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SUMMARY This paper discusses the decidability of determinacy and
subsumption of tree transducers. For two tree transducers T1 and T2, T1

determines T2 if the output of T2 can be identified by the output of T1, that
is, there is a partial function f such that [[T2]] = f ◦ [[T1]] where [[T1]] and
[[T2]] are tree transformation relations induced by T1 and T2, respectively.
Also, T1 subsumes T2 if T1 determines T2 and the partial function f such
that [[T2]] = f ◦ [[T1]] can be defined by a transducer in a designated class
that T2 belongs to. In this paper, we show that determinacy is in coNEX-
PTIME for single-valued linear extended bottom-up tree transducers as the
determiner class and single-valued bottom-up tree transducers as the deter-
minee class. We also show that subsumption is in coNEXPITME for these
classes, and a bottom-up tree transducer T3 such that [[T2]] = [[T3]] ◦ [[T1]]
can be constructed if T1 subsumes T2.
key words: determinacy, subsumption, tree transducer

1. Introduction

The importance of data transformation has been emerging
due to the recent extensive studies on data integration, data
explosion, etc. Especially, it is desirable to guarantee that
information is preserved in some sense through data trans-
formation. As a formalization for information preservation
in data transformation, the notions of determinacy and sub-
sumption (or query rewriting) are known [2]–[4]. Let Q be
a query to a database and V be a data transformation (or
a view definition) of the database. Determinacy of Q by
V means that the answer to Q can be identified by the an-
swer to V . When information to be preserved is specified
by a query Q, determinacy guarantees that for any database
instance D, V(D) gives enough information to uniquely de-
termine the specified information Q(D) for D. Subsumption
means that the answer to Q can always be computed from
the answer to V by some query in a designated class that Q
belongs to. Compared with determinacy, subsumption guar-
antees that the necessary information Q(D) can be extracted
from the transformed data V(D) by the same query language

Manuscript received March 27, 2015.
Manuscript revised August 5, 2015.
Manuscript publicized December 16, 2015.
†The authors are with the Graduate School of Information Sci-

ence, Nagoya University, Nagoya-shi, 464–8601 Japan.
††The authors are with the Graduate School of Information

Science and Technology, Osaka University, Suita-shi, 565–0871
Japan.

∗A preliminary version of this paper was presented at the 7th
International Conference on Language and Automata Theory and
Applications [1].

a) E-mail: k-hasimt@is.nagoya-u.ac.jp
DOI: 10.1587/transinf.2015FCP0015

Fig. 1 Determinacy and subsumption

expressing Q.
We study the decidability and complexity of determi-

nacy and subsumption when both a query and a data trans-
formation are given by tree transducers. Tree transducers
are abstract machines that model binary relations on labeled
ordered trees. A tree transducer is said to be single-valued
if the tree transformation induced by the transducer is a par-
tial function. Since an XML document has a tree structure,
tree transducers are often used as a model of XML docu-
ment transformations. Formally, for two single-valued tree
transducers T1 and T2 in classes Π1 and Π2 of transducers,
respectively, we say T1 determines T2 if there is a partial
function f such that [[T2]] = f ◦ [[T1]] (see Fig. 1 (a)), where
[[T1]] and [[T2]] are the tree transformation relations induced
by T1 and T2, respectively. Π1 and Π2 are called the deter-
miner class and the determinee class, respectively. We also
say T1 subsumes T2 with respect to Π2, if T1 determines T2

and the partial function f such that [[T2]] = f ◦ [[T1]] can be
defined by a transducer in the class Π2 (see Fig. 1 (b)). De-
terminacy and subsumption are undecidable in general. Our
goal is to find practical subclasses of tree transducers for
which determinacy and subsumption can be decided with
lower complexity than known results, and to consider the
problem of constructing a tree transducer T3 in the determi-
nee class such that [[T2]] = [[T3]] ◦ [[T1]] if T1 subsumes T2.

In this paper, we first show that determinacy is in coN-
EXPTIME for single-valued linear extended bottom-up tree
transducers (sl-xbots) as the determiner class and single-
valued bottom-up tree transducers (s-bots) as the determinee
class running over a ranked-tree encoding of a given XML
document. Transformations induced by transducers in the
classes include simple filterings, relabelings, insertions, and
deletions of elements. Especially, sl-xbots do not allow du-
plications of elements. Given an sl-xbot T1 and an s-bot
T2, the decision procedure works as follows: (1) construct a
transducer T inv

1 that induces the inverse of T1, (2) construct a
transducer T3 that induces the composition of T inv

1 followed
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by T2, then (3) decide whether T3 is single-valued. We in-
troduce a class of transducers with grafting, which allows to
insert any tree in a specified tree language, in order to cap-
ture the inverses of transformations induced by sl-xbots as
well as the composition of the inverses and s-bots. Next, we
prove that single-valuedness is in coNP for the class. Lastly,
we show that subsumption is in coNEXPTIME for sl-xbots
as the determiner class and s-bots as the determinee class.
The proof gives a construction method of an s-bot T3 satis-
fying [[T2]] = [[T3]] ◦ [[T1]] if T1 subsumes T2.

Due to space limitations, we omit some of the proofs
including details of some construction methods. They are
presented in the full version of this paper [5].

Related Work

Determinacy and subsumption (or query rewriting) have
been well studied mainly for relational queries such as first-
order logic and conjunctive queries [2]–[4]. In XML con-
text, the problems has been studied in a setting where trans-
formations and queries are modeled by tree transducers [6].
It was shown that determinacy is undecidable for a sub-
class of deterministic top-down tree transducers which can
copy at most once as the determiner class and the identities
as the determinee class. Also, determinacy and subsump-
tion were shown to be decidable for compositions of single-
valued linear extended top-down tree transducers with reg-
ular look-ahead (sl-xtopRs) as the determiner class, and for
either deterministic top-down tree transducers with regular
look-ahead (d-topRs) or deterministic MSO definable tree
transducers as the determinee class. The decision relies on
the decidability of equivalence and the closure property un-
der composition for the classes of tree transducers.

In this paper, we adopt another approach to deciding
determinacy and subsumption for sl-xbots and s-bots, which
leads us a lower complexity result. In our preliminary ver-
sion [1], we showed only the decidability results of deter-
minacy (and subsumption) for sl-xbots and s-bots, and did
not give their complexity results. Actually, the decidabil-
ity result itself can be concluded from [6] because the class
of transformations induced by sl-xbots is equivalent with
sl-xtopRs, and the class of s-bots is a subclass of d-topRs.
However, the complexity is not discussed in [6]. The size of
composition of an sl-xbot v, a uniformizer u of v, and an s-
bot q are at most doubly exponential in their sizes in general.
Although we do not know a tight upper bound of the equiv-
alence test for the composition and an s-bot, it is at most in
doubly exponential time in their sizes from the known com-
plexity result for d-topRs. In summary, the rough estimation
shows that the complexity result by [6] is 4EXPTIME, while
the complexity result in this paper is coNEXPTIME.

2. Preliminaries

2.1 Trees and Tree Automata

We treat only ranked labeled ordered trees and tree transduc-
ers which work on such trees. Though an XML document

is often modeled by an unranked labeled ordered tree, we
assume that an unranked tree is encoded to a ranked tree
by some encoding such as First-Child-Next-Sibling encod-
ing [7] and DTD-based encoding [8].

We denote the set of nonnegative integers by N. Let
[i, j] = {d ∈ N | i ≤ d ≤ j}. In particular, we denote
[1, k] by [k]. A (ranked) alphabet is a finite set Σ of symbols
with a mapping rk from Σ to N. We denote the set of k-
ary symbols of Σ by Σ(k) = {σ ∈ Σ | rk(σ) = k}. The set
TΣ of ranked trees over an alphabet Σ is the smallest set T
such that σ(t1, . . . , tk) ∈ T for every k ∈ N, σ ∈ Σ(k), and
t1, . . . , tk ∈ T . If σ ∈ Σ(0), we write σ instead of σ(). Let
Γ ⊆ Σ and H ⊆ TΣ. We define Γ(H) = {γ(t1, . . . , tk) | γ ∈
Γ(k), t1, . . . , tk ∈ H}. Let Δ be an alphabet. We denote by
TΔ(H) the smallest set T ⊆ TΣ∪Δ such that H ⊆ T and
Δ(T ) ⊆ T . The set of positions of t = σ(t1, . . . , tk) ∈ TΣ
where σ ∈ Σ(k) and t1, . . . , tk ∈ TΣ, denoted by pos(t), is
defined by pos(t) = {ε} ∪ {ip | i ∈ [k], p ∈ pos(ti)}. Note
that the empty string ε is the position of the root of t and
that pos(t) ⊆ N∗. The size |t| of a tree t is |pos(t)|. We write
p 	 p′ when p is a prefix of p′, that is, p is an ancestor
position of p′, and p ≺ p′ when p is a proper prefix of
p′. For p, p′ ∈ pos(t), let nca(p, p′) be the nearest common
ancestor position of p and p′, that is, the longest common
prefix of p and p′. For a tree t = σ(t1, . . . , tk) and p ∈ pos(t),
the subtree t|p of t at p is defined as t|ε = t and t|ip = ti|p for
i ∈ [k] and p ∈ pos(ti). For trees t, t′ and p ∈ pos(t), t[t′]p

denotes the tree obtained from t by replacing t|p with t′ at
position p. Let λt(p) be the symbol of tree t at p, defined as
λt(p) = σ′ where t|p = σ′(t′1, . . . , t

′
k).

Let X = {x∗} ∪ {xi | i ≥ 1} be a set of variables
of rank 0, and for every k ≥ 1, Xk = {xi | i ∈ [k]}.
For V ⊆ X, we often write TΣ(V) to mean TΣ∪V . A tree
t ∈ TΣ(V) is linear in V if each variable in V occurs at
most once in t. Let CΣ(V) denote the set of linear trees in
TΣ(V). A tree t ∈ TΣ(V) is complete (or non-deleting) in
V if each variable in V occurs at least once in t. Let T̄Σ(V)
(resp. C̄Σ(V)) be the set of complete trees in TΣ(V) (resp.
CΣ(V)). Note that, for a set V ′ of variables disjoint with V ,
T̄Σ∪V (V ′) denotes the set of trees in TΣ(V ∪ V ′) such that
every variable in V ′ occurs at least once. For t ∈ TΣ(X)
and σ ∈ Σ ∪ X, let posσ(t) = {p ∈ pos(t) | λt(p) = σ}
and posY (t) =

⋃
σ∈Y posσ(t) for Y ⊆ Σ ∪ X. Let var(t)

be the set of variables of t, and yieldX : TΣ(X) → X∗

be the function such that yieldX(x) = x for every x ∈ X
and yieldX(σ(t1, . . . , tk)) = yieldX(t1) · · · yieldX(tk) for every
σ ∈ Σ(k) and t1, . . . , tk ∈ TΣ(X). A tree t ∈ TΣ(X) is normal-
ized if yieldX(t) = x1 · · · xk for some k ∈ N. Every mapping
θ : V → TΣ(X) with V ⊆ X is called a substitution. It can
be naturally extended to the mapping from TΣ(V) to TΣ(X).
If V = Xk and xiθ = ti for each i ∈ [k], we also denote tθ
by t[x1 ← t1, . . . , xk ← tk] or t[t1, . . . , tk] if the total order
among variables is understood. If V = {x∗} and θ(x∗) = t′,
we denote tθ by t[t′] or often tt′ without brackets.

Let A, B,C be sets. A relation R from A to B is a subset
of A × B. The domain of R is dom(R) = {t | (t, t′) ∈ R} and
the range of R is rng(R) = {t′ | (t, t′) ∈ R}. The inverse of R
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is R−1 = {(t′, t) | (t, t′) ∈ R}. The composition of R1 ⊆ A × B
and R2 ⊆ B × C is R2 ◦ R1 = {(t, t′′) | (t, t′) ∈ R1, (t′, t′′) ∈
R2} ⊆ A ×C.

A finite tree automaton (TA for short) is a 4-tuple
A = (Q,Σ,Qf , γ), where Q is a finite set of states, Σ is
an alphabet, Qf ⊆ Q is the set of accepting states, and
γ is a finite set of transition rules, each of which is of
the form C[q1, . . . , qk] → q where q, q1, . . . , qk ∈ Q and
C ∈ C̄Σ(Xk). Note that Q ∩ Σ = ∅. In an ordinary def-
inition of TAs the left-hand side of a rule is a tree with
height one, like a(x1, . . . , xk) where a ∈ Σ(k) and xi ∈ Xk.
In this paper, we allow the left-hand side tree with height
two or more. This extension does not change the class
of tree languages recognized by TAs. The move relation
⇒A⊆ TΣ(Q) × TΣ(Q) of the TA A is defined as follows: if
C[q1, . . . , qk] → q ∈ γ and t|p = C[q1, . . . , qk] for some
p ∈ pos(t), then t ⇒A t[q]p. The tree language recognized
by A is L(A) = {t ∈ TΣ | t ⇒∗A q for some q ∈ Qf }where⇒∗A
is the reflexive transitive closure of⇒A. For a state q of A,
let A(q) be the TA obtained from A by replacing the set Qf

of accepting states with the singleton {q}. A set L of trees
is regular if it is recognized by some TA. The size |ρ| of a
transition rule ρ is the size of the tree in its left-hand side,
and the size of the TA A is |Q| + |Σ| +∑ρ∈γ |ρ|.

2.2 Tree Transducers

An extended bottom-up tree transducer (xbot) [9] is a 5-
tuple T = (Q,Σ,Δ,Qf , δ), where Q is a finite set of states,
Σ is an input alphabet, Δ is an output alphabet, Qf ⊆ Q is a
set of final states, and δ is a set of transduction rules of the
form C[q1(x1), . . . , qk(xk)]→ q(t) where k ∈ N, C ∈ C̄Σ(Xk),
t ∈ TΔ(Xk), q, q1, . . . , qk ∈ Q. A rule is normalized if its left-
hand side is normalized. Without loss of generality, we can
assume that every rule is normalized. A rule ρ ∈ δ is an
ε-rule if the left-hand side of ρ has the form q(x) for some
q ∈ Q, and it is input-consuming otherwise. The xbot T
is a bottom-up tree transducer (bot) if the left-hand side of
every rule in δ contains exactly one symbol in Σ. Also, we
define an xbot−ε as an xbot without ε-rules. T is a linear
extended bottom-up tree transducer (l-xbot) if the tree t in
the right-hand side of each rule in δ is linear. The size |ρ| of
a transduction rule ρ is the sum of the sizes of the trees in
both sides of ρ, and the size |T | of the xbot T is |Q| + |Σ| +
|Δ| +∑ρ∈δ |ρ|.

The move relation⇒T⊆ TΣ(Q(TΔ(X)))×TΣ(Q(TΔ(X)))
of the xbot T is defined as follows: t ⇒ρT t′ for a rule
ρ = (l → r) ∈ δ if there exists a position p ∈ pos(t) and a
substitution θ : X → TΔ(X) such that t|p = lθ and t′ = t[rθ]p,
and t ⇒T t′ if there exists ρ ∈ δ such that t ⇒ρT t′. The trans-
formation induced by T , denoted as [[T ]], is the relation de-
fined as {(t, t′) ∈ TΣ × TΔ | t ⇒∗T q(t′) for some q ∈ Qf }
where⇒∗T is the reflexive transitive closure of⇒T . We ab-
breviate dom([[T ]]) by dom(T ) and rng([[T ]]) as rng(T ). For
a tree t, [[T ]](t) = {t′ | (t, t′) ∈ [[T ]]}. For a TA A, the image
T (A) of L(A) by T is {t′ | (t, t′) ∈ [[T ]], t ∈ L(A)}. For a state
q of T , let T (q) be the xbot obtained from T by replacing the

set Qf of final states with the singleton {q}.
Tree transducers T and T ′ are equivalent if [[T ]] =

[[T ′]]. A transducer T is said to be single-valued (or func-
tional) if any two pairs of (t, t′) and (t, t′′) in [[T ]] satisfy
t′ = t′′. If T is single-valued and (t, t′) ∈ [[T ]], then we also
write T (t) for t′. It is known that the single-valuedness of
bots is decidable in polynomial time [10]. We use the prefix
‘s’ to represent that a transducer is single-valued, e.g., we
write for short an s-xbot to denote a single-valued xbot.

We recall the notion of reducedness [10], which is de-
fined for bots but can be naturally applied to xbots. Let ⊥
be the special symbol not in Δ. An xbot T = (Q,Σ,Δ ∪
{⊥},Qf , δ) is reduced if and only if the following three con-
ditions hold:

1. T has no useless states, that is, for every state q ∈ Q,
there exists a tree t = Cts ∈ dom(T ) such that C ∈
C̄Σ({x∗}), ts ∈ TΣ, and t ⇒∗T C[q(t′s)] ⇒∗T q f (t′) for
some q f ∈ Qf and t′s, t

′ ∈ TΔ.

2. There exists a subset U(T ) of Q such that for every rule
C[q1(x1), . . . , qk(xk)]→ q(t) ∈ δ,

• if q ∈ U(T ) then t = ⊥ and qi ∈ U(T ) for each
i ∈ [k], and

• if q � U(T ) then (1) t � ⊥ and (2) for each i ∈ [k],
qi ∈ U(T ) if and only if xi � var(t).

3. No q ∈ Qf occurs in the left-hand side of any rule in δ.

Note that for any q ∈ U(T ) and t = Cts ∈ dom(T ) where C ∈
C̄Σ({x∗}), if t ⇒∗T C[q(t′)] then t′ = ⊥ and the final output
for t does not contain ⊥. That is, the intermediate output at
q is always ⊥ and it is eventually abandoned. Conversely,
for q ∈ Q−U(T ), the intermediate output at q is in TΔ and it
is contained in the final output. For every xbot T , a reduced
xbot equivalent with T can be constructed in linear time in
the same way as the construction for bots [10].

A multi bottom-up tree transducer (mbot) [9], whose
states might have ranks different from one, is a 5-tuple T =
(Q,Σ,Δ,Qf , δ) where Q is a ranked alphabet, Qf ⊆ Q−Q(0)

and δ is a finite set of rules of the form l → r where
l ∈ Σ(Q(X)) is linear in X and r ∈ Q(TΔ(var(l))). The
size |T | and the move relation ⇒T are defined in the same
way as xbots. The induced transformation [[T ]] is defined as
{(t, t′1) ∈ TΣ × TΔ | t ⇒∗T q(t′1, . . . , t

′
n) for some q ∈ Qf }. For

q ∈ Q(k) and a tuple x = (xi1 , . . . , xik ) in (X − {x∗})k, let q(x)
denote q(xi1 , . . . , xik ).

In addition, we define computations of the mbot T . A
tree ϕ in Cδ(Xk) is a (q, q1 · · · qk)-computation of T for t ∈
CΣ(Xk) if the following conditions hold.

1. If t = xi, then q = qi and ϕ = xi, and

2. If t = a(t1, . . . , tm), then ϕ = ρ(ϕ1, . . . , ϕm) for some
rule ρ = a(q′1(x1), . . . , q′m(xm)) → q(t(1), . . . , t(rk(q))) ∈ δ
and (q′j, q1 · · · qk)-computations ϕ j for t j ( j ∈ [m]).

We say that ϕ is a (q, q1 · · · qk)-computation of T if it
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is a (q, q1 · · · qk)-computation for some t ∈ CΣ(Xk). A
(q, ε)-computation is also called a q-computation. Any q-
computation with q ∈ Qf is accepting.

The output T (ϕ) produced by a (q, q1 · · · qk)-computation
ϕ is defined inductively as follows. Let Y = {y j

i |
i ≥ 1, j ∈ [N]} be a set of variables disjoint with X
where N = max{rk(q) | q ∈ Q}. If ϕ = xi, then
T (ϕ) = (y1

i , . . . , y
rk(qi)
i ). Assume ϕ = ρ(ϕ1, . . . , ϕm) where

ρ = (a(q′1(x11, . . . , x1rk(q′1)), . . . , q′m(xm1, . . . , xmrk(q′m))) →
q(t(1), . . . , t(rk(q)))) ∈ δ by renaming variables with-
out loss of generality. Also assume inductively that
T (ϕ j) = (τ j1, . . . , τ jrk(q′j)) for j ∈ [m]. Define T (ϕ) =

(t(1)θ, . . . , t(rk(q))θ) where θ(x jl) = τ jl for j ∈ [m] and l ∈
[rk(q′j)]. We can see that (t, t′) ∈ [[T ]] if and only if there
is an accepting computation ϕ of T for t ∈ TΣ such that
T (ϕ) = t′.

2.3 Determinacy and Subsumption of Tree Transducers

Let Π1 and Π2 be arbitrary classes of tree transducers.

Definition 1 (Determinacy): Let T1 and T2 be tree trans-
ducers in Π1 and Π2, respectively, such that dom(T2) ⊆
dom(T1). T1 determines T2 if and only if there exists a par-
tial function f such that [[T2]] = f ◦ [[T1]]. Π1 is called the
determiner class and Π2 is called the determinee class.

Definition 2 (Subsumption): Let T1 and T2 be tree trans-
ducers in Π1 and Π2, respectively, such that dom(T2) ⊆
dom(T1). T1 subsumes T2 with respect to Π2 if and only
if there exists a single-valued transducer T3 ∈ Π2 such that
[[T2]] = [[T3]] ◦ [[T1]].

From the definition, if T1 subsumes T2 then T1 determines
T2. Conversely, even if there exists some function f such
that [[T2]] = f ◦ [[T1]], f cannot always be induced by some
transducer in Π2 in general.

If determinacy is decidable for a determiner class Π1

and a determinee class Π2, we simply say determinacy is
decidable for (Π1,Π2). We will use a similar notation for
subsumption.

3. Decidability Results on Determinacy

3.1 Overview

We consider the problem of deciding whether, given single-
valued linear xbot (sl-xbot) T1 and single-valued bot (s-bot)
T2 such that dom(T2) ⊆ dom(T1), T1 determines T2 or not.
Our approach is based on the following proposition.

Proposition 1: For any single-valued transducers T1 and
T2 such that dom(T2) ⊆ dom(T1), T1 determines T2 if and
only if [[T2]] ◦ [[T1]]−1 is a partial function.

According to Proposition 1, given sl-xbot T1 and s-bot T2,
our decision algorithm works as follows:

Step 1: Construct a transducer T inv
1 such that [[T inv

1 ]] =
[[T1]]−1;

Fig. 2 A transducer Tex1

Step 2: Construct a transducer T3 such that [[T3]] = [[T2]] ◦
[[T inv

1 ]];
Step 3: Decide whether T3 is single-valued.

In Step 1, the inverse transducer T inv
1 of T1 is computed. T inv

1
is not necessarily an l-xbot. Due to this, we introduce a
slightly larger class, linear extended bottom-up tree trans-
ducers with grafting (l-xbot+g for short), that can represent
not only inverses of l-xbots but also the composition of the
inverses with s-bots. In Step 2, an xbot+g T3 which repre-
sents the composition of T inv

1 followed by T2 is constructed.
Lastly, it is determined whether the composition transducer
T3 is single-valued.

Before we explain the detail of each step, we give an
example of an sl-bot whose inverse cannot be computed by
any l-xbot.

Example 1: Let Σ = {r, a, #} and Δ = {a, #}. Consider an
sl-bot Tex1 = ({qr, q},Σ,Δ, {qr}, δ) where δ consists of the
following four rules:

#→ q(#), a(q(x1), q(x2))→ q(a(x1, x2)),
r(q(x1), q(x2))→ qr(x1), r(qr(x1), q(x2))→ qr(x1).

Tex1 is defined on the trees t where an r-node appears only
as the root of t or the left child of another r-node. Tex1 leaves
only the subtree of t at the left child of the bottom-most r-
node (see Fig. 2). There is an infinite number of trees t′ such
that Tex1(t′) = Tex1(t) because the inverse of Tex1 allows to
insert any number of r-labeled ancestor nodes having arbi-
trary trees in TΣ−{r} as their right subtrees. Even if ε-rules
are allowed, no l-xbot allows to insert a node having an ar-
bitrary tree in TΣ−{r} as its right subtree. Therefore, there is
no l-xbot T such that [[T ]] = [[Tex1]]−1.

To express the inverse of Tex1 in Example 1, a trans-
ducer has to, for an input tree, insert any number of internal
nodes and subtrees non-deterministically. To capture the in-
verse of sl-xbots, we extend xbots by grafting. Let Z be a
set of symbols of rank 0, called g-variables, disjoint with
Σ, Δ, and X. A grafting is a mapping G : Z → 2TΔ . For
t ∈ TΔ(X ∪ Z), let G(t) be the set of trees in TΔ(X) obtained
from t by replacing each g-variable z by a tree in G(z) in all
possible ways.

An xbot+g is a system T = (Q,Σ,Δ,Qf ,G, δ) where
Q, Σ, Δ, and Qf are the same as for an xbot, G is
a grafting, and δ is a finite set of rules of the form
C[q1(x1), . . . , qk(xk)] → q(tr) where k ∈ N, C ∈ C̄Σ(Xk),
tr ∈ TΔ(Xk ∪ Z), and q, q1, . . . , qk ∈ Q. The move rela-
tion by a rule C[q1(x1), . . . , qk(xk)] → q(tr) is as follows:
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if t|p = C[q1(t1), . . . , qk(tk)] where t1, . . . , tk ∈ TΔ, then
t ⇒ t[q(t′[t1, . . . , tk])]p for some t′ ∈ G(tr).

An xbot+g is called an xbot+g(R) when G(z) is reg-
ular for each g-variable z. Also, an xbot+g is called an
xbot+g(B(R)) when for each g-variable z, G(z) can be written
as T (A) for some bot T and TA A.

Example 2: Consider an l-xbot+g(R) Tex2 = ({q, qr},Δ,Σ,
{qr},G, δ′) where δ′ consists of the following four rules

#→ q(#), a(q(x1), q(x2))→ q(a(x1, x2)),
q(x1)→ qr(r(x1, z)), qr(x1)→ qr(r(x1, z)),

and G(z) = TΣ−{r}. Then, Tex2 induces the inverse of Tex1.

Steps 1 to 3 of the decision algorithm can be refined as
follows.

3.2 Step 1: Inversion of sl-xbots

We provide a construction procedure of an l-xbot+g repre-
senting the inverse of a given sl-xbot. Intuitively, the l-
xbot+g is obtained by swapping the left-hand and right-hand
sides of each rule of the sl-xbot. However, we must take
care of variables occurring only in the left-hand side, which
mean deletions of subtrees. In the construction procedure,
such variables are replaced with g-variables.

Let T = (Q,Σ,Δ,Qf , δ) be an l-xbot. The construction
procedure is as follows.

1. Construct a TA AT = (Q,Σ,Qf , γ) where γ =
{Cl[q1, . . . , qk] → q | Cl[q1(x1), . . . , qk(xk)] → q(Cr) ∈
δ}. Note that AT recognizes dom(T ).

2. Construct an l-xbot+g(R) T ′ = (Q,Δ,Σ,Qf ,G, δ′) such
that G(zq

i ) = L(AT (q)) for each g-variable zq
i and δ′ is

the smallest set satisfying the following condition: Let
Cl[q1(x1), . . . , qk(xk)] → q(Cr) be an arbitrary rule in
δ. Let θl be the substitution such that θl(xi) = qi(xi)
for each i ∈ [k], and let θr be the substitution such
that θr(xi) = xi if xi ∈ var(Cr) and θr(xi) = zqi

i oth-
erwise. Moreover, let θn be the substitution for normal-
ization, which is the bijective function from var(Cr) to
Xk′ (k′ = |var(Cr)|) making (Crθl)θn normalized. Then,
(Crθl)θn → q((Clθr)θn) ∈ δ′.

Here, we can represent the grafting G of T ′ as the map-
ping from Z to the set of states of AT : G(z) = q instead of
G(z) = L(AT (q)) for each g-variable z. The construction pro-
cedure can be done in linear time, and the size of the inverse
transducer T ′ is O(|T |).
Lemma 1: For any l-xbot T , an l-xbot+g(R) T inv such that
[[T inv]] = [[T ]]−1 can be constructed.

Proof. It can be shown by induction on move relations of the
transducers that the inverse transducer T inv of T is correctly
constructed by the procedure above. �

3.3 Step 2: Composition of l-xbot+g(R) and s-bot

This step constructs an xbot+g equivalent with the composi-
tion of the l-xbot+g(R) T inv

1 followed by an s-bot T2.

Lemma 2: For any l-xbot+g(R) T and bot T ′, an xbot+g(B(R))

T ′′ such that [[T ′′]] = [[T ′]] ◦ [[T ]] can be constructed.

Proof. It is known that for an l-bot T and a bot T ′, a bot
T ′′ such that [[T ′′]] = [[T ′]] ◦ [[T ]] can be constructed [11],
[12]. We extend straightforwardly the construction for an
l-xbot+g(R) T and a bot T ′. Let T = (Q,Σ,Δ,Qf ,G, δ) and
T ′ = (Q′,Δ,Γ,Q′f , δ

′). Construct T ′′ = (Q × Q′,Σ,Γ,Qf ×
Q′f ,G

′′, δ′′), where

• δ′′ is the set satisfying the following condition: for each
C[q1(x1), . . . , qn(xn)]→ q(t) ∈ δ,

C[(q1, q
′
1)(x1), . . . , (qn, q

′
n)(xn)]→ (q, q′)(t′) ∈ δ′′

if and only if tθ ⇒∗T ′ q′(t′)† for some substitution θ :
Xn ∪ Z → Q′(Xn ∪ Z × Q′) such that

– if xi ∈ Xn then θ(xi) = q′i(xi), and
– if z ∈ Z then θ(z) = q′((z, q′)) for some q′ ∈ Q′,

and
• G′′ : Z × Q′ → 2TΓ such that G′′(z, q′) = T ′(q′)(G(z))

for each (z, q′) ∈ Z × Q′.

The correctness of the above construction can be proved by
showing that for u ∈ TΣ and u′ ∈ TΓ, u ⇒∗T ′′ (q, q′)(u′) if
and only if there exists u′′ ∈ TΔ such that u ⇒∗T q(u′′) and
u′′ ⇒∗T ′ q′(u′). �

The grafting G′′ of the composition transducer T ′′ of
T inv

1 and T2 can be expressed by a mapping from g-variables
to pairs of the states in AT1 and T2, i.e., G′′(z, q′) = (q, q′)
instead of G′′(z, q′) = T2(q′)(G(z)) where G(z) = L(AT (q))
for the grafting G of T inv

1 . Thus, it can be expressed by using
O(|AT1 | + |T2|) space. Let N1 and N2 be the number of rules
of T inv

1 and T2, respectively. Let S l1 (resp. S r1) be the max-
imum size of the left-hand size (resp. the right-hand side)
of rules of T inv

1 , and S r2 be the maximum size of the right-
hand side of rules of T2. Let M1 be the maximum number
of symbols in neither Q nor X appearing in the right-hand
side of rules of T inv

1 . The size of each rule of T ′′ is at most
S l1+S r2

M1 , and the number of rules of T ′′ is at most N1N2
M1 .

Thus, the size of T ′′ is exponential in the sizes of T inv
1 and

T2. If M1 is bounded by some constant, the size of T ′′ is
polynomial in the sizes of T inv

1 and T2.

3.4 Step 3: Deciding Single-Valuedness of xbot+g(B(R))

This step decides whether the xbot+g(B(R)) obtained in Step 2
is single-valued. It is known that single-valuedness of bots
is decidable in polynomial time [10]. However, the class of
transformations induced by xbot+gs is a proper superclass of
the class induced by bots.

Let T3 be the xbot+g(B(R)) obtained in Step 2. Let G be
the grafting of T3. The overview of Step 3 is as follows:

†The move relation⇒T ′ is naturally extended to be the relation
on TΔ(Q′(TΓ(X ∪ Z × Q′))) × TΔ(Q′(TΓ(X ∪ Z × Q′))): t ⇒T ′ t′ if
there exists p ∈ pos(t) and a substitution θ : X → TΓ(X ∪ Z × Q′)
such that t|p = lθ and t′ = t[rθ]p.
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Step 3-1 Check if there exists an xbot equivalent with T3. If
there exists no such xbot, answer that T3 is not single-
valued. Otherwise, construct a reduced xbot T3.1 equiv-
alent with T3 and go to 3-2.

Step 3-2 Check if there exists an xbot−ε equivalent with
T3.1. If there exists no such xbot−ε , answer that T3

is not single-valued. Otherwise, construct a reduced
xbot−ε T3.2 equivalent with T3.1 and go to 3-3.

Step 3-3 Decide whether T3.2 is single-valued or not.

We further refine the above sub-steps as follows.

(1) Step 3-1: Constructing an equivalent xbot without g-
variables

Step 3-1 tries to eliminate g-variables from T3 keeping the
induced transformation. For this, we check if the language
(expressed by) G(z) contains two or more trees for each g-
variable z. If there exists a g-variable mapped to a language
of size more than one, T3 is not single-valued. Otherwise,
we can easily obtain an equivalent xbot without g-variables.
Step 3-1 consists of the following substeps.

(i) For each rule containing a g-variable z of T3,

• if G(z) = ∅ then delete the rule, and
• if G(z) = {t} for some tree t then replace z with t.

(ii) Construct an equivalent reduced xbot+g(B(R)) T3.1.

(iii) If T3.1 has a rule containing a g-variable z (which sat-
isfies |G(z)| ≥ 2 by (i)), answer that T3 is not single-
valued and halt. Otherwise, T3.1 is an xbot.

If the procedure outputs a transducer, it is an xbot equivalent
with T3 because it contains no g-variables and the deletion
and replacement in (i) certainly do not ruin the transforma-
tion induced by T3. In what follows, we show in Lemma 3
that if the procedure fails to output an equivalent transducer,
T3 is not single-valued.

Lemma 3: Let T = (Q,Σ,Δ,Qf ,G, δ) be a reduced xbot+g.
If T has a rule whose right-hand side has a state q ∈ Q−U(T )
and a g-variable z such that |G(z)| ≥ 2, then T is not single-
valued.

Proof. Assume that T has a rule Cl[q1(x1), . . . , qk(xk)] →
q(tr) where q ∈ Q − U(T ) and tr has a g-variable z
such that |G(z)| ≥ 2. Since T is reduced, there ex-
ist t = CCl[t1, . . . , tk] ∈ dom(T ) where C ∈ C̄Σ({x∗}),
t′ ∈ T̄Δ({x∗}), t′1, . . . , t

′
k ∈ TΔ, and q f ∈ Qf such that

t ⇒∗T CCl[q1(t′1), . . . , qk(t′k)] ⇒T C[q(tr[t′1, . . . , t
′
k])] ⇒∗T

q f (t′t′r[t
′
1, . . . , t

′
k]) for any t′r ∈ G(tr). Since |G(z)| ≥

2, G(tr) has at least two distinct trees t1
r and t2

r . Also,
the positions of each variable in t1

r and t2
r are identical.

Hence, t1
r [t′1, . . . , t

′
k] � t2

r [t′1, . . . , t
′
k] and thus the final out-

puts t′t1
r [t′1, . . . , t

′
k] and t′t2

r [t′1, . . . , t
′
k] are different. There-

fore, |[[T ]](t)| ≥ 2. �
We need to check in the procedure which one holds,

|T (A)| = 0, |T (A)| = 1, or |T (A)| ≥ 2 for an s-bot T and a
TA A because G(z) = T2(q′)(AT1 (q)) for some states q and

q′ of AT1 and T2, respectively. It can be done in polynomial
time by using alternating tree automata. An alternating tree
automaton (ATA) [7] is a tuple A = (Q,Σ,Qf ,Φ) where Q is
a finite set of states, Σ is an alphabet, Qf ⊆ Q is a set of ac-
cepting states, and Φ is a mapping from Q×Σ to B+(Q×N)
such that Φ(q, a) ∈ B+(Q × [rk(a)]) where B+(P) is the set
of positive propositional formulas over the set P of propo-
sitional variables. The acceptance of a tree in a state by an
ATA is inductively defined as follows: the ATA A accepts
a tree a(t1, . . . , tn) in a state q if Φ(q, a) is satisfied with the
truth assignment ν that assigns true to (q, i) if and only if A
accepts ti in q for each (q, i) ∈ Q × [rk(a)].

Lemma 4: Given an s-bot T = (QT ,Σ,Δ,Qf , δ) and a TA
A = (QA,Σ,QA

f , γ), it can be decided in polynomial time
which of the three cases holds: |T (A)| = 0, |T (A)| = 1, or
|T (A)| ≥ 2.

Proof. The decision procedure is shown below.

1. Decide whether L(AT )∩L(A) = ∅, where AT recognizes
dom(T ). If this is the case, answer that |T (A)| = 0.
Otherwise, go to 2.

2. Construct a TA At that accepts only a single tree t ∈
dom(T ) ∩ L(A).

3. Construct a TA Ao such that L(Ao) = T (At) = {T (t)}.

4. Construct an ATA Aō recognizing the complement of
L(Ao), i.e., TΔ − L(Ao).

5. Construct an ATA A′ such that L(A′) = {t ∈ TΣ | T (t) ∈
L(Aō)}.

6. Decide whether L(A′) ∩ L(A) = ∅. If so, answer that
|T (A)| = 1. Otherwise, answer that |T (A)| ≥ 2.

It is clear that dom(T ) ∩ L(A) = ∅ if and only if |T (A)| = 0.
Assume that t ∈ dom(T ) ∩ L(A). If there exists a tree t′ in
L(A′) ∩ L(A), then T (t′) is defined and T (t′) � T (t), that
is, |T (A)| ≥ 2, because T (t′) ∈ L(Aō), T (t) ∈ L(Ao), and
L(Aō) ∩ L(Ao) = ∅. Otherwise, for all t′ ∈ dom(T ) ∩ L(A),
t′ � L(A′) and thus T (t′) ∈ TΔ − L(Aō) = L(Ao) = {T (t)}.
Therefore, |T (A)| = 1.

Constructing the intersection TA AI of AT and A, the
size of which is O(|T ||A|), and the emptiness test of AI can
be done in O(|T ||A|) time. We can construct At in O(|AI |)
time by choosing for each accessible state an appropriate
rule of AI with the state in the right-hand side, along with the
emptiness test of AI . TA Ao can be constructed in O(|T ||At |)
time as follows. We can assume without loss of generality
that T is reduced and At is ordinary and reduced. For rules
a(p1(x1), . . . , pn(xn)) → p(t) of T and a(q1, . . . , qn) → q of
At, respectively, where t is not ⊥, construct a rule t′ → (p, q)
where t′ = t[x1 ← (p1, q1), . . . , xn ← (pn, qn)]. The set
of accepting states of Ao is the set of state pairs (p f , q f )
such that p f is a final state of T and q f is an accepting
state of At. And, since Ao accepts only a single tree, we
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can construct ATA Aō in O(|Ao|) time such that each tran-
sition formula of Aō is a disjunction of atomic proposi-
tions. Let Aō = (Q,Δ,Qf ,Φ). Then, we construct ATA
A′ = (QT × Q,Σ,Q′f ,Φ

′) from Aō and T such that for

(qT , q) ∈ QT × Q and a ∈ Σ,

Φ′((qT , q), a)

=
∨

a(qT
1 (x1),··· ,qT

n (xn))→qT (tr)∈δ

Inf(tr[q
T
1 (x1), . . . , qT

n (xn)], q).

The function Inf is defined inductively as follows:

Inf(b(t1, . . . , tn), q)

=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Inf(t1, q1) ∨ · · · ∨ Inf(tn, qn)
if Φ(q, b) = (q1, 1) ∨ · · · ∨ (qn, n),

true if Φ(q, b) = true,
f alse if Φ(q, b) = f alse.

Inf(qT
i (xi), q j) = ((qT

i , q j), i).

Observe that each transition formula of A′ is a disjunction of
atomic propositions. From the observation, the emptiness of
the intersection TA of A′ and A can be decided in O(|A′||A|).

�

(2) Step 3-2: Constructing an equivalent xbot−ε without
ε-rules

We say that a nonempty subset δε of ε-rules is repeatedly-
producing at state q if q(x∗) ⇒∗δε q(t) for some tree t ∈
T̄Δ({x∗})− {x∗}, where⇒∗δε means zero or more applications
of rules in δε .

Step 3-2 first finds a subset of ε-rules of T3.1 repeatedly-
producing at some state, which produces many distinct out-
put trees for an input tree. If such subset exists, it answers
that T is not single-valued. Otherwise, it eliminates ε-rules
keeping the transformation induced by T3.1. We give two
lemmas to show the correctness of the above procedure. We
will use an idea similar to the proof of Proposition 10 of [9].

Lemma 5: Let T = (Q,Σ,Δ,Qf , δ) be a reduced xbot. If
there is a subset δε of ε-rules in δ repeatedly-producing at
some q ∈ Q − U(T ), then T is not single-valued.

Proof. Assume that there is a subset δε of ε-rules in δ
repeatedly-producing at some q ∈ Q − U(T ). Then, there
are trees t ∈ TΣ, t′ ∈ TΔ, D ∈ C̄Σ({x∗}), tc, tD ∈ T̄Δ({x∗}),
and q f ∈ Qf such that tc has at least one symbol in Δ
and D[t] ⇒∗T D[q(t′)] ⇒∗T D[q(tct′)] ⇒∗T D[q(tn

c t′)] ⇒∗T
q f (tDtn

c t′) for any positive integer n. �
Following [9], we call a state qe ∈ Q an end state

if there exists an input-consuming rule whose left-hand
side contains qe. The set of all end states of Q is de-
noted by E(T ). For each input-consuming rule ρ =
(Cl[q1(x1), . . . , qk(xk)] → q(tr)) ∈ δ, let rhs+(ρ) = {q′(t) |
q(tr) ⇒∗T q′(t), q′ ∈ E(T ) ∪ Qf }. Note that only ε-rules can
be used in the derivation q(tr)⇒∗T q′(t).

Lemma 6: Let T = (Q,Σ,Δ,Qf , δ) be a reduced xbot. If

there is no subset δε of ε-rules in δ repeatedly-producing at
any q ∈ Q − U(T ), then rhs+(ρ) is finite for every input-
consuming rule ρ of T and an xbot−ε equivalent with T can
be constructed.

Proof. Assume that there is no subset δε of ε-rules in δ
repeatedly-producing at any q ∈ Q − U(T ). By the assump-
tion, for any tree t, q(t) ⇒+T q(t′) implies t = t′. Thus,
suppose that nr is the number of rules of T , and then we
can say that q(t) ⇒∗T q(t′) if and only if q(t) ⇒i

T q′(t′) for
some i ∈ [nr] where ⇒i

T denotes the move relation by i
times applications of rules. We just show the only if part
by induction on the number n of rules used twice or more
in the rewriting sequence of q(t) ⇒∗T q(t′). If n = 0, it is
clear that q(t) ⇒i

T q′(t′) for some i ∈ [nr]. If n > 0, let r
be a rule used twice or more, and then q′′(t′′1 ) and q′′(t′′2 ) be
the first and last trees obtained by applying r in the rewrit-
ing sequence, that is, q(t) ⇒∗T q′′(t′′1 ) ⇒+T q′′(t′′2 ) ⇒∗T q′(t′).
Since q′′(t′′1 ) ⇒+T q′′(t′′2 ) implies t′′1 = t′′2 , we have q(t) ⇒∗T
q′′(t′′1 ) ⇒∗T q′(t′), in which the number of rules used twice
or more is at most n − 1. From the inductive hypothesis, we
can conclude q(t)⇒i

T q′(t′) for some i ∈ [nr].
For each rule ρ = (Cl[q1(x1), . . . , qk(xk)] → q(tr)) ∈ δ,

rhs+(ρ) = {q′(t) | q(tr) ⇒i
T q′(t), q′ ∈ E(T ) ∪ Qf , i ∈ [nr]}.

Since rhs+(ρ) is finite, we can construct an equivalent xbot−ε

Te = (Q,Σ,Δ,Qf , δ
′) where δ′ =

⋃
l→r∈δΣ {l → r′ | r′ ∈

rhs+(l → r)} and δΣ is the subset of input-consuming rules
of δ. �

It can be decided in polynomial time by the follow-
ing algorithm whether there is a subset of ε-rules of T3.1

repeatedly-producing at some state.

(i) Construct the weighted graph Grp = (Q − U(T3.1), Ee)
from T3.1 = (Q,Σ,Δ,Qf , δ) where Ee = {(q, q′) |
q(x1) → q′(t) ∈ δ, t ∈ T̄Δ({x1})}, and the weight of
each (q, q′) is 1 if there is a rule q(x1)→ q′(t) such that
t includes at least one output symbol, and otherwise 0.

(ii) Find a cycle whose weight is at least one. If such a
cycle exists, answer that T3 is not single-valued and
halt.

If there is no such subset of ε-rules, according to the proof of
Lemma 6, we can construct a reduced xbot−ε T3.2 equivalent
with T3.1 in polynomial time.

(3) Step 3-3: Deciding single-valuedness of xbot−ε

In this substep, we prove the decidability of single-
valuedness of xbot−εs. The idea of the proof is the same
as that of the proof of the decidability of k-valuedness of
bottom-up tree transducers (bots) [13]. The proof in [13]
uses Engelfriet’s property T1(i) to show that for a bot T ,
there exists an input tree t of height polynomial in |T | such
that |[[T ]](t)| ≥ 2 if and only if T is not single-valued. We use
a variant of the property (Lemma 7) to prove the decidability
of single-valuedness of xbot−εs.

We give some notations for the property. Let TΣ[Xn] =
T̄Σ(Xn) ∪ TΣ, that is, every t ∈ TΣ[Xn] has all the variables
in Xn or has no variable. For t, s ∈ TΣ[Xn], ts is the tree
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obtained from t by replacing each variable with s. Note that
ts = t if t has no variable. For m ∈ [n], let T n,m

Σ
[Xn] =

T m−1
Σ
× TΣ[Xn] × T n−m

Σ
. For t ∈ T n,m

Σ
[Xn], we denote by t(i)

the ith element of t, i.e., t = (t(1), . . . , t(n)). For s ∈ TΣ[Xn]
and t ∈ T n,m

Σ
[Xn], st is the tree obtained from s by replacing

xi with t(i) for all i ∈ [n]. Let tu = (t(1)u, . . . , t(n)u) for
u ∈ T n,m

Σ
[Xn]. Notice that since t ∈ T n,m

Σ
[Xn], so is tu. For

t1, t2, t3, t4, t5 ∈ T n,m
Σ

[Xn] and S = {i1, . . . , i|S |} ⊆ [1, 5], let
tS = ti1 · · · ti|S | where i j < i j+1 for j ∈ [|S | − 1].

Now, we give an extension of Engelfriet’s property
T1(i) (see Appendix for the proof).

Lemma 7: Let n, n′ be arbitrary positive integers, and m ∈
[n],m′ ∈ [n′]. Suppose that t0 ∈ TΣ[Xn], t1, t2, t3, t4, t5 ∈
T n,m
Σ

[Xn], t′0 ∈ TΣ[Xn′ ], t′1, t
′
2, t
′
3, t
′
4, t
′
5 ∈ T

n′,m′

Σ
[Xn′ ]. If

t0tS = t′0t′S for every S such that {5} ⊆ S ⊂ [1, 5], then
t0t[1,5] = t′0t′[1,5].

Before we use Lemma 7, we decompose the left-hand
side of each rule of T3.2 into several rules each of which
has only one input symbol. Actually, we construct a multi
bottom-up tree transducer (mbot) equivalent with a given
xbot−ε . We follow the construction in [9, Lemma 14] . We
first give an example of the decomposition of xbot−ε rules.
The decomposition of a rule is done by inserting new states
for each symbol appearing in the left-hand side of the rule.

Example 3: Assume that an xbot−ε T has the following
transduction rule

ρ = a(b(q1(x1), q2(x2), q3(x3)), q4(x4))→ q(c(x1, x2, x4)).

Then, the mbot Ta obtained by decomposing T contains the
following rules

b(q1(x1), q2(x2), q3(x3))→ qρ1(x1, x2) and

a(qρ1(x1, x2), q4(x4))→ q(c(x1, x2, x4))

(see Fig. 3). Note that qρ1 maintains x1 and x2 but not x3

because x3 does not occur in the right-hand side of ρ.

Formally, the translation of an xbot−ε into an mbot is as fol-
lows: Given an xbot−ε T = (Q,Σ,Δ,Qf , δ), construct an
mbot Ta = (Q ∪ Qm,Σ,Δ,Qf , δa) equivalent with T where

• Qm = {qρp | ρ = (Cl[q1(x1), . . . , qk(xk)] → q(tr)) ∈
δ, p ∈ posΣ(Cl) − {ε}},

• δa is the smallest set satisfying the following condition.
For each ρ = (Cl[q1(x1), . . . , qk(xk)]→ q(tr)) ∈ δ, let

– Vp = {xi} and qρp = qi if p ∈ posxi
(Cl) for some xi

and
– Vp = var(Cl|p) ∩ var(tr) and qρp be a new state if

p ∈ posΣ(Cl) − {ε},

and xp be the sequence of all the variables in Vp in
index order, and

– σε(q
ρ
1(x1), . . . , qρkε (xkε )) → q(tr) ∈ δa where σε =

λCl (ε) and kε = rk(σε), which is called the top rule
of ρ,

– for each position p ∈ posΣ(Cl) − {ε}, let θn :

Fig. 3 An example of translating an xbot−ε into an mbot

Fig. 4 Decomposition of an x-partial computation ϕ for t into ϕ0 and
ϕ1, . . . , ϕm

Vp → X|Vp | such that Cl|pθn is normalized, then
the rule obtained by applying θn to the both sides
of σp(qρp1(xp1), . . . , qρpkp

(xpkp )) → qρp(xp) belongs
to δa, where σp = λCl (p) and kp = rk(σp).

We call the above translation the rule-decomposition. The
rule-decomposition can be done in linear time. Let δT =
{ρ ∈ δa | ρ is the top rule of a rule in δ}. A (q, q1 · · · qk)-
computation ϕ of Ta is x-partial if λϕ(ε) ∈ δT . Note that
every accepting computation of Ta is x-partial. If ϕ is x-
partial, Ta(ϕ) is a tree by construction of Ta.

We give two facts on the mbot obtained from an
xbot−ε by the rule-decomposition, and prove that the single-
valuedness of the mbot is in coNP by using the facts and
Lemma 7. Let Hm be a set of m variables h1, . . . , hm disjoint
with X and Y . Recall that Y is the set of special variables ap-
pearing in the output produced by a computation of mbots
(see the definition of the output of mbots in Sect. 2.2). We
denote t[h1 ← t1, . . . , hm ← tm] by t[t1, . . . , tm]H .

Proposition 2: Let Ta = (Qa,Σ,Δ,Qf , δa) be the mbot
obtained from an xbot−ε T = (Q,Σ,Δ,Qf , δ) by the rule-
decomposition, and let t ∈ TΣ(Xk). If there is an x-partial
(q, q1 · · · qk)-computation ϕ of Ta for t, then there exist
t0 ∈ TΣ(Xk ∪ Hm) and subtrees t1, . . . , tm of t satisfying the
following conditions (see Fig. 4).

• t = t0[t1, . . . , tm]H .
• There exist ϕ0 ∈ Tδa (Xk ∪ Hm) and x-partial com-

putations ϕ1, . . . , ϕm for t1, . . . , tm such that ϕ =

ϕ0[ϕ1, . . . , ϕm]H .
• There exist mappings θX : Xk → TΣ(Xm) and θH :

Hm → Xm satisfying Cl = (t0θX)θH where λϕ0 (ε) is the
top rule of ρ = (Cl[q′1(x1), . . . , q′m(xm)]→ q(tr)) ∈ δ.

We call ϕ0 the x-initial computation of ϕ, and θH the x-fitting
mapping of ϕ0. By letting Ta(hi) = hi for each hi ∈ Hm, we
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have that Ta(ϕ) = Ta(ϕ0)[Ta(ϕ1), . . . ,Ta(ϕm)]H . Note that
Ta(ϕ0) and tr are identical except for variable positions, i.e.,
Ta(ϕ0)θV = trθV where θV maps every z ∈ X∪Y∪H to some
unique variable†.

Lemma 8: Let Ta = (Qa,Σ,Δ,Qf , δa) be the mbot ob-
tained from an xbot−ε T = (Q,Σ,Δ,Qf , δ) by the rule-
decomposition. For every q ∈ Qa and C ∈ C̄Σ({x∗}),
if C[q(x1, . . . , xn)] ⇒+Ta

q(t1, . . . , tn), then (t1, . . . , tn) ∈
T n,m
Δ

[Xn] for some m ∈ [n].

Proof. Assume that q ∈ Q. Since every state in Q has rank
one, for any C ∈ C̄Σ({x∗}), if C[q(x∗)] ⇒∗Ta

q(t), then t ∈
TΔ({x∗}) = T 1,1

Δ
.

Assume that q ∈ Qm and C is an arbitrary tree
in C̄Σ({x∗}) such that C[q(x1, . . . , xn)] ⇒+Ta

q(t1, . . . , tn).
From the decomposition procedure, there exists a rule
ρ = (Cl[q1(x1), . . . , qn(xn)] → qρ(tr)) ∈ δ of T such that
q = qρp for some position p in posΣ(Cl) − {ε}. Thus,
C[q(x1, . . . , xn)] ⇒∗ρ C′[qρ(t′′)] ⇒∗Ta

q(t1, . . . , tn) for some
C′ ∈ C̄Σ({x∗}) and t′′ ∈ T̄Δ(Xn), where ⇒∗ρ means zero or
more applications of only the rules obtained by decompos-
ing ρ. Note that t′′ must contain all the variables x1, . . . , xn.
In the above derivation C′[qρ(t′′)] ⇒∗Ta

q(t1, . . . , tn), t′′ is
either abandoned or contained as a subtree in tm for some
m ∈ [n]. Thus, (t1, . . . , tn) ∈ T n,m

Δ
for some m ∈ [n]. �

Henceforth, we denote q(t1, . . . , tn) by q(t) where t =
(t1, . . . , tn). The following lemma is proved in a similar way
to the proof of Theorem 2.2(i) in the Ref. [13].

Lemma 9: Let Ta = (Qa,Σ,Δ,Qf , δa) be the mbot ob-
tained from an xbot−ε T by the rule-decomposition. Assume
that the maximum rank of states is N.

(1) Ta is not single-valued if and only if there is a tree t of
depth less than 5(|Qa|N)2 such that |[[Ta]](t)| > 1.

(2) It can be decided in non-deterministic polynomial time
whether Ta is not single-valued.

Proof. (1) The if part is trivial and so we prove the only
if part. Assume that t ∈ TΣ is a tree of minimal size such
that there are two distinct derivations t ⇒∗Ta

q f 1(to1) and
t ⇒∗Ta

q f 2(to2) where q f 1, q f 2 ∈ Qf , and to1 � to2. For a
contradiction, assume that the depth of t is greater than or
equal to 5(|Qa|N)2. Consider a path of length greater than
or equal to 5(|Qa|N)2. From Lemma 8 and the pigeonhole
principle, we can choose

• five different positions p1, . . . , p5 of t over the path,
where p1 ≺ · · · ≺ p5 and

• two pairs (q1,m1) and (q2,m2) in Qa × [N] where m1 ∈
[rk(q1)] and m2 ∈ [rk(q2)]

satisfying the following condition: Let Ci = t[x∗]pi for
†The counterparts of Ta(ϕ0) and tr before transformation Ta

are t0 and Cl, which are not the same in general, because t0 lacks
θX(xi) below xi (i ∈ [k]). However, λϕ0 (ε) is the top rule of ρ. By
construction of Ta, the right-hand side of λϕ0 (ε) contains tr. Hence
Ta(ϕ0)θV = trθV holds for some θV .

i ∈ [0, 4] and C5 = t|p5 , and for each j ∈ {1, 2}, there ex-

ist t j
0, . . . , t

j
5 ∈ T

rk(q j),mj

Δ
[Xrk(q j)] such that

t = C0C1C2C3C4C5 ⇒∗Ta
C0C[1,4][q j(t

j
5)]

⇒∗Ta
C0C[1,3][q j(t

j
[4,5])]

⇒∗Ta
· · ·

⇒∗Ta
C0[q j(t

j
[1,5])]

⇒∗Ta
q f j(t

j
0t j

[1,5]) = q f j(to j).

By the minimality of t, we have t1
0t1

S = t2
0t2

S ∈ [[Ta]](C0CS )
for every S such that {5} ⊆ S ⊂ [1, 5]. From Lemma 7,
to1 = t1

0t1
[1,5] = t2

0t2
[1,5] = to2. This is a contradiction.

(2) As the proof for ordinary bots in [13], if Ta is not single-
valued, we can find paths of two distinct computations of
Ta for some input tree that produce distinct paths of output
trees leading to the same position. Let B(Γ) := {(a, j) | a ∈
Γ, 0 ≤ j ≤ rk(a)}. Let z′ ∈ X ∪ Y ∪ H. Let b0(z′) = ∅.
For z ∈ X ∪ Y ∪ H, let bz(z′) = {ε} if z = z′ and bz(z′) = ∅
otherwise. If s = a(s1, . . . , sm) then let

b0(s) = {(a, 0)} ∪
m⋃

i=1

(a, i) · b0(si)

and for z ∈ X ∪ Y ∪ H, let

bz(s) =
m⋃

i=1

(a, i) · bz(si).

For example, for s = a(b(x1, c), x2), b0(s) =

{(a, 0), (a, 1)(b, 0), (a, 1)(b, 2)(c, 0)} and bx1 (s) = {(a, 1)(b, 1)}.
For w = (a1, j1) · · · (ar, jr)(a, 0) ∈ B(Γ)∗, we say that path w
of s leads to position pr = j1 · · · jr. We denote j1 · · · jr by
o(w). And, for w = (a1, j1) · · · (ar, jr) where jr � 0, we
denote j1 · · · jr by os(w).

Next, we define the set of paths of the output tree pro-
duced by paths of an x-partial computation ϕ of Ta. For
ρ ∈ δa, let rk(ρ) be the number of states appearing in the
left-hand side of ρ, and let BS (δa) = B(δT ) · B(δa − δT )∗.
Remember that δT is the set of top rules. For π ∈ BS (δa)+,
let hdr(π) = ρ when the head of π is (ρ, j1). Note that any
π ∈ b0(ϕ) is in BS (δa)+. For π ∈ BS (δa)+, we define ΠTa (π)
as follows.

• If π ∈ BS (δa), hdr(π) is the top rule of
Cl[q′1(x1), . . . , q′k(xm)] → q(tr), and o(π) ∈ posΣ(Cl),
then let

ΠTa (π) = b0(tr).

• If π = π′ · π′′ where π′ ∈ BS (δa), π′′ ∈ BS (δa)+, hdr(π)
is the top rule of Cl[q′1(x1), . . . , q′k(xm)] → q(tr), and
Cl|os(π′) = xi, then let

ΠTa (π) = bxi (tr) · ΠTa (π′′).

Then, for any x-partial computation ϕ of Ta, we have

b0(Ta(ϕ)) =
⋃

π∈b0(ϕ)

ΠTa (π)
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Now, we give a proof sketch for the above equation. As-
sume that ϕ = xi. Then we have b0(Ta(ϕ)) = b0(ϕ) = ∅.
Next, assume that ϕ is an x-partial computation which is
not a variable. By Proposition 2, we can write ϕ as ϕ =
ϕ0[ϕ1, . . . , ϕm]H where ϕ0 is the x-initial computation of
ϕ with its fitting mapping θH , and λϕ(ε) is the top rule of
Cl[q′1(x1), . . . , q′m(xm)]→ q(tr) ∈ δ. We have

b0(Ta(ϕ)) = b0(Ta(ϕ0)[Ta(ϕ1), . . . ,Ta(ϕm)]H)

= b0(tr) ∪
m⋃

i=1

bθH (hi)(tr) · b0(Ta(ϕi))

=
⋃

π∈b0(ϕ0)

ΠTa (π) ∪
⋃

π∈b0(ϕ)−b0(ϕ0)

ΠTa (π)

=
⋃

π∈b0(ϕ)

ΠTa (π).

We give a necessary and sufficient condition for Ta

to be not single-valued, which can be decided in non-
deterministic polynomial time:

Ta = (Qa,Σ,Δ,Qf , δa) is not single-valued if and only
if Ta satisfies the following property: Let L and N be the
maximum ranks of symbols in Σ and states in Qa, respec-
tively. Let U = 5(|Qa|N)2. Then, there exist k ≤ 2LU,
t ∈ T̄ (Xk), and (qi, qi

1 · · · q
i
k)-computations ϕi (i = 1, 2) of Ta

for t such that the followings hold:

1. |t| ≤ 2LU.

2. q1, q2 ∈ Qf .

3. dom(T (q1
j )) ∩ dom(T (q2

j )) � ∅ for j ∈ [k].

4. There exist paths πi ∈ b0(ϕi) and wi ∈ ΠTa (πi) (i = 1, 2)
such that w1 and w2 lead to the same position but w1 �
w2. �

Theorem 1: Deciding single-valuedness of xbot+g(B(R))s is
in coNP.

It is still open whether single-valuedness is decidable in
polynomial time for xbots.

Theorem 2: Determinacy for (sl-xbots, s-bots) is in coN-
EXPTIME.

Proof. Our decision algorithm takes polynomial time at
Step 1, and exponential time at Step 2. Since the size of
the transducer T3 constructed at Step 2 is at most exponen-
tial in the input size, from Theorem 1, single-valuedness of
T3 at Step 3 can be decided in co-nondeterministic expo-
nential time. Thus, determinacy for (sl-xbots, s-bots) is in
coNEXPTIME. �

If the left-hand side of every rule of a given sl-xbot T1

contains at most M1 symbols which are neither states nor
variables for some constant M1, the right-hand side of every
rule of the inverse transducer T inv

1 also contains at most M1.
Then, the size of the transducer T3 is polynomial as stated
in Sect. 3.3, and thus determinacy for such class is in coNP.

4. Decidability Result on Subsumption

We show that subsumption is decidable for (sl-xbots, s-
bots). As shown in Sect. 3, given an sl-xbot T1 and an s-bot
T2, if T1 determines T2, we can construct a reduced s-xbot−ε

T3 such that [[T3]] = [[T2]] ◦ [[T1]]−1. So, in order to decide
subsumption, it suffices to check whether each rule of the
reduced s-xbot−ε T3 can be decomposed into non-extended
rules.

Roughly speaking, this check is accomplished by ex-
amining the ‘relative positions’ among variables. For ex-
ample, consider the following extended rule of a transducer
T :

a(b(q1(x1), q2(x2)), q3(x3))→ q(c(x1, d(x2, x3))).

such that rng(T (q j)) is infinite for all j ∈ [3]. This rule
cannot be decomposed into non-extended ones because the
relative positions among variables are different in the both
side of the rule. More precisely, the left-hand side has a
subtree with x1 and x2 but without x3, while the right-hand
side does not have such subtrees. For an extended rule to be
decomposed, the right-hand side must preserve the relative
positions among variables in the left-hand side. The next
lemma precisely states the notion of ‘relative positions’ and
shows that it is a necessary and sufficient condition for an
s-xbot−ε to have an equivalent s-bot.

Lemma 10: Let T = (Q,Σ,Δ,Qf , δ) be a reduced s-
xbot−ε . An s-bot equivalent with T can be constructed if
and only if T satisfies the following condition (X): for ev-
ery rule Cl[q1(x1), . . . , qk(xk)] → q(tr) ∈ δ and any three
variables xi1 , xi2 , xi3 ∈ var(tr), if

(X1) rng(T (qi j )) is infinite for all j ∈ [3], and

(X2) nca(p1, p2) � nca(p1, p3) where {p j} = posxi j
(Cl) for

j ∈ [3], then

(X3) the minimal suffix ts ∈ TΣ(Xk) such that tr = tpts for
some tp ∈ T̄Σ∪Xk−{xi1 ,xi2 }({x∗}) does not contain xi3 .

Proof Sketch. Assume (X) does not hold and we
can construct an s-bot T ′ equivalent with a given s-
xbot−ε T . Since (X) does not hold, there is a rule
Cl[q1(x1), . . . , qk(xk)] → q(tr) ∈ δ and xi1 , xi2 , xi3 ∈ var(tr)
such that (X1) and (X2) hold but (X3) does not. Let
p12 = nca(p1, p2) in (X2), and ts be the minimal suffix of
tr in (X3). Since T ′ is an s-bot equivalent with T , T ′ must
have rules of which left-hand sides ‘cover’ the subtree Cl|p12 ,
which contains xi1 and xi2 and does not contain xi3 . Also,
since Cl[x∗]p12 does not contain xi1 and xi2 , some suffix t′s
of tr in the right-hand side such that tr = t′pt′s for some
t′p ∈ T̄Σ∪Xk−{xi1 ,xi2 }({x∗}) should be generated by T ′ corre-
sponding to Cl|p12 . However, the minimal suffix ts contains
xi3 , and thus so does t′s. That is, t′s including xi3 will in-
evitably be generated from Cl|p12 without xi3 , which leads
to a contradiction. Conversely, if (X) holds, we can divide
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each rule of T into non-extended rules, each of which has
exactly one symbol in the left-hand side.

�
For any xbot T , it can be decided in polynomial time

whether rng(T ) is infinite. Thus, it is decidable in polyno-
mial time whether there is an s-bot equivalent with a given
s-xbot−ε . If such an s-bot exists, it can be constructed in
doubly-exponential time in the worst case.

Theorem 3: Subsumption for (sl-xbots, s-bots) is in coN-
EXPTIME. If an sl-xbot T1 subsumes an s-bot T2, an s-bot
T3 such that [[T2]] = [[T3]] ◦ [[T1]] can be constructed.

5. Conclusion

We have shown that determinacy and subsumption are de-
cidable in coNEXPTIME for single-valued linear extended
bottom-up tree transducers as the determiner class and
single-valued bottom-up tree transducers as the determinee
class.

As future work, we will investigate whether subsump-
tion for more powerful determiner classes, such as determin-
istic top-down tree transducers (with regular look-ahead)
and deterministic MSO definable tree transducers, is decid-
able or not. Though determinacy is undecidable for such
classes, decidability of subsumption is still open. We also
consider whether, given two transducers T1 and T2 in the
classes such that T1 subsumes T2, a transducer T3 satisfying
[[T2]] = [[T3]] ◦ [[T1]] can be effectively constructed or not.
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Appendix: Proof of Lemma 7

We first recall the notations. Let TΣ[Xn] = T̄Σ(Xn) ∪ TΣ,
that is, every t ∈ TΣ[Xn] has all the variables in Xn or has no
variable. For t, s ∈ TΣ[Xn], ts is the tree obtained from t by
replacing each variable with s. Note that ts = t if t has no
variable. For m ∈ [n], let T n,m

Σ
[Xn] = T m−1

Σ
×TΣ[Xn]×T n−m

Σ
.

For t ∈ T n,m
Σ

[Xn], we denote by t(i) the ith element of t, i.e.,
t = (t(1), . . . , t(n)). For s ∈ TΣ[Xn] and t ∈ T n,m

Σ
[Xn], st is the

tree obtained from s by replacing xi with t(i) for all i ∈ [n].
Let ts = (t(1)s, . . . , t(n)s), and tu = (t(1)u, . . . , t(n)u) for u ∈
T n,m
Σ

[Xn]. Notice that since t ∈ T n,m
Σ

[Xn], so are ts and tu.
Lastly, the above substitution operation is associative. That
is, for s ∈ TΣ[Xn] and t1, t2, t3 ∈ T n,m

Σ
[Xn], (st1)t2 = s(t1t2)

and (t1t2)t3 = t1(t2t3) hold. For t1, t2, t3, t4, t5 ∈ T n,m
Σ

[Xn]
and S = {i1, . . . , i|S |} ⊆ [1, 5], let tS = ti1 · · · ti|S | where i j <
i j+1 for j ∈ [|S | − 1].

We use some propositions to prove Lemma 7. The fol-
lowing is the same as the top cancellation in [13] except that
we use tuples of trees in T n,m

Σ
[Xn].

Proposition 3 (Top Cancellation): Let s ∈ TΣ[Xn] and
t1, t2 ∈ T n,m

Σ
[Xn]. If st1 = st2, then s ∈ TΣ or t1 = t2.

Proof. Assume that st1 = st2, s � TΣ and t1 � t2. Then,
s contains all the variables in Xn, and t(i)

1 � t(i)
2 for some

i ∈ [n]. Since distinct trees are substituted to xi, st1 � st2.
This is a contradiction. �

The decidability of single-valuedness (or more gener-
ally, k-valuedness) of bots was proved in [13] by using En-
gelfriet’s Property T1(i), which was proved by Engelfriet’s
Property T2(i).

Proposition 4 (Engelfriet’s Property T1(i) [13]): Assume
ti, t′i ∈ TΣ({x∗}), i = 0, 1, 2, 3, 4. Then,

t0 · · · ti−1t j · · · t4 = t′0 · · · t
′
i−1t′j · · · t′4 for all 0 < i < j ≤ 4

implies t0t1t2t3t4 = t′0t′1t′2t′3t′4.

Proposition 5 (Engelfriet’s Property T2(i) [13]): Assume
si, ui, vi, yi, zi ∈ TΣ({x∗}) (i = 1, 2), s1 or s2 contains x∗,
y1 � z1, and y2 � z2. Then,
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http://dx.doi.org/10.1016/j.tcs.2010.12.031
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s1y1 = s2y2

s1z1 = s2z2

s1v1 = s2v2
u1y1 = u2y2

u1z1 = u2z2

implies u1v1 = u2v2.

Now, we prove Lemma 7, a variant of Engelfriet’s
Property T1(i). For t = (t(1), . . . , t(n)) ∈ T n,m

Σ
[Xn], tc denotes

the n-tuple of trees obtained from t by replacing the mth ele-
ment with x∗, that is, tc = (t(1), . . . , t(m−1), x∗, t(m+1), . . . , t(n)).
Hence, we have t = tct(m).

Lemma 7: Let n, n′ be arbitrary positive integers, and m ∈
[n],m′ ∈ [n′]. Suppose that t0 ∈ TΣ[Xn], t1, t2, t3, t4, t5 ∈
T n,m
Σ

[Xn], t′0 ∈ TΣ[Xn′ ], t′1, t
′
2, t
′
3, t
′
4, t
′
5 ∈ T

n′,m′

Σ
[Xn′]. Then,

if t0tS = t′0t′S for every S such that {5} ⊆ S ⊂ [1, 5], then
t0t[1,5] = t′0t′[1,5].

Proof. Assume that t0tS = t′0t′S for every S such that {5} ⊆
S ⊂ [1, 5]. Let

s1 = t0tc
2, s2 = t′0t′c2 ,

u1 = t0t1tc
2, u2 = t′0t′1t′c2 ,

y1 = t(m)
2 t5, y2 = t′(m

′)
2 t′5,

z1 = t(m)
2 t[4,5], z2 = t′(m

′)
2 t′[4,5],

v1 = t(m)
2 t[3,5], v2 = t′(m

′)
2 t′[3,5].

By the assumption, we have

s1y1 = (t0tc
2)(t(m)

2 t5) = t0t2t5 = t′0t′2t′5
= (t′0t′c2 )(t′(m

′)
2 t′5) = s2y2,

s1z1 = (t0tc
2)(t(m)

2 t[4,5]) = t0t2t[4,5] = t′0t′2t′[4,5]

= (t′0t′c2 )(t′(m
′)

2 t′[4,5]) = s2z2,

s1v1 = (t0tc
2)(t(m)

2 t[3,5]) = t0t[2,5] = t′0t′[2,5]

= (t′0t′c2 )(t′(m
′)

2 t′[3,5]) = s2v2,

u1y1 = (t0t1tc
2)(t(m)

2 t5) = t0t1t2t5 = t′0t′1t′2t′5
= (t′0t′1t′c2 )(t′(m

′)
2 t′5) = u2y2,

u1z1 = (t0t1tc
2)(t(m)

2 t[4,5]) = t0t[1,2]t[4,5] = t′0t′[1,2]t
′
[4,5]

= (t′0t′1t′c2 )(t′(m
′)

2 t′[4,5]) = u2z2.

u1v1 = (t0t1tc
2)(t(m)

2 t[3,5]) = t0t[1,5]

u2v2 = (t′0t′1t′c2 )(t′(m
′)

2 t′[3,5]) = t′0t′[1,5]

There are four cases.
Case (1) Both of s1 and s2 contain no variable.
Then, t0 and t′0 do not contain xm and xm′ , respectively.
Moreover, by definition of TΣ[X], t0 and t′0 do not contain
any variable. Thus, t0t[1,5] = t0 = t0t5 and t′0t′[1,5] = t′0 = t′0t′5.
Since t0t5 = t′0t′5, we have t0t[1,5] = t′0t[1,5].
Case (2) s1 or s2 contains variable x∗, y1 � z1 and y2 � z2.
Proposition 5 implies t0t[1,5] = u1v1 = u2v2 = t′0t[1,5].
Case (3) s1 or s2 contains variable x∗ and y1 = z1.
Because y1 = z1, by top cancellation (Proposition 3), t5 =

t[4,5] or t(m)
2 has no variable. If t5 = t[4,5] then t0t[1,3]t5 =

t0t[1,5]. If t(m)
2 has no variable then we also have t0t[1,3]t5 =

t0t[1,2] = t0t[1,5]. Moreover, we have s1y1 = s1z1 and thus
s2y2 = s2z2. By top cancellation, y2 = z2 or s2 has no
variable. Assume that y2 = z2. By the same argument as
the above, we have t′0t′[1,3]t

′
5 = t′0t′[1,5]. On the other hand,

assume that s2 has no variable. Then, t′0 has no variable
and thus we also have t′0t′[1,3]t

′
5 = t′0 = t′0t′[1,5]. Therefore,

t0t[1,5] = t′0t′[1,5] because t0t[1,3]t5 = t′0t′[1,3]t
′
5.

Case (4) s1 or s2 contains variable x∗ and y2 = z2.
This is analogous to Case (3). �
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