> d(c3,m1,3) + d(m1,3, χ3(i)) (by Eq. (7))

= d(c3, χ3(i)),

as required.

Finally we give a proof of Claim 1.

Proof of Claim 1. To prove the claim, it suffices to show
that

d(c3, χ2(i2,3)) < d(c, χ2(i2,3)) for all c ∈ Cr( f ) \ T (e2).

Since d(c3, χ2(i2,3)) ≤ d(c2, χ2(i2,3)) by Eq. (3), it futher suf-
fices to prove that

d(c2, χ2(i2,3)) < d(c, χ2(i2,3)) for all c ∈ Cr( f ) \ T (e2).

We distinguish two cases: c2 ∈ T (e2) and c2 , µ; and c2 <
T (e2) or c2 = µ.

Case 1. c2 ∈ T (e2) and c2 , µ: We first show that
µ < P(χ2(i2,3), c2). By the definition of χ2, for any agent
i ∈ N(χ1, B(e2)), χ2(i) = te2 . Then agent i2,3 ∈ N2,3 =

N(χ1, B(e2)) has location χ2(i2,3) = te2 ∈ A(e2) \ {µ}. By
assumption of µ , c2 ∈ T (e2) in Case 1, we see that
P(χ2(i2,3), c2) ⊆ T (e2) \ {µ}.

Hence d(c2, χ2(i2,3)) < d(c2, µ) + d(µ, χ2(i2,3)). From
this, we see that for any candidate c ∈ Cr( f ) \T (e2), it holds
that

d(c2, χ2(i2,3)) < d(c2, µ) + d(µ, χ2(i2,3))

≤ d(c, µ) + d(µ, χ2(i2,3)) (by c ∈ Cr( f ))

= d(c, χ2(i2,3)),

as required.

Case 2. c2 < T (e2) or c2 = µ: We first show that c2 < Cr( f ).
When c2 = µ, it holds c2 = µ < Cr( f ) since |Cr( f )| ≥ 2 and
|Ch(µ)| ≥ 2. Assume otherwise (i.e., c2 , µ and c2 < T (e2)).
In this case, by the definition of e2, e′ < Ch(µ) holds for the
edge e′ = (µ, v) with c2 ∈ T (e′). Clearly e′ < Ch(µ) means
that c2 < Cr( f ).

Hence for any candidate c ∈ Cr( f ) \ T (e2), we have

d(c2, χ2(i2,3)) = d(c2, µ) + d(µ, χ2(i2,3))

< d(c, µ) + d(µ, χ2(i2,3))

(by c2 ∈ C( f ) \Cr( f ))

= d(c, χ2(i2,3)),

as required. □

This completes a proof of Lemma 2.

5. Sufficiency of Theorem 1

In this section, we prove the sufficiency of Theorem 1. Let C
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be a set of points in a tree T such that C is a perimetric distri-
bution. When |C| = 1, any mechanism f with C( f ) = C out-
puts a unique facility location for all profiles of agents, and
thereby for any agent set S , all agents in S cannot benefit by
misreporting their location. Therefore the mechanism f is
GSP. We consider the case that |C| ≥ 2.

First we design a voting mechanism f with the set C
of candidates. Let µ be the middle point between the most
distant two points in C. Since C is a perimetric distribution,
for any c, c′ ∈ C, we have d(µ, c) = d(µ, c′). If a point
w ∈ {µ} ∪ C is on an edge (u, v) of T , then we regard w as
a vertex of T and replace (u, v) with two edges (u, w) and
(w, v). We regard T as a rooted tree by designating µ as
the root. For each vertex u, let Ch(u) be the set of edges
e = (u, v) such that there is at least one c ∈ C in T (e).

Let E denote the set of all edges in the tree T , where we
assume without loss of generality that each point in C is an
end-vertex of some edge in E. We define a lexicographical
order between two vectors (a, b) and (a′, b′) so that

(a, b) ≺ (a′, b′)

if a < a′, or a = a′ and b < b′. Given a perimetric dis-
tribution C ⊆ T , we define a voting mechanism f as fol-
lows. We fix an arbitrary total order among all edges in E
by a bijection id : E → {1, 2, . . . , |E|}. Although we will
prove that the following voting mechanism f is GSP for any
choice of total order id by Lemma 4, we design f so that
C( f ) = C holds. To ensure this, we let f first select a to-
tal order id among all possible |E|! choices by some deter-
ministic rule based on a given profile χ(N): For example,
for the length dmin of a shorest edge in T and the distance
δ = min{d(c, x) | c ∈ C, x ∈ χ(N)} to C from χ(N), let
k be the maximum integer with 1 ≤ k ≤ |E|! such that
dmin(k − 1)/|E|! ≤ δ, and choose the kth bijection among
all |E|! bijections on E.

Given a profile χ(N), we let f select a total order id by
the above rule and output f (χ(N)) = c∗ ∈ C so that path

P(µ, c∗) = (u1 = µ, u2, . . . , uq = c∗)

is formed by choosing each edge e j = (u j, u j+1), j =
1, 2, . . . , q − 1 that satisfies the lexicographic order:

(|N(χ,T (e j))|, id(e j)) ≺ (|N(χ,T (e))|, id(e))
for all edges e ∈ Ch(u j) \ {e j}.

Figure 4 illustrates how the voting mechanism f determines
path P(µ, c∗) from the root µ to the output c∗ ∈ C for a given
profile χ(N) in a rooted tree T .

Figure 5 illustrates an example of a tree T with a peri-
metric distribution C = {c1, c2, . . . , c6}. We show how the
voting mechanism f determines the output c∗ to the profile
χ(N) of 13 agents in Fig. 5. To this profile χ(N), mecha-
nism f first selects a total order id on the set of edges based
on the distance from the locations of agents to the candidates
in C, and assume that id such that id(ai) = i, i = 1, 2, . . . , 12
is selected. Then mechanism f outputs c∗ = c2 from C, be-
cause it constructs path P(µ, c∗) = (u1 = v1 = µ, u2 = v2,

Fig. 4 The voting mechanism f outputs a facility location c∗ such that
path P(µ, c∗) = (u1 = µ, u2, . . . , uq = c∗) satisfies that for each j =
1, 2, . . . , q − 1, (|N(χ,T ((u j, u j+1)))|, id((u j, u j+1))) ≺ (|N(χ, T (e))|, id(e))
for all edges e ∈ Ch(u j) \ {(u j, u j+1)}.

Fig. 5 An example of tree T , a profile χ(N) of 13 agents and a perimetric
distribution C = {c1, c2, . . . , c6}, where a total order id such that id(ai) = i
is selected by the voting mechanism f .

u3 = v5, u4 = c∗ = c2) with edges (u1, u2), (u2, u3) and
(u3, u4) that satisfy the following lexicographical orders:
For edges a1 = (u1, u2), a2, a3 ∈ Ch(u1), it holds that
(|N(χ,T (a1))|, id(a1)) = (4, 1) ≺ (|N(χ,T (a3))|, id(a3)) =
(4, 3) ≺ (|N(χ,T (a2))|, id(a2)) = (5, 2);
For edges a5 = (u2, u3), a4 ∈ Ch(u2), it holds that
(|N(χ,T (a5))|, id(a5)) = (1, 5) ≺ (|N(χ,T (a4))|, id(a4)) =
(2, 4); and
For edge a6 = (u3, u4), a7 ∈ Ch(u3), it holds that
(|N(χ,T (a6)), id(a6)) = (0, 6) ≺ (|N(χ,T (a7))|, id(a7)) =
(1, 7).

We first observe that C( f ) = C; i.e., for any specified
candidate c ∈ C with |C| ≥ 2, there is a profile χc(N) such
that f (χc(N)) = c. Given a candidate c ∈ C, choose an-
other point c′ ∈ C \ {c} such that the distance from c′ to the
path P(µ, c) is maximized, and place all the agents in N on
a point p′ on the edge (u′, c′) between c′ and its parent u′

of c′ so that the total order id selected by the rule satisfies
that id(e) < id(e′) for any edges e in P(µ, c) and e′ not in
P(µ, c). For this profile χc(N) = {χc(i) = p′ | i ∈ N}, we
see that the voting mechanism f outputs c∗ = c, because f
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constructs path P(µ, c∗) from µ by choosing a subtree T (ei)
with a smallest size of agents for i = 1, 2, . . . and breaking
ties with the minimum id.

We next show the group strategy-proofness of the vot-
ing mechanism f via the next lemma.

Lemma 4: Given a perimetric distribution C ⊆ T with
|C| ≥ 2, let f be the voting mechanism defined in the above.
Let χ be a location function, and (u1 = µ, u2, . . . , uq =

f (χ(N))) be the sequence of vertices on path P(µ, f (χ(N))).
Let S ⊆ N be a subset of agents, and χ′ be a location func-
tion such that

χ(S ) = χ′(S ) and
d( f (χ(N)), χ(i)) < d( f (χ′(N)), χ(i)) for all i ∈ S .

If f (χ′(N)) ∈ T [u j] holds for some j = 1, 2, . . . , q − 1, then
we have f (χ′(N)) ∈ T [u j+1].

Proof. We assume that f (χ′(N)) ∈ T [u j] for some
j = 1, 2, . . . , q − 1. Since C is a perimetric distribu-
tion, it holds that d( f (χ(N)), u j) = d( f (χ′(N)), u j) by uq =

f (χ(N)), f (χ′(N)) ∈ T [u j]. Hence f (χ′(N)) ∈ T ((u j, u j+1))
implies f (χ′(N)) ∈ T [u j+1]. So we assume that f (χ′(N)) ∈
T [u j] \ T ((u j, u j+1)) holds to prove the lemma by deriving a
contradiction. Let e = (u j, u j+1), where f (χ(N)) ∈ T (e). Let
e′ ∈ Ch(u j) \ {e} be the edge such that f (χ′(N)) ∈ T (e′).

For every agent i ∈ S , we have

d( f (χ(N)), χ(i)) < d( f (χ′(N)), χ(i))

(by the lemma assumption)

≤ d( f (χ′(N)), u j) + d(u j, χ(i))

(by triangle inequality)

= d( f (χ(N)), u j) + d(u j, χ(i))

(by d( f (χ(N)), u j) = d( f (χ′(N)), u j)).

This means that u j is not on P(χ(i), f (χ(N))) for any agent
i ∈ S . Hence

χ(S ) ⊆ T (e) \ {u j}. (8)

Here we use the next claim, whose correctness will be given
later.

Claim 2: Edges e′ and e satisfy |N(χ′,T (e′))| <
|N(χ,T (e′))| or |N(χ′,T (e))| > |N(χ,T (e))|.

When |N(χ′,T (e′))| < |N(χ,T (e′))| holds, we see that it
implies that there is an agent s ∈ S such that χ′(s) ∈ T \T (e′)
and χ(s) ∈ T (e′) since χ(S ) = χ′(S ). This, however, contra-
dicts Eq. (8). On the other hand, |N(χ′,T (e))| > |N(χ,T (e))|
implies that there is an agent s ∈ S such that χ′(s) ∈ T (e)
and χ(s) ∈ T \ T (e). This again contradicts Eq. (8).

Proof of Claim 2. Let e1 = e and χ1 = χ, and let e2 = e′

and χ2 = χ
′. It suffices to show that for {k, k′} = {1, 2},

edges ek and ek′ satisfy |N(χk′ , T (ek′))| < |N(χk,T (ek′))| or
|N(χk′ ,T (ek))| > |N(χk,T (ek))|. To derive a contradiction,
we assume that

|N(χk,T (ek′ ))| ≤ |N(χk′ , T (ek′))| and
|N(χk′ ,T (ek))| ≤ |N(χk,T (ek))|. (9)

For profile χk(N), mechanism f outputs f (χk(N)) ∈ T (ek),
which implies that the lexicographic order

(|N(χk, T (ek))|, id(ek)) ≺ (|N(χk,T (ek′))|, id(ek′)). (10)

In particular, it holds |N(χk,T (ek))| ≤ |N(χk,T (ek′ ))|.
Symmetrically for profile χk′(N), mechanism f outputs
f (χk′ (N)) ∈ T (ek′), which implies that

(|N(χk′ ,T (ek′ ))|, id(ek′ )) ≺ (|N(χk′ ,T (ek))|, id(ek)). (11)

In particular, it holds |N(χk′ ,T (ek′ ))| ≤ |N(χk′ ,T (ek))|. From
these inequalities and Eq. (9), we have |N(χk, T (ek))| ≤
|N(χk, T (ek′))| ≤ |N(χk′ ,T (ek′ ))| ≤ |N(χk′ ,T (ek))| ≤
|N(χk,T (ek))|, where the four inequalities can hold by equal-
ity only. Hence now from Eqs. (10) and (11), it must hold
that id(ek) < id(ek′ ) and id(ek′) < id(ek), respectively. This,
however, is a contradiction, proving Claim 2.

This completes a proof of Lemma 4. □

Now we are ready to prove that our voting mecha-
nism is always GSP. Let χ be a location function and let
c∗ = f (χ(N)), and (u1 = µ, u2, . . . , uq = c∗) denote the
sequence of vertices in path P(µ, c∗), as shown in Fig. 4.
Let S ⊆ N be a subset of agents. To derive a contradic-
tion, we assume that all agents in S benefit by misreport-
ing their locations from χ(S ) to χ′(S ); i.e., let χ′ be a loca-
tion function such that χ(S ) = χ′(S ) and d( f (χ(N)), χ(i)) <
d( f (χ′(N)), χ(i)) for all agents i ∈ S . In particular, it holds
f (χ(N)) , f (χ′(N)). We show that f (χ′(N)) ∈ T [uq] by
an induction on u j, j = 1, 2, . . . , q. Obviously we have
f (χ′(N)) ∈ T = T [µ] = T [u1]. Suppose that f (χ′(N)) ∈
T [u j] for some j = 1, 2, . . . , q − 1. Then by Lemma 4,
we have f (χ′(N)) ∈ T [u j+1]. This means that f (χ′(N)) ∈
T [uq] = T [c∗]. Since C is a perimetric distribution, we have
T [c∗] ∩ C = {c∗}. Hence we have f (χ′(N)) = c∗ = f (χ(N)),
a contradiction to f (χ(N)) , f (χ′(N)). This completes a
proof that the voting mechanism f is GSP.

We remark that there are different GSP mechanisms
other than our voting mechanism f . For example, we
present a GSP mechanism f̂ for given a set N of n (≥ 1)
agents and a star T with a root µ and k leaves c1, . . . , ck

such that C = {c1, . . . , ck} is a perimetric distribution in T .
Since we can let f̂ first change the indices of vertices in
C based on a given profile so that C( f̂ ) = C holds analo-
gously with the previous mechanism f , we only show that a
GSP mechanism f̂ is designed for the current indices. For
each ℓ = 1, 2, . . . , k − 1, let Tℓ be the set of points in edge
(µ, cℓ) including cℓ but excluding µ, and let αℓ be a non-
negative real such that α1 + · · · + αk−1 ≤ n. Let Tk =

T − ∪1≤ℓ<kTℓ and αk = n −∑1≤ℓ<k αℓ. Given a profile χ(N),
let mechanism f̂ output c j for the smallest index j such that
|N(χ,T j)| < α j. Let S ⊆ N be an arbitrary set of agents,
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and χ and χ′ be location functions satisfying χ(S ) = χ′(S )
and f̂ (χ(N)) , f̂ (χ′(N)). To prove that f̂ is GSP, it suf-
fices to show that there exists an agent i ∈ S satisfying
d( f̂ (χ(N)), χ(i)) ≥ d( f̂ (χ′(N)), χ(i)). For f̂ (χ(N)) = c j, we
see that there is an agent i ∈ S such that χ(i) < T j, since oth-
erwise χ(S ) ⊆ T j implies that |N(χ′,Tℓ)| ≥ |N(χ,Tℓ)| ≥ αℓ,
ℓ < j, |N(χ′,T j)| ≤ |N(χ,T j)| < α j, and f̂ (χ(N)) = f̂ (χ′(N)),
a contradiction. Hence we have

d( f̂ (χ(N)), χ(i)) = d(c j, χ(i)) (by f̂ (χ(N)) = c j).

= d(c j, µ) + d(µ, χ(i))

(by χ(i) < T j)

= d( f̂ (χ′(N)), µ) + d(µ, χ(i))

(by f̂ (χ′(N)), c j ∈ C)

≥ d( f̂ (χ′(N)), χ(i))

(by triangle inequality),

as required.

6. Concluding Remarks

In this paper, we characterized a possible distribution of can-
didates (locations of the facility that can be output) by GSP
mechanisms in a tree metric. That is, for a set C of p points
in a tree, there exists a p-candidate GSP mechanism whose
output set C( f ) is equal to C if and only if C is a perimet-
ric distribution. This explains the non-existence of p ≥ 3-
candidate GSP mechanisms in a line metric (e.g., [5]), be-
cause no set C with at least three points can be a perimetric
distribution in a line metric. However, it remains open to
show whether the set C( f ) of candidates of an SP mecha-
nism f in a tree metric also needs to be a perimetric distri-
bution or not. It would be interesting to evaluate the benefit
ratio of the proposed GSP mechanism f . Also it is left as a
future work to examine a possible distribution of candidates
of SP or GSP mechanisms in a metric on a more complex
graph or in an Euclidean space.
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