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SUMMARY For a service-oriented architecture-based system, the
problem of synthesizing a concrete model (i.e., a behavioral model) for
each peer configuring the system from an abstract specification—which
is referred to as choreography—is known as the choreography realiza-
tion problem. In this paper, we consider the condition for the behavioral
model when choreography is given by an acyclic relation. A new notion
called re-constructible decomposition of acyclic relations is introduced, and
a necessary and sufficient condition for a decomposed relation to be re-
constructible is shown. The condition provides lower and upper bounds of
the acyclic relation for the behavioral model. Thus, the degree of freedom
for behavioral models increases; developing algorithms for synthesizing an
intelligible model for users becomes possible. It is also expected that the
condition is applied to the case where choreography is given by a set of
acyclic relations.
key words: SOA, model-based development, communication diagram,
state machine, choreography realization problem

1. Introduction

The internationalization of business activities and informa-
tion technology in companies has intensified competition
among them. Companies are under pressure to quickly re-
spond to business needs, and the time frame for making
changes to existing business and launching new businesses
has been shortened. Therefore, the need to quickly change
or build information systems has been increasing. Under
such circumstances, service-oriented architecture (SOA) [1]
has been attracting attention as the architecture of informa-
tion systems. In SOA, an information system is built by
composing independent software units called peers.

In this paper, we consider the problem of synthesizing
a concrete model from an abstract specification. We assume
that a concrete model describes the behavior of peers and
an abstract specification describes how peers interact with
each other. It is not easy for designers to design a con-
crete model directly from requirements because huge gaps
exist between requirements and concrete models. However,
defining an abstract specification is relatively simple. There-
fore, if we can automatically synthesize a concrete model
from a well-written abstract specification, the designer’s
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workload would decrease significantly and product quality
would improve.

In the software engineering literature, several studies
have synthesized a concrete model from an abstract specifi-
cation. Harel et al. proposed a methodology for synthesiz-
ing statechart models from scenario-based requirements [2].
Whittle et al. proposed a methodology for synthesizing hi-
erarchical state machine models from expressive scenario
descriptions [3]. Liang et al. defined a set of comparison
criteria and surveyed 21 different synthesis approaches [4].

In SOA, the problem of synthesizing a concrete model
from an abstract specification is known as the choreogra-
phy realization problem (CRP) [5], [6]. The abstract spec-
ification, called choreography, is defined as a set of inter-
actions among peers, which are given by a dependency re-
lation among messages; the concrete model is called ser-
vice implementation, which defines the behavior of the peer.
This paper uses the communication diagram and the state
machine of Unified Modeling Language (UML) 2.x [7] to
describe the choreography and service implementation, re-
spectively. In this paper, it is assumed that the dependency
relation is acyclic. Thus, only choreography with no itera-
tion can be accepted. However, this restriction should be re-
moved, and to do so, the notion of concatenation of acyclic
relations in [8] could be used.

Bultan and Fu formally studied the CRP [6]. They used
collaboration diagrams of UML 1.x and showed that the
conditions for the given choreography are realizable. In ad-
dition, they showed a method for synthesizing a set of fi-
nite state machines with projection mapping. However, the
synthesized state machines are not intelligible because the
number of states increases exponentially as the number of
messages increases. Furthermore, they adopt the semantics
that message send and receive events for a synchronous call
occur sequentially. Under these semantics, the UML speci-
fication that “the execution of the call operation action waits
until the execution of the invoked behavior completes and
a reply transmission is returned to the caller” [7] cannot be
represented.

Intelligibility, however, is highly subjective and it is
difficult to discuss this concept quantitatively. Cruz-Lemus
et al. experimentally evaluated the relationship between
some metrics of state machines and the time taken to un-
derstand them [9]. According to the results, state machines
are more easily understood as values of the following met-
rics become small: the number of simple states (NSS), the
number of transitions (NT), the number of guards (NG), and
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the number of do-activities (NA).
Miyamoto et al. proposed a method for synthesizing

hierarchical state machines from the choreography given
in communication diagrams called the Construct State-
machine Cutting Bridges (CSCB) method [10]. In the
method, dependency relations among sent and received
message events are represented by Petri nets [11]; state ma-
chines are then synthesized. Because state machines synthe-
sized by the CSCB method are hierarchical, they are more
intelligible than state machines synthesized with projection
mapping.

The CSCB method assumes that choreography is de-
fined by only one communication diagram. However, this is
restrictive because a system must work well in a variety of
cases. For example, in an e-commerce system, one commu-
nication diagram defines the process when the ordered item
is in stock, and another one defines the process when it is out
of stock. In the latter case, the shop must order the item to a
wholesaler. Thus, the communication diagrams must be dif-
ferent. Thus, we have to remove the restriction. During the
analysis process in [10], we found that the CSCB method
and the projection mapping method synthesize unnecessary
complex state machines in some examples. In both meth-
ods, dependency relations among events for each peer are
derived, and then state machines are synthesized. A simple
question then arises: “What is the necessary and/or suffi-
cient condition for the dependency relation?” If we can use
simpler dependency relations, synthesized state machines
become simpler. Moreover, the condition is useful to de-
velop the synthesizing algorithm of state machines when
choreography is given by a set of communication diagrams.

We can find several studies on reconstruction, decom-
position, and/or a combination of acyclic relations [12]–
[15]. However, none of these studies can be used for our
problem. Thus, we introduce a new notion on the decompo-
sition of acyclic relations and study the CRP in this paper.

In this paper, we consider the condition for the behav-
ioral model when choreography is given by an acyclic rela-
tion. In Sect. 2, a new notion called the re-constructible de-
composition of acyclic relations is introduced, and a neces-
sary and sufficient condition for a decomposed relation to be
re-constructible is shown. In Sect. 3, we define terms for the
CRP. In Sect. 4, we describe the CRP and study realizability
conditions for choreography using the re-constructibility.

2. Re-Constructible Decomposition

Let Σ be a finite set and R be a relation on Σ. The transi-
tive closure and reduction of R is denoted by R+ and R−,
respectively. A relation R is called cyclic if e1 and e2 ∈ Σ
exist such that (e1, e2) ∈ R and (e2, e1) ∈ R+; otherwise it is
called acyclic. Hereinafter, we assume that every relation is
acyclic.

The set of all topological sorts of an acyclic directed
graph (Σ,R) is denoted by L(R). A topological sort is called
a word and the set is called a language.

Let C be a set and {Σc} be a partition of Σwrt c ∈ C. Let

Rc be a relation on Σc and their set be {Rc} = {Rc ⊆ Σ2
c | Σc ∈

{Σc}}. A relation Rcom ⊆ R \ (
⋃

c Σ
2
c) is called a communal

relation of R.

Definition 1 (Re-constructible Decomposition): Given a set
{Rc} of relations and a communal relation Rcom, the relations
{Rc} are re-constructible to R if L(Rcom ∪⋃c Rc) = L(R).

Relations Rmax
c , Rmin

c , Rmax, and Rmin are defined as fol-
lows:

Rmin
c = Σ2

c ∩ R−, (1)

Rmax
c = Σ2

c ∩ R+, (2)

Rmin = Rcom ∪ (
⋃

c Rmin
c ), and (3)

Rmax = Rcom ∪ (
⋃

c Rmax
c ), (4)

where Rmax
c , Rmin

c , Rmax, and Rmin are acyclic because they
are sub-relations of R.

The following lemma holds wrt Rmin and Rmax.

Lemma 1: Rmin+ = Rmax+.

Proof: From the definition, it is clear that Rmin+ ⊆ Rmax+.
For any (e1, e2) ∈ Rmax+, consider the longest path from

e1 to e2 on the graph (Σ,Rmax+). The path must exist on
(Σ,Rmin+). Therefore, Rmax+ ⊆ Rmin+. �

The following lemmas hold on acyclic relations.

Lemma 2: L(R2) ⊆ L(R1) iff R1 ⊆ R+2 .

Proof: If R1 ⊆ R+2 , then any word in L(R2) does not violate
relation R1. Thus, L(R2) ⊆ L(R1).

If R1 � R+2 , there must exist a pair (e1, e2) ∈ R1 \ R+2 .
(e1, e2) � R+2 implies that (e1, e2) � R2. Thus, a word in
L(R2) in which e2 precedes e1 exists. That means L(R2) �
L(R1). �

Note that if R1 ⊆ R2, then R1 ⊆ R+2 . Thus, Lemma 2
means that if R1 ⊆ R2, then L(R2) ⊆ L(R1). However,
L(R2) ⊆ L(R1) does not imply R1 ⊆ R2.

Lemma 3: L (R1) = L (R2) iff R+1 = R+2 .

Proof: R+1 = R+2 ⇔ R+1 ⊆ R+2 ∧ R+2 ⊆ R+1 ⇔ R1 ⊆
R+2 ∧ R2 ⊆ R+1 ⇔ L (R2) ⊆ L (R1) ∧ L (R1) ⊆ L (R2)
⇔ L (R2) = L (R1) �

We put the following assumption on relation R and its
communal relation Rcom.

Assumption 1: L(R) = L(Rmin).

From Lemma 3, the re-constructibility and the assumption
can be checked by the equivalence of transitive closures
of relations. In general, enumerating all topological sorts
requires exponential complexity [16], but calculating tran-
sitive closure requires cubic polynomial complexity [17].
Thus, using transitive closure is a less costly way to check.

From the definition, it is clear that Rmin ⊆ R. Thus, the
following lemma holds.

Lemma 4: Dissatisfaction of Assumption 1 implies that
L(R) ⊂ L(Rmin).

From Lemmas 1 and 3 and Assumption 1, Eq. (5)
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holds.

L(Rmax) = L(Rmin) = L(R) (5)

The following theorem holds finally.

Theorem 1: {Rc} is re-constructible iff ∀c : Rmin
c ⊆ Rc ⊆

Rmax
c .

Proof:

∀c : Rmin
c ⊆ Rc ⊆ Rmax

c ⇔ Rmin ⊆ (Rcom ∪⋃c Rc) ⊆ Rmax

⇒ L(Rmax) ⊆ L(Rcom ∪⋃c Rc) ⊆ L(Rmin) (∵ Lemma 2)

⇔ L(R) = L(Rcom ∪⋃c Rc) (∵ (5))

Then, suppose that L(Rmax) ⊆ L(Rcom ∪ ⋃c Rc) ⊆
L(Rmin). From Lemma 2, Rmin ⊆ (Rcom ∪ ⋃c Rc)+ and
(Rcom ∪ ⋃c Rc) ⊆ Rmax+. Thus, (Rcom ∪ ⋃c Rmin

c ) ⊆
(Rcom∪⋃c Rc)+ and (Rcom∪⋃c Rc) ⊆ (Rcom∪⋃c Rmax

c )+. If
Rmin

c � Rc, then there must exist a pair (e1, e2) ∈ Rmin
c \ Rc.

However, (Rcom ∪ ⋃c Rmin
c ) ⊆ (Rcom ∪ ⋃c Rc)+ means the

existence of e3 such that (e1, e3), (e3, e2) ∈ (Rcom ∪⋃c Rc)+.
This contradicts the definition of Rmin

c . Thus, Rmin
c ⊆ Rc.

Similarly, Rc ⊆ Rmax
c . Finally, Rmin ⊆ (Rcom ∪ ⋃c Rc) ⊆

Rmax holds. �

3. Preliminaries

3.1 cbUML

Let us introduce a subset of UML called cbUML. The com-
plete set of cbUML is described in [18]. This section shows
a simplified version of cbUML, which is sufficient for the
discussion of this paper.

Definition 2 (cbUML): A cbUML model is a tuple (C,M,
A, CD, SM), where C is the set of classes,M is the set of
messages, A is the set of attributes, CD is the set of com-
munication diagrams, and SM is the set of state machines.

One class exists for each peer, and a state machine de-
fines its behavior. A communication diagram describes a
scenario, which is an interaction of peers.

3.1.1 Messages

The set M of messages is partitioned by the type of mes-
sages: M = Msop ∪ Maop ∪ Mrep, where Msop is the set
of synchronous messages generated by synchronous calls,
Maop is the set of asynchronous messages generated by
asynchronous calls, and Mrep is the set of reply messages
to synchronous messages. Let Ms = Msop and Ma =

Maop ∪ Mrep. Correspondence between the synchronous
call and its reply is given by the function re f : M →
M ∪ {nil}, such that ∀m ∈ Msop : re f (m) ∈ Mrep,
∀m ∈ Mrep : re f (m) ∈ Msop, ∀m ∈ Maop : re f (m) = nil,
and ∀m ∈ Msop ∪Mrep : re f (re f (m)) = m.

The peers behave differently during interactions de-
pending on the type of message, as follows. In the case of

a synchronous call, the caller’s execution is suspended un-
til the caller receives a reply from the callee. However, in
the case of an asynchronous call, the caller can continue to
operate, regardless of the behavior of the callee.

In UML, each message has two events: a send event
and a receive event. For a synchronous message, the receive
event occurs immediately after the send event. However, for
a discussion that occurs subsequently, we need two events
that occur sequentially. Therefore, we define that each syn-
chronous message has two events: a preparation event for
message sending and a send-receive event where the prepa-
ration event is a caller’s event and the send-receive event is
a callee’s event. The preparation event and the send-receive
event of a synchronous message m ∈ Ms are denoted by $m
and !m, respectively. For an asynchronous or a reply mes-
sage m ∈ Ma, the send and receive events are denoted by !m
and ?m, respectively. Hereafter, an active event is the send-
receive event of a synchronous message or the send event of
an asynchronous or a reply message. The set Σ of message
events and set Δ of active events are defined as follows:

Σ = {$m, !m | m ∈ Ms} ∪ {!m, ?m | m ∈ Ma}, and (6)

Δ = {!m | m ∈ M}. (7)

The acyclic relation ⇒M on the order of the caller’s and
callee’s events for each message is defined as follows:

⇒M= {($m, !m) | m ∈ Ms} ∪ {(!m, ?m) | m ∈ Ma}. (8)

3.1.2 Communication Diagrams

Definition 3 (Communication Diagram): A communication
diagram cd ∈ CD is a tuple cd = (Ccd,Mcd,Conncd, linecd,
Dcd), where Ccd ⊆ C is the set of classes, which are called
lifelines and correspond to peers; Mcd ⊆ M is the set of
messages; Conncd ⊆ Ccd×Ccd is the set of connectors, which
is given as a symmetric relation on Ccd; linecd : Mcd →
Conncd assigns a connector for each message; and Dcd ⊆
Δ × Δ indicates a dependency relation among active events,
where Dcd must be acyclic.

Superscripts may be omitted if the context is clear.
A conversation is a sequence of messages exchanged

among peers [6]. The set of conversations defined by a com-
munication diagram cd is denoted by C(cd) ⊆ M∗, where
M∗ is the set of all sequences of distinct messages.

Definition 4: A conversation σ = m1m2 · · ·mn is in C(cd)
if and only if σ ∈ M∗ and the corresponding sequence
γ =!m1!m2 · · ·!mn of active events satisfy ∀i, j ∈ [1..n] :
(!mi, !mj) ∈ D⇒ i < j.

If there exists a communication diagram cd ∈ CD such
that σ ∈ C(cd), then σ ∈ C(CD).

3.1.3 State Machines

Definition 5 (State Machine): A state machine is a tuple
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sm = (V,R, rt,Θ,Φ, E,C, B), where V is the set of vertices,
R is the set of regions, rt ∈ R is the top region, Θ is an own-
ership relation between vertices and regions, Φ is the set of
transitions, E is the set of events, C is the set of constraints,
and B is the set of behaviors.

In UML state machines, although there are various
kinds of states and pseudo-states, only simple states, com-
posite states, final states, and initial pseudo-states are used
in this paper. Therefore, the set V of vertices is partitioned
into the following types of subsets:V = S S ∪CS ∪FS ∪ IS ,
where S S is the set of simple states, CS is the set of com-
posite states, FS is the set of final states, and IS is the set of
initial pseudo-states.

A region, except for the top region, is owned by a
composite state and a composite state is owned by a re-
gion. The ownership relation Θ is defined as a function
from (V ∪ R) \ {rt} to (CS ∪ R), and Θ(x1) = x2 means
that x1 is owned by x2. For x ∈ V ∪ R, let des(x) = {x′ |
∃i > 0 : Θi(x′) = x} be the set of descendants of x, where
Θ1(·) = Θ(·) and Θi(·) = Θ(Θi−1(·)) (i > 1). The top region
rt exists in the root of each state machine; this region is not
owned by any composite state, and every state and region in
any composite state are descendants of the top region.

Definition 6 (Orthogonal State): Two vertices v1 and v2 ∈
V are called orthogonal and are denoted by v1 ⊥ v2 if there
exist different regions r1 and r2 ∈ R such that r1 � r2,
Θ(r1) = Θ(r2), v1 ∈ des(r1), and v2 ∈ des(r2).

Definition 7 (Consistent State): A set V̂ ⊂ V of vertices is
called consistent if and only if for each v1, v2 ∈ V̂; if v1 � v2
then v1 ⊥ v2, v1 ∈ des(v2), or v2 ∈ des(v1).

The set E of events is given as E = Σ ∪ {τ}, where Σ
is the set of message events in the state machine and τ is
the completion event that occurs when a transition with no
trigger event fires.

A transition tr ∈ Φ is a tuple tr = (src, tri, grd, eff , tgt),
where src ∈ V is the originating vertex of the transition,
trigger tri ∈ E is the event that makes the transition fire,
guard grd ∈ C is a condition to fire, effect eff ∈ B is an
optional behavior to be performed when the transition fires,
and tgt ∈ V is the target vertex. The set {src, tgt}must not be
consistent. A caller’s event becomes an effect and a callee’s
event becomes a trigger; therefore, Σ ⊆ B. The set B of be-
haviors may contain an effect that manipulates the attributes
of the corresponding class. A guard condition must be a
Boolean expression and the attributes of the corresponding
class may be used. According to the UML specification [7],
triggers, guards, and effects are denoted as “tri[grd]/eff ” in
diagrams.

Due to space limitations, the details of the operational
semantics of state machines are omitted. They have been
developed based on [19], [20] and reported in [18]. A state
machine has a message pool, and its state is defined by a
consistent set of active states, a set of suspended regions,
a set of messages in the message pool, and values of the
attributes. A transition may fire when the originating vertex

Fig. 1 Steps for an asynchronous call.

Fig. 2 Steps for a synchronous call.

is active, the message of the trigger event is in the message
pool or is the completion event, and the guard is true. When
the transition fires, the originating vertex and its descendants
are inactivated, the message is removed from the message
pool, the effect is executed, and the target vertex and initial
pseudo-states in the first descendant regions are activated.
The steps for synchronous calls and asynchronous calls are
explained with examples.

Figure 1 shows the execution steps of an asynchronous
call. In the figure, a state, a transition, and a region is repre-
sented by a round-cornered rectangle, an arrow, and a rect-
angle with dashed lines. However, in Fig. 1, regions are
omitted for simplification. The gray states are active. When
state machine sm1 transitions from state s11 to state s12 due
to the completion event, an asynchronous call is executed.
At this time, the send event !m occurs and message m is
added to the message pool of sm2. The state machine sm2
transitions from state s21 to state s22, consuming message
m due to the receive event ?m.

Figure 2 shows the execution steps of a synchronous
call. A synchronous call is executed in sm1. At this time,
the preparation event $m occurs in sm1, and the region that
contains the transition is suspended, where the suspended
region is represented by the gray region. Moreover, mes-
sage m is added to the message pool of sm2. State machine
sm2 transitions from state s21 to s22, consuming message m
by the occurrence of the send-receive event !m. Next, sm2
sends a reply message rm to sm1 upon transitioning from
s22 to s23. At this time, the send event !rm occurs, and
message rm is added to the message pool of sm1. Now, sm1
releases the suspended region and transitions from state s11
to state s12, consuming reply message rm by the occurrence
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of the receive event ?rm. Note that the receive event ?rm
does not appear in the state machine because we are using
the region suspend mechanism.

A word w ∈ Σ∗ is accepted by the set SM of state
machines if every state machine is in the final state in the
top region after occurring all events in w. A conversation is
obtained from an accepted word by removing all non-active
events and replacing every active event by its message. The
set of all conversations for SM is denoted by C(SM).

4. Choreography Realization and Re-Constructibility

4.1 Choreography Realization Problem

A single communication diagram describes a scenario,
which is an interaction of peers in the system. All the behav-
iors of the system are indicated by a set of communication
diagrams; this is referred to as choreography.

Problem 1 (CRP): For a given set CD of communication
diagrams, is it possible to synthesize the set SM of state
machines that satisfy C(CD) = C(SM)? If possible, obtain
the set of state machines.

If not possible, it is preferred that state machines that
mimic the choreography as closely as possible are synthe-
sized. A set of state machines that satisfy C(CD) ⊇ C(SM)
is called a weak realization of the given choreography. How-
ever, the set of empty state machines such that C(SM) = ∅
is a weak realization for any choreography; such a realiza-
tion is called trivial. Hereinafter, choreography is called un-
realizable if non-trivial realization does not exist.

4.2 CSCB Method

We proposed the CSCB method that synthesizes state ma-
chines from a communication diagram in [10]. Due to space
limitations, the details of the algorithm are omitted here.
State machines are synthesized as follows:

1. Construct an acyclic relation⇒ on the set of events.
For each peer c, perform the following steps.

2. Derive an acyclic relation⇒c from⇒.
3. Construct a state machine from⇒c.

Recall that we assume Assumption 1 for⇒.
Because the acyclic relation D is a relation on active

events, we have to extend it to the relation on active and
non-active events. The acyclic relation⇒⊆ Σ2 on the set of
events is obtained by augmenting D, as follows:

⇒ = D ∪ {(?m1, !m2) | m1 ∈ Ma,m2 ∈ Ma,Ω(?m1, !m2)}
∪ {(?m1, $m2) | m1 ∈ Ma,m2 ∈ Ms,Ω(?m1, $m2)}
∪ {(!m1, $m2) | m1 ∈ Ms,m2 ∈ Ms,Ω(!m1, $m2)}
∪ ⇒M ∪{(!m, e) | m ∈ Ms,Ω($m, e)}, (9)

where Ω(e1, e2) is true when both events e1 and e2 occur
in the same peer and (!e1, !e2) ∈ D, where !e1 and !e2 are

the corresponding active events for events e1 and e2, respec-
tively.

The communal relation for decomposition is given as
follows:

⇒com = ⇒M ∪ {(!m, e) | m ∈ Ms,Ω($m, e)}, (10)

where⇒M is a natural ordering where the callee’s event of
a message follows the caller’s event of the same message;
{(!m, e) | m ∈ Ms,Ω($m, e)} implies that an event e that fol-
lows a preparation event $m of a synchronous message and
occurs in the same peer follows the send-receive event !m
of the message. As stated before, a caller of a synchronous
message waits for the occurrence of callee’s receive event.
Therefore, !m precedes e. In the case of state machines of
cbUML, any event following a preparation event follows the
send-receive event, as described in the execution semantics
of state machines. Therefore, the order given by ⇒com is
kept when multiple state machines are executed in parallel.

The relation Yc for a peer c is given as follows:

Yc =⇒max
c ∪{(?re f (m), e) |

m ∈ Ms, e �?re f (m), ($m, e) ∈⇒max
c }. (11)

The first set is the projected relation of the transitive closure
of⇒ on the set of events of peer c. The second set adds the
additional constraints so that only the receive event ?re f (m)
of the reply message of a synchronous message m is the di-
rect successor of the preparation event $m. Next, the acyclic
relation⇒c for a peer c is obtained by transitively reducing
Yc, as follows:

⇒c = Y−c . (12)

In the above procedure, the transitive closure of ⇒ is
projected to each peer, and a similar procedure is used in
other existing studies, such as [6]. However, the derived re-
lation sometimes becomes too restrictive. Theorem 1 shows
that the transitive reduction of⇒ is sufficient to derive⇒c.
This paper proposes replacing Yc, as follows:

Yc =⇒min
c ∪{(?re f (m), e) |

m ∈ Ms, e �?re f (m), ($m, e) ∈⇒min
c }. (13)

4.3 Realizability

Let Pro be a mapping that translates a word of acyclic rela-
tion⇒ on Σ to a conversation. A conversation σ ∈ Pro(L(⇒
)) is obtained by removing non-active events and replacing
each active event with the corresponding message from a
word w ∈ L(⇒). The following equation then holds be-
cause ⇒ defined by Eq. (9) is obtained by just inserting a
non-active event on D:

C(cd) = Pro(L(D)) = Pro(L(⇒)). (14)

Let Rc be the acyclic relation for peer c. Under the
assumption that the state machine that behaves equivalently
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Fig. 3 A choreography with five peers

Fig. 4 D of choreography in Fig. 3

to Rc can be synthesized, the acyclic relation for the system
is⇒com ∪(

⋃
c Rc). Thus, the following equation holds:

C(SM) = Pro(L(⇒com ∪(
⋃

c Rc))). (15)

Then we can obtain the following theorem directly
from Definition 1 and Eqs. (14) and (15).

Theorem 2: If {Rc} is re-constructible to⇒, then SM is a
strong realization of cd.

Corollary 3: If⇒min
c ⊆ Rc for all c ∈ C, then SM is a weak

realization of cd.

Proof: ∀c ∈ C :⇒min
c ⊆ Rc implies that ⇒com ∪(

⋃
c ⇒min

c )
⊆⇒com ∪(

⋃
c Rc). From Lemma 2, L(⇒com ∪(

⋃
c Rc)) ⊆

L(⇒com ∪(
⋃

c ⇒min
c )) = L(⇒). �

The following sufficient condition for multiple commu-
nication diagram cases can be easily obtained from Corol-
lary 3.

Corollary 4: If⇒min
c ⊆ Rc for all c ∈ C and cd ∈ CD, then

SM is a weak realization of CD.

The above condition is too restrictive because the state ma-
chines accept only the common behavior of the set of com-
munication diagrams. Although we need to relax the condi-
tion, it is beyond the scope of this paper.

On the acyclic relation⇒c that is derived by the proce-
dure in Sect. 4.2, the following corollaries hold.

Corollary 5: SM synthesized from⇒c is a weak realiza-
tion.

Proof: It is obvious that ⇒min
c ⊆⇒c for all c ∈ C. From

Corollary 3, SM is a weak realization. �

Corollary 6: When CD does not use any synchronous
message, SM synthesized from⇒c is a strong realization.

Proof: When no synchronous message is used, ⇒min
c =⇒c.

Therefore,⇒c is re-constructible. �
Figure 3 shows choreography for a system composed

of five peers. Figure 4 shows the dependency relation on
messages; all messages are asynchronous. Peer s2 sends
messages m2 and m3 to peers s3 and s4, respectively, after

Fig. 5 ⇒s2 by the method in [10]

Fig. 6 ⇒s2 by the method in this paper

Fig. 7 State machine synthesized from⇒sm2 in Fig. 5

the receive message m1 from peer s1. Peer s5 sends mes-
sages m6 and m7 after receiving messages m4 and m5. Peer
s2 sends message m10 to peer s1 after receiving messages
m8 and m9.

The choreograph satisfies Assumption 1, and no syn-
chronous message is used; therefore, the choreography is
strongly realizable. Figure 5 shows ⇒s2 when Eq. (11) is
used. When Eq. (13) is used, ⇒s2 becomes as shown in
Fig. 6. This means that peer s2 need not be responsible for
the dependency among messages m2, m3, m8, and m9.

From Theorem 1, we can choose any acyclic relation
between the relations in Figs. 5 and 6 without loosing strong
realizability. That makes it possible to design a synthesiz-
ing algorithm that considers the intelligibility of models for
users. Let us see an example. Figure 7 depicts the state
machine synthesized from the acyclic relation in Fig. 5 by
using the algorithm in [10]. If one can find the acyclic re-
lation in Fig. 8, the state machine in Fig. 9 is synthesized by
the same algorithm. Because receive event of m8 can occur
without sending m2 in the relation in Fig. 8, we can delete
the effects and guards from the state machine in Fig. 7. As
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Fig. 8 A⇒s2 between the relations in Figs. 5 and 6

Fig. 9 State machine synthesized from⇒sm2 in Fig. 8

Table 1 Number of simple states (NSS), transitions (NT), guards (NG),
and do-activities (NA) in state machines in Figs. 7 and 9

state machine NSS NT NG NA
Fig. 7 3 7 2 0
Fig. 9 3 7 0 0

Table 1 shows, the state machine in Fig. 9 is more intelligi-
bility than one in Fig. 7.

Moreover, we assumed that choreography is given by a
communication diagram in this paper. In practice, however,
a set of communication diagrams will be given for speci-
fying various scenarios, and it is required that those syn-
thesized state machines cope with all scenarios. Suppose
that we have two communication diagram and the acyclic
relations for a peer are different, it is not easy synthesiz-
ing a state machine that satisfies both acyclic relations. The
condition proposed in this paper provides lower and upper
bounds of the acyclic relation for each behavioral model.
Thus, there are possibilities of finding the acyclic relation
that satisfies both the specifications. That is useful for syn-
thesizing state machines from a set of communication dia-
grams.

4.4 Assumption 1 in the CRP

The following lemma holds for Assumption 1 in the CRP.

Lemma 5: If⇒ does not satisfy Assumption 1, the chore-
ography is not strongly realizable.

Proof: If Assumption 1 does not hold, L(⇒) ⊂ L(⇒min)
from Lemma 4. Because L(⇒min) = L(⇒max), L(⇒)

Fig. 10 Un-realizable choreography

Fig. 11 ⇒ of choreography in Fig. 10

Fig. 12 ⇒min of choreography in Fig. 10

Fig. 13 Realizable choreography

Fig. 14 ⇒ and⇒min of choreography in Fig. 13

Fig. 15 Weakly realizable choreography

⊂ L(⇒max). That implies ⇒com ⊂⇒ \(⋃c ⇒max
c ). Let

(e1, e2) �⇒com and (e1, e2) ∈⇒\(⋃c ⇒max
c ), then events e1

and e2 occur in different peers and the peer in which event
e2 occurs cannot sense the occurrence of event e1. �

Figure 10 shows a typical un-realizable choreography,
where messages m1 and m2 are asynchronous, and D =
{(!m1, !m2)}. That means that sending message m2 must
follow m1. However, because peer s1 cannot know when
peer s2 sends m1, this choreography is not realizable. Fig-
ures 11 and 12 show ⇒ and ⇒min, respectively. Transi-
tive closures of these are not the same; this choreography
does not satisfy Assumption 1. In fact, for a word γ =
!m2!m1?m1?m2 and γ ∈ L(⇒min) but γ � L(⇒).

In the communication diagram in Fig. 13, the message
m2 is changed to synchronous from Fig. 10, where the reply
message is omitted to simplify. The synchronous message
m2 cannot be sent until peer s2 sends m1; thus, this chore-
ography is realizable. Figure 14 shows ⇒ of this choreog-
raphy. This is also ⇒min. Thus, this choreography satisfies
the assumption.

Figure 15 shows another choreography, where D =

{(!m1, !m2), (!m1, !m3), (!m3, !m4)}. Similar to the case in
Fig. 10, this choreography does not satisfy Assumption 1.
However, if peer s1 sends message m2 after receiving mes-
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sage m3, then the state machine is a non-trivial weak re-
alization. Let us look at this in more detail. We can find
three conversations from this choreography: m1m2m3m4,
m1m3m2m4, and m1m3m4m2. Putting m2 after m3 means
that we forget the conversation m1m2m3m4. The last exam-
ple shows that dissatisfaction with Assumption 1 does not
equal un-realizability of the given choreography. We may
need another criterion to check un-realizability, but that is
left for future research.

5. Conclusion

This paper approached the CRP from the viewpoint of re-
constructible decomposition of acyclic relations and derived
lower and upper bounds of the acyclic relation for each peer.
The bounds are useful to develop the synthesizing algorithm
of state machines that are intelligible to users or when chore-
ography is given by a set of communication diagrams. We
intend to further investigate these subjects in the future.
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