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Query Rewriting for Nondeterministic Tree Transducers

Kazuki MIYAHARA†a), Student Member, Kenji HASHIMOTO††, Member, and Hiroyuki SEKI†,††, Fellow

SUMMARY We consider the problem of deciding whether a query can
be rewritten by a nondeterministic view. It is known that rewriting is decid-
able if views are given by single-valued non-copying devices such as com-
positions of single-valued extended linear top-down tree transducers with
regular look-ahead, and queries are given by deterministic MSO tree trans-
ducers. In this paper, we extend the result to the case that views are given
by nondeterministic devices that are not always single-valued. We define
two variants of rewriting: universal preservation and existential preserva-
tion, and discuss the decidability of them.
key words: tree transducers, query rewriting, query preservation

1. Introduction

Almost every computer program runs along the structure
of input data. The structure of input data would be some-
times modified due to changes or updates of its specifica-
tions. In the case, the program is needed to be rewritten
for being adapted to the new structure of input data, one
then may naturally ask the fundamental question—is it pos-
sible to rewrite the program automatically without chang-
ing its operation results? Some solutions to the automatic
program rewriting have been presented in database theory,
in which the problem has been formalized as query rewrit-
ing or query answering, which are motivated by data inte-
gration and query optimization (see, e.g., surveys [1], [2]).
Let Q, Q′ be classes of queries and V be a class of views.
Query rewriting forQ toQ′ underV is the problem deciding
whether, given a query q ∈ Q and a view v ∈ V, a mapping
q′ ∈ Q′ can be constructed from q and v such that q = v ◦ q′,
where v ◦ q′ denotes the composition of v and q′ defined
as (v ◦ q′)(t) = q′(v(t)) for every input t. If such a map-
ping q′ exists, we say that q can be rewritten in terms of v.
Especially, the case when Q′ = Q is called query preser-
vation. This case is important because it is not required to
use a more expressive class than Q to rewrite the query. If
q can be rewritten in terms of v and Q′ = Q, we say that v
preserves q.

Various techniques of query rewriting (and query
preservation) have been developed in relational database
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theory. Query rewriting for semi-structured data, especially,
tree-structured data such as XML documents has received
attention recently due to the enormous success of the model
on the Web (see, e.g., [3]–[10]). In this paper, we focus on
query rewriting for tree-structured data.

The case when both views and queries are single-
valued (or deterministic) tree transducers was studied in
[7], [10]. Single-valued tree transducers output just one tree
for each input tree (see [7], [8], [10]). Our main contribution
is to extend their results to nondeterministic tree transduc-
ers as views, which transform each input tree to a set of
output trees. To our knowledge, no previous work has con-
sidered the query rewriting for nondeterministic tree trans-
ducers (that are not always single-valued) as views.

Nondeterminism of tree transducers is required in some
applications, e.g., probabilistic database (see a survey [11])
and natural language processing. In machine translation,
each sentence in a source natural language can possibly
be translated into more than one sentence in a target lan-
guage (see, e.g., [12]–[14]). Thus we need nondeterminism
in tree transducers that model syntax-based machine trans-
lations (see, e.g., [15], [16]). Bilingual documents are es-
sentially required to construct statistical syntax-based trans-
lators. The translation accuracy of statistical syntax-based
translators depends heavily on quality and quantity of the
documents that are used to construct the translators (see,
e.g., [17]). However, preparing huge and high-quality bilin-
gual documents requires many efforts and costs in general.
Query rewriting for nondeterministic tree transducers sug-
gests a solution to this problem, which we call rewriting-
based construction of machine translators. For instance, let
q, v be English-to-Japanese and English-to-French machine
translators, respectively, realized by nondeterministic tree
transducers. One can construct by the rewriting-based con-
struction French-to-Japanese translator q′ from q and v, if q
can be rewritten in terms of v (see Fig. 1). Advantages of the
rewriting-based construction of translators are: (1) the trans-
lation accuracy of q′ is guaranteed to be almost the same
as q, because q(t) = q′(v(t)) holds for every input t by the
definition of query rewriting, (2) any bilingual documents
are not required. In the above example, French-to-Japanese
bilingual documents are not needed to construct the French-
to-Japanese translator q′. Our work is partially motivated to
establish the rewriting-based construction of machine trans-
lators.

Our results in this paper contribute to the rewriting-
based construction by extending the previous work [7], [10]
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Fig. 1 An application of query rewriting to machine translations.

on the query rewriting from single-valued models to nonde-
terministic ones. More specifically, Hashimoto et al. showed
in [7] that the query rewriting problem (deciding whether
q can be rewritten in terms of v) is decidable when views
are realized by single-valued extended linear bottom-up tree
transducers and queries by single-valued bottom-up tree
transducers. Benedikt et al. generalized in [10] the results of
[7]. They showed that the problem is decidable when views
are realized by compositions of single-valued extended lin-
ear top-down tree transducers with regular look-ahead and
queries by deterministic MSO tree transducers. Note that
the problem is undecidable even if the views can copy only
once at each root of input trees [10]. Thus [7], [10] and we
treat views that cannot copy†. Also, many applications of
the query rewriting require the classes of q and q′ coincide,
so we focus on the query preservation.

As mentioned above, we generalize the results of [7]
and [10] to that for nondeterministic views that are not al-
ways single-valued. We first define two variants of rewrit-
ing, which are natural extensions of query preservation for
nondeterministic views: universal preservation and, its re-
laxed version, existential preservation.

LetV, Q be classes of queries and views, respectively.
Given a view v ∈ V and a query q ∈ Q, v universally pre-
serves q if there is a query q′ ∈ Q such that for every input t
to q and for every output t′ ∈ v(t), q(t) = q′(t′) holds; v exis-
tentially preserves q if there is a query q′ such that for every
input t to q there is an output t′ ∈ v(t) satisfying q(t) = q′(t′).
Obviously, if v universally preserves q, then v existentially
preserves q. Intuitively, if v universally preserves q then the
result of q can be computed from any output of v. Whereas
if v existentially preserves q then there exists at least one
output of v from which the result of q can be computed. Ex-
istential preservation is useful in the case that the result of
query is more important than that of view. For example, in
the case of Fig. 1, v does not need to universally preserve q
to construct q′. The French-to-Japanese translator q′ can
be constructed if at least one result of v preserves the result
of q, that is, if v existentially preserves q then q′ can be con-
structed.

To obtain the decidability of universal preservation for
nondeterministic views, we first extend slightly the results
in [20] on the equivalence problem for deterministic MSO

†Usually the non-copying property is called linearity.

Table 1 Decidability results on query preservation. Our result is indi-
cated in bold. Incomparability is denoted by ��.

single-valued nondeterministic

Query \ View s-elb � (s-eltR)∗ � (eltR)∗

s-b decidable [7]
� dtR decidable [10]
�� dmsot decidable [10] decidable (Thm. 10)

Table 2 Summary of decidability results, where ∀ and ∃ stand for
universal and existential preservation, respectively, “part” stands for the
preservation for nondeterministic queries (see Sect. 4), and “sound” means
that we give a sound algorithm of the problem for the classes in the line.
Nondeterministic classes are indicated in bold.

Query View ∀ or ∃ Result
dmsot (eltR)∗ ∀ decidable (Thm. 10)

dmsot / dtR finite-valued lb ∃ sound (Thm. 13)
finite-valued lb (eltR)∗ ∀ part sound (Thm. 18)
finite-valued lb finite-valued lb ∃ part sound (Cor. 19)

tree transducers (see Theorem 9). Namely, we show that
for a deterministic MSO tree transducer q1 and a nonde-
terministic one q2, the equivalence of q1 and q2 is decid-
able. Note that the equivalence is undecidable if q1 and
q2 are both nondeterministic ones. Then, by adopting the
proof strategy introduced in [10] that uses “uniformizers”
and reduces the query preservation problem to the equiva-
lence problem for deterministic MSO tree transducers, we
obtained the desired result (Theorem 10), that is, we show
that the problem is decidable when views are realized by
compositions of nondeterministic extended linear top-down
tree transducers with regular look-ahead and queries by de-
terministic MSO tree transducers. Summary of decidability
results on query preservation is shown in Table 1, where b,
dt, dmsot, elb, elt stand for the classes of all transductions
realized by bottom-up, deterministic top-down, determinis-
tic MSO, extended linear bottom-up, and extended linear
top-down tree transducers, respectively. “s-” is an abbre-
viation of single-valued, and the transducers in the classes
with superscript R have regular look-ahead. The composi-
tion closure of a class X is denoted by X∗. See Sect. 2 for the
definitions of them. As depicted in Table 1 there are class
hierarchies of tree transductions such that s-elb � (s-eltR)∗

� (eltR)∗ and s-b � dtR. dmsot is incomparable with dtR.
Furthermore, we give an algorithm that is sound for

existential preservation (see Theorem 13). Also, we give
other algorithms that are sound for the related situations in
which queries are expressed by nondeterministic tree trans-
ducers, specifically finite-valued bottom-up tree transducers
(see Theorem 18 and Corollary 19). To show the results,
we use the decomposition theorem for such transducers [21]
(see Theorem 12). These results are summarized in Table 2.
Note that finite-valued lb is a proper subclass of (eltR)∗ and
incomparable with dmsot, namely, dmsot �� finite-valued
lb � (eltR)∗.

Related work. There have been interesting results on query
rewriting, though not directly related to this paper. In
[3], [18], it was shown that the query rewriting is undecid-
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able for the class of views and queries that are able to sim-
ulate first-order logic (FO) queries and projection queries,
respectively, and even for views and queries expressed as
unions of conjunctive queries (that are much weaker than
FO queries), in the relational case. The problem was also
shown to be undecidable in [3] for XSLT (or XQuery) as
views and simple selection queries, in the XML context.
In [4], views are defined as transformations that retrieve
nodes selected by queries, such as Regular XPath and MSO
queries in the context of unranked trees. Similarly, in [5]
both queries and views are n-ary node-selecting queries rep-
resented by tree automata. In [8], a hybrid approach was
adopted, that is, for views tree transducers were used and
for queries n-ary node-selecting queries were adopted. In
[8], query preservation was shown to be decidable if a given
transducer is a single-valued extended linear top-down tree
transducer with regular look-ahead and a given query is a
run-based n-ary node-selecting query. The result in [19] is
for deterministic tree transducers that require “origin” infor-
mation.

Organization. This paper is organized as follows: Section 2
provides terminology and definitions of graphs, trees, tree
automata, various tree transducers with their class hierar-
chies, and uniformizers. In Sect. 3, we show additional class
hierarchies of tree transducers, which are needed to prove
our main results. Section 4 defines universal and existential
preservation for nondeterministic views. Furthermore, for
nondeterministic queries two variants of query preservation
are provided, which are analogue of existential preservation.
Our main result on the decidability of universal preservation
is presented in Sect. 5. The result is proved using a decid-
ability result on the equivalence for deterministic and non-
deterministic MSO tree transducers, which is included in
the same section. A sound algorithm for existential preser-
vation with single-valued queries is presented in Sect. 6, and
others for nondeterministic queries are provided in Sect. 7.
These sound algorithms employ a method that decomposes
finite-valued tree transducers into a finite union of single-
valued ones, and then the algorithms apply decision proce-
dures of query preservation for single-valued tree transduc-
ers presented in the previous work [7], [10] to decomposed
transducers. Section 6 also includes a solution for the prob-
lem of how to extend the domain of a view, which may be
useful if a view does not preserve a query because of the
difference between the domains of the view and the query.
Section 8 concludes the paper and outlines future work.

2. Preliminaries

We denote the set of all nonnegative integers by N. For n ∈
N, the set {1, . . . , n} is denoted by [n]. A (ranked) alphabet
is a finite set Σ of symbols with a mapping rk : Σ → N, and
let Σ(n) be the set {σ ∈ Σ | rk(σ) = n }. For a binary relation
R ⊆ A × B, let dom(R) = { a ∈ A | (a, b) ∈ R }, ran(R) =
{ b ∈ B | (a, b) ∈ R }, R−1 = { (b, a) ∈ B × A | (a, b) ∈ R }, and
R|A′ = { (a, b) ∈ R | a ∈ A′ } for A′ ⊆ A. The composition of

relations R1 : A → B and R2 : B → C, denoted by R1 ◦ R2,
is the relation A → C defined by R1 ◦ R2 = { (a, c) | (a, b) ∈
R1 and (b, c) ∈ R2 for some b ∈ B }. For classes of binary
relations R, S, we write R ◦ S = {R ◦ S | R ∈ R, S ∈ S },
R∗ = {R1 ◦ · · · ◦ Rn | n ≥ 0, Ri ∈ R (1 ≤ i ≤ n) }, and
R−1 = {R−1 | R ∈ R }.

2.1 Graphs, Trees, Strings and MSO Graph Transducers

We basically follow the definitions of [20] and omit here for-
mal definitions of monadic second-order (MSO) logic and
MSO graph transducers [20], [22], [23] for the sake of sim-
plicity.

A graph alphabet is a pair (Σ, Γ) where Σ and Γ are
ranked alphabets of node labels and edge labels, respec-
tively. A graph over (Σ, Γ) is a tuple (V, E, lab), with V a
finite set of nodes, E ⊆ V × Γ × V the set of labeled edges,
and lab : V → Σ the node-labeling function. The set of
graphs over (Σ, Γ) is denoted by G(Σ, Γ).

For an alphabet Δ and a1, . . . , an ∈ Δ (n ≥ 0), we
identify the string w = a1, . . . , an over Δ with the graph
in G({#}, Δ) that has #-labeled nodes v1, . . . , vn+1, and an ai-
labeled edge from vi to vi+1 for 1 ≤ i ≤ n.

Let Σ be a ranked alphabet and m be the maximal rank
of symbols in Σ. The set of all trees over Σ is denoted by TΣ .
A tree whose root is labeled with σ ∈ Σ(k) and has subtrees
t1, . . . , tk from left to right is denoted by σ(t1, . . . , tk). For
σ ∈ Σ(0) we write σ() as σ for simplicity.

For a deterministic MSO graph transducer M, we
write �M� to denote the graph transduction G(Σ1, Γ1) →
G(Σ2, Γ2) realized by M. Instead of �M�(g) we write M(g)
by identifying a transducer M with its transduction �M�
(and similarly for other transducers).

A (nondeterministic) MSO graph transducer M′ is ob-
tained from a deterministic one by allowing all formulas to
have fixed free node-set variables called parameters. The
transducer binds each parameter to a set of nodes of the in-
put graph g satisfying the domain formula, then for each set
of nodes, the node formulas and the edge formulas define
the output graph as the deterministic one does. Thus, the
graph transduction realized by M′ is (not always a function
but) a relation �M′� ⊆ G(Σ1, Γ1) ×G(Σ2, Γ2).

An MSO graph transducer M is called an MSO graph-
to-tree transducer if the range of M is a set of trees. For sets
of graphs A and B, M is called an MSO A-to-B transducer
if dom(M) ⊆ A and ran(M) ⊆ B. In the case of A = B,
M is called an MSO A transducer, e.g., an MSO tree trans-
ducer (abbreviated by msot transducer, and by dmsot for
deterministic one). The class of all transductions realized
by msot transducers is denoted by msot, and similarly for
other transducers.

The closure properties of MSO transducers under com-
position are shown, e.g., in Proposition 3.2(2) of [22] and
Proposition 2 of [24].

Proposition 1. MSO graph transductions and (determinis-
tic) MSO tree transductions are closed under composition.
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2.2 Tree Automata and Tree Transducers

We omit here formal definitions of tree automata and several
tree transducers (see, e.g., [13], [25]) for the sake of simplic-
ity and instead provide their intuitive descriptions with their
class hierarchies.

Deterministic bottom-up tree automata (ta) are a natu-
ral extension of deterministic (finite) word automata, which
deal with ranked trees. A ta starts its computation at the
leaves of an input tree and moves upward. The tree language
accepted by a ta A is denoted by L(A). A tree language L is
regular if there exists a ta A such that L = L(A).

Extended bottom-up tree transducers (eb transducers)
are an extension of word transducers. An eb transducer M
starts its transduction at the leaves of an input tree and moves
upward. It can read a subtree of an input tree in one step.
An eb transducer is linear if it cannot copy any subtrees of
outputted trees during its computation. A bottom-up tree
transducer (b transducer) is an eb transducer that can read
only one symbol of an input tree in one step. We write (e)lb
transducers to denote linear (e)b ones. In this paper, we use
eb transducers that do not allow a transduction rule that does
not read any subtree but only changes a state, which is called
an input-ε rule (see, e.g., [7] and [25], in which the class of
eb transducers with no input-ε rules is denoted by xbot−e).

Extended top-down tree transducers (et transducers)
are also an extension of word transducers. An et trans-
ducer M starts its transduction at the root of an input tree
and moves downward. M can read a subtree of an input tree
in one step as with eb transducers. An et transducer is lin-
ear if it cannot copy any subtrees of an input tree during its
computation. A top-down tree transducer (t transducer) is
an et transducer that can read only one symbol of an input
tree in one step. We write (e)lt transducers to denote linear
(e)t ones. An (extended) top-down tree transducer with reg-
ular look-ahead ((e)tR transducer) M is an (e)t transducer
that has a ta A. For a subtree ts of an input tree, M first
checks if ts ∈ L(A), and if so, transduces ts. We write (e)ltR
transducers to denote linear (e)tR ones. As with eb trans-
ducers, we use et transducers that do not allow an input-ε
rule (see, e.g., [13], [26]–[28], in which etR is denoted by
xtopRef or e-xtopR).

For a tree transducer M and an input tree t, valM(t) =
|M(t)| denotes the number of different outputs of M for t,
and let val(M) = sup{ valM(t) | t ∈ TΣ }, which is called val-
uedness of M. M is finite-valued if val(M) < ∞. For any
tree transducer M, we say that M is single-valued (or func-
tional) if val(M) ≤ 1, i.e., for each input t, there exists at
most one output M(t). We use the prefix ‘s’ to denote the
transducers, e.g., a single-valued eb transducer is denoted
by an s-eb transducer. We also say that M is finite-copying
(denoted with the subscript ‘fc’) if each subtree of the in-
put tree is transduced by a bounded number of times (see
[29], [30] for more formal definition of finite-copying). We
denote by �M� the transduction realized by M that is the bi-
nary relation on trees. For transducers M1 and M2, we say

that M1 and M2 are equivalent if �M1� = �M2�.
We will use the abbreviation such as eb, b for a class

of tree transducers to denote the class of transductions re-
alized by that class of tree transducers. By the definitions
above the relations b ⊆ eb, lb ⊆ elb, and t ⊆ tR ⊆ etR hold.
Additionally, as noted in Sect. 1, there are well-known class
hierarchies of tree transducers such that s-elb � (s-eltR)∗ �
(eltR)∗, s-b � dtR �� dmsot, and dmsot �� finite-valued lb
� (eltR)∗, where incomparability is denoted by ��.

2.3 Uniformizers

We define uniformizers following [10]: Let R be a binary
relation. A function u is a uniformizer of R if u ⊆ R and
dom(u) = dom(R). For classes T , U of transductions, we
say that T has uniformizers in U if for every τ ∈ T we can
construct a uniformizer u of τ such that u ∈ U. Benedikt
et al. [10] showed that it is decidable whether v preserves q
by reducing the problem to the equivalence of the query q
and the composed mapping v◦u◦q, where u is a uniformizer
of v−1.

The following result is used later to prove our main
result.

Theorem 2. [Theorem 11 of [10]] ((eltR)∗)−1 has uni-
formizers in dtRfc.

3. Class Hierarchies of Tree Transducers

In the section, we show some class hierarchies of tree trans-
ducers that are needed in Sect. 5 and Sect. 7.

Theorem 3.

(eltR)∗ ◦ dtRfc ◦ dmsot ⊆ (eltR)∗ ◦ dmsot
⊆ (tRfc)∗ ◦ dmsot
⊆ msot.

Proof. dtRfc ⊆ dmsot by Theorem 7.4 of [32], and eltR ⊆
tRfc by the construction in the proof of Theorem 4.8 of [13],
which states etR = tR (see also the paragraph under Corol-
lary 18 of [26]), moreover,

tRfc ⊆ dbqrel ◦ tfc (1)

⊆ dbqrel ◦ homfc ◦ lt (2)

⊆ msot (3)

where dbqrel is the class of deterministic b transducers that
can only relabel, and homfc is the class of finite-copying tree
homomorphisms. (1) follows by the fact that tR ⊆ dbqrel◦
t (Theorem 2.6 [33]), and (2) follows by the construction in
the proof of Lemma 3.6 of [34], which states t ⊆ hom◦lt. It
is not difficult to see that msot can simulate dbqrel, homfc,
and lt, then (3) follows by Proposition 1. �

We note that finite-valued lb � (eltR)∗ � msot.

Proposition 4. s-lb � dmsot.
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Proof. lb ⊆ elb by the definition of elb, elb = eltR by
Theorem 1 of [10], s-eltR � dtRfc by Corollary 13 of [10],
and dtRfc ⊆ dmsot by Theorem 7.4 of [32]. �

4. Query Preservations

Let V and Q be a class of single-valued views and a class
of single-valued queries for some tree-structured data. For a
query q ∈ Q and a view v ∈ V, we say that v preserves q if
there exists a query q′ ∈ Q such that q(t) = (v ◦ q′)(t) for all
tree t.

As mentioned in Sect. 1, previous studies on query
preservation for tree transducers focus on single-valued (or
deterministic) views. In contrast, nondeterministic views
output a set of trees for each input tree. We consider two
definitions of query preservation for nondeterministic views
that are not always single-valued: Let V be a class of
nondeterministic views and Q be a class of single-valued
queries. Given a view v ∈ V and a query q ∈ Q such that
dom(q) ⊆ dom(v), we say that v universally preserves q (∀-
preserves q for short) if

∃q′ ∈ Q : ( ran(v) ⊆ dom(q′)

∧∀t ∈ dom(q) : q(t) = (v ◦ q′)(t) ).

The above definition coincides with the definition of the
query preservation if v is single-valued. We also say that
v existentially preserves q (∃-preserves q for short) if

∃q′ ∈ Q. ∀t ∈ dom(q). ∃t′ ∈ v(t) : q(t) = q′(t′).

This condition is equivalent to the following one: There ex-
ists a uniformizer u of v such that

∃q′ ∈ Q. ∀t ∈ dom(q) : q(t) = (u ◦ q′)(t).

By definition, if q is universally preserved by v, then q is
also existentially preserved by v.

Furthermore, for a class Q of nondeterministic queries
we define additional two variants of query preservation,
which are analogue of existential preservation. We say that
v ∀-preserves a part of q if

∃q′ ∈ Q : ( ran(v) ⊆ dom(q′)

∧∀t ∈ dom(q). ∃tq ∈ q(t) : tq = (v ◦ q′)(t) ).

Similarly, we say that v ∃-preserves a part of q if

∃q′ ∈Q. ∀t∈dom(q). ∃tq ∈q(t). ∃t′ ∈v(t) : tq=q′(t′).

This condition is equivalent to the following one: There ex-
ists a uniformizer u of v such that

∃q′ ∈ Q. ∀t ∈ dom(q). ∃tq ∈ q(t) : tq = (u ◦ q′)(t).

These two variants of query preservation restrict implicitly
the class of q′ to a single-valued one. Algorithms that are
sound for the variants are presented in Sect. 7.

5. Universal Preservation

The main result of this section is Theorem 10: For v ∈

(eltR)∗ as a view and q ∈ dmsot as a query, it is decid-
able whether v ∀-preserves q. To obtain the result, we adopt
the proof strategy taken by Benedikt et al. [10]. In [10], in
order to show the decidability of the query preservation for
views realized by (s-eltR)∗ transducers and queries by dm-
sot transducers, Benedikt et al. reduced this problem to the
equivalence problem of two dmsot transducers, which is
known to be decidable [20]. According to the strategy we
reduce the problem to the equivalence of msot transducers
M1 and M2, where M1 is deterministic and M2 is nonde-
terministic. The previous result [20] is for the case that M1

and M2 are both deterministic msot transducers (see The-
orem 8 below). We slightly extend the previous result (see
Theorem 9). Note that if M1 and M2 are both nondetermin-
istic msot transducers, the equivalence for them is known to
be undecidable due to the negative result for nondeterminis-
tic word transducers [31], which are strictly less expressive
than msot transducers.

To explain our result, let us summarize the decision
procedure of [20] for the equivalence of dmsot transduc-
ers. It can be shown that dmsot transducers M1 and M2 are
not equivalent if and only if there exist an input t and a po-
sition n such that the symbol at position n of M1(t) is differ-
ent from the symbol at position n of M2(t). Hence, roughly
speaking, the procedure tests whether a position n and dis-
tinct symbols a, b exist such that the pair (n, n) is contained
in the set S a,b of all pairs (i, j) where a is the symbol at po-
sition i of M1(t) and b is the symbol at position j of M2(t),
for some input t. In [20] the set S a,b is shown to be semi-
linear (defined below) and then the existence of a pair (n, n)
in S a,b is decidable (as stated in Lemma 6). The set S a,b is
constructed using Parikh mapping (also defined below).

Additional definitions are needed to describe the de-
cision procedure precisely. For a string w, we denote by
w/i the i-th letter of w. The Parikh mapping for graphs
is the function Par : G(Σ, Γ) → Nk defined as Par(g) =
(n1, . . . , nk) where g is a graph over (Σ, Γ) with Σ =
{σ1, . . . , σk} and ni is the number of σi-labeled nodes in g
for i ∈ [k]. Similarly, the Parikh mapping for strings over
Σ = {σ1, . . . , σk} is the function Par : Σ∗ → Nk defined
as Par(w) = (n1, . . . , nk) where ni is the number of occur-
rences of σi in w for i ∈ [k]. A discrete graph (abbreviated
as dgraph) is a graph that has no edges. Let dgr be a func-
tion Σ∗ → G(Σ, ∅) such that Par(w) = Par(dgr(w)) for any
string w ∈ Σ∗. For a set G of graphs, we denote by Par(G)
the set {Par(g) | g ∈ G }. Similarly, for a string language L,
let Par(L) = {Par(w) | w ∈ L }. A set S ⊆ Nk is semilinear if
there exists a regular string language R such that S = Par(R).
The set G is Parikh if Par(G) is semilinear. A set of graphs
is VR if it is generated by a context-free vertex replacement
graph grammar (or a C-edNCE or an S-HH grammar, see,
e.g., [22], [23]). It should be noted that the set of all trees
and the set of all strings are VR. The following two lemmas
state useful properties of semilinear sets.

Lemma 5. [Theorem 7.1 of [22], Lemma 3 of [20]] The
images of VR sets of graphs under MSO graph-to-dgraph
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transductions are Parikh.

Lemma 6. [Lemma 4 of [20]] It is decidable for a semi-
linear set S ⊆ N2 whether there exists an n ∈ N such that
(n, n) ∈ S .

Let us refer to the important lemma of [20].

Lemma 7. [Lemma 7 of [20]] Let a, b be distinct symbols
and let M1, M2 be MSO graph-to-string transducers. There
exists an MSO graph-to-dgraph transducer Ma,b such that
for every graph g,

Ma,b(g) = { dgr(ambn) | ∃w1 ∈ M1(g), w2 ∈ M2(g) :

w1/m = a and w2/n = b }.

The decision procedure of [20] consists of three steps,
in which the above three lemmas are used:

Step 1. Let M1, M2 be deterministic MSO tree transducers.
Construct a deterministic MSO tree-to-string transducer W
that “flattens” input trees to strings, then compose them with
M1, M2, i.e., construct M′1 and M′2 with �M′1� = �M1�◦�W�
and �M′2� = �M2� ◦ �W�, respectively. Since dmsot trans-
ductions are closed under composition (see Proposition 1),
M′1 and M′2 are obtained as dmsot transducers.

Step 2. Let N$ be a deterministic MSO string transducer
that reads a given input string w ∈ Δ1 ∪ Δ2 and outputs the
string w$, where $ is a symbol not in Δ1∪Δ2. For i ∈ [2], let
M$

i be a deterministic MSO tree-to-string transducer with
�M$

i � = �M
′
i� ◦ �N$�. Now we can say that �M1� � �M2�

if and only if �M$
1� � �M

$
2�
†.

Step 3. Let D1 and D2 be the domains of M$
1 and M$

2 , re-
spectively. Clearly, if D1 � D2 then �M$

1� � �M
$
2�. It

is decidable whether D1 coincides with D2 because the do-
main of every (d)msot transducer is regular (see, e.g., The-
orem 5.82 of [23]). Then, assume D1 = D2 here and denote
the domains of them by D. �M$

1� � �M
$
2� if and only if there

exist a ∈ Δ1 ∪ {$}, b ∈ Δ2 ∪ {$}, n ∈ N, and t ∈ D such that
a � b, M$

1(t)/n = a, and M$
2(t)/n = b. Let Ma,b be the trans-

ducer of Lemma 7 for a, b, M$
1 , and M$

2 . �M$
1� � �M

$
2� iff

dgr(anbn) is in Ma,b(D) for some n ∈ N. Note that dgr(anbn)
is in Ma,b(D) iff (n, n) is in Par(Ma,b(D)). By Lemma 5 the
set of vectors Par(Ma,b(D)) is Parikh because D is regular
and thus VR. By Lemma 6 it can be decided whether (n, n)
is in Par(Ma,b(D)) for some n ∈ N. This proves the main
result of [20].

Theorem 8. [Corollary 10 of [20]] It is decidable whether
two dmsot transducers are equivalent.

We now extend Theorem 8 slightly to show the de-
cidability of the universal preservation for nondeterministic

†If we do not compose N$ with M′i , then the following pro-
cedure answers “M1 and M2 are equivalent” incorrectly if one of
them always outputs “prefix strings” of the other, i.e., for every in-
put tree t and let w = M′1(t), there exists a string z � ε such that
M′2(t) = w · z, where · is concatenation of strings.

views.

Theorem 9. It is decidable whether a deterministic msot
transducer M1 and a nondeterministic msot transducer M2

are equivalent.

Proof. Recall that the domain of every (d)msot is regular,
so we can decide whether the domain of M1 coincides with
that of M2. Let us assume dom(M1) = dom(M2) = D.
Since Lemmas 5–7 described above are not restricted to de-
terministic msot transducers, the same idea for dmsot can
be applied to our case. Thus we can state that M1 ∈ dmsot
and M2 ∈ msot are not equivalent if and only if there exist
a ∈ Δ1 ∪ {$}, b ∈ Δ2 ∪ {$}, n ∈ N, t ∈ D, and w ∈ M$

2(t)
such that a � b, M$

1(t)/n = a, and w/n = b. The nonde-
terminism of M2 makes differences in Steps 1–3, in which
nondeterministic msot transducers M′2 and M$

2 such that
�M′2� = �M2� ◦ �W� and �M$

2� = �M
′
2� ◦ �N

$� are con-
structed instead of deterministic ones. Recall that msot
transductions are closed under composition (Proposition 1),
i.e., msot ◦ msot ⊆ msot, hence msot ◦ dmsot ⊆ msot.
For an input tree t, a ∈ Δ1 ∪ {$}, and b ∈ Δ2 ∪ {$}, assume
M$

1(t) = w1 and w2 ∈ M$
2(t) with i ∈ N, w1/i = a, w2/i = b,

a � b. In the case, obviously M$
1 and M$

2 are not equivalent.
Let Ma,b be an msot transducer in Step 3, which can be (ef-
fectively) constructed because Lemma 7 is not restricted to
dmsot transducers. By the assumption, dgr(aibi) ∈ Ma,b(t),
and so Par(Ma,b(t)) contains (i, i) ∈ N2. Conversely, for
distinct symbols c ∈ Δ1 ∪ {$} and d ∈ Δ2 ∪ {$}, assume
Par(Mc,d(D)) includes ( j, j) ∈ N2 with j ∈ N. By the as-
sumption, there exist a tree t ∈ D, w1 ∈ Δ∗1, w2 ∈ Δ∗2 such
that M$

1(t) = w1$, w2$ ∈ M$
2(t), w1$/ j = c, and w2$/ j = d.

Hence M1 and M2 are not equivalent. It is decidable whether
there exists (i, i) ∈ N2 in Par(Ma,b(t)) because Lemmas 5
and 6 are not restricted to dmsot transducers. �

We are now ready to describe our main result.

Theorem 10. For v ∈ (eltR)∗ as a view and q ∈ dmsot as a
query, it is decidable whether v ∀-preserves q.

Proof. By Theorem 2 we can construct a dtRfc transducer
that realizes a uniformizer u of v−1. Let v ∈ (eltR)∗, q ∈
dmsot. We show that v ∀-preserves q if and only if q =
v ◦ u ◦ q. The right-to-left direction is obvious. For the other
direction, assume that v ∀-preserves q and let q̃ be a query
in dmsot such that q = v ◦ q̃. Then, v ◦ u ◦ q = v ◦ u ◦ v ◦ q̃ =
v ◦ q̃ = q holds. Precisely, let t ∈ dom(q) and then,

q(u(v(t)))

= { q(t′′) | t′ ∈ v(t), t′′ ∈ u(t′) }
= { q̃(v(t′′)) | t′ ∈ v(t), t′′ ∈ u(t′) } (∵ q = v ◦ q̃)

= { q̃(t′) | t′ ∈ v(t) } (∵ v ◦ q̃ is single-valued, t′ ∈ v(t′′))
= q̃(v(t))

= q(t).

It follows that u ◦ q ∈ dmsot by Proposition 1 and The-
orem 7.4 of [32] that states dtRfc ◦ dmsot ⊆ dmsot, and
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v ◦ u ◦ q ∈ msot by Theorem 3. We can decide the equiva-
lence of q and v ◦ u ◦ q by Theorem 9. �

6. Existential Preservation

Even when v does not universally preserve q, it is still too
early to give up on preserving information of q. In the case,
we would like to know whether v existentially preserves q.
There is a simple relation between the existential preserva-
tion and the universal preservation.

Proposition 11. Let v, v′ be (nondeterministic) views and q
be a single-valued query. If v′ ⊆ v and v′ ∀-preserves q, then
v ∃-preserves q.

Based on Proposition 11, we give a decidable sufficient
condition of the existential preservation. We only focus on
finite-valued views, because we use a decomposition theo-
rem for finite-valued b transducers (recall that the results in
the previous section focus not only on finite-valued views
but also on “infinite”-valued ones). Note that it is decidable
in deterministic polynomial time whether a b transducer is
finite-valued or not (Theorem 6.9 of [35]).

The following theorem states that every finite-valued
b transducer can be effectively decomposed into a finite
union of single-valued ones.

Theorem 12. [Theorem 6.2 of [21]] For every finite-valued
b transducer M, there exist single-valued ones M1, . . . ,MK

such that �M� = �M1� ∪ · · · ∪ �MK�, where K ≤ 22P(|M|)
,

∣
∣
∣Mj

∣
∣
∣ ≤ 22P(|M|)

, j ∈ [K], for some polynomial P independent
of M†.

By Proposition 11 and Theorem 12, we obtain a decid-
able sufficient condition of the existential preservation for
views realized by finite-valued lb transducers and queries
realized by dmsot (or dtR) transducers as follows. No-
tice that, in the following theorem, each v j is single-
valued, hence we just say “v j preserves” instead of “v j ∀(∃)-
preserves.”

Theorem 13. Let v be a finite-valued lb transduction and
q be a dmsot (or dtR) transduction. Let v1, . . . , vK be s-
lb transductions such that v = v1 ∪ · · · ∪ vK . Then, v ∃-
preserves q if v j preserves q for some j ∈ [K]. The latter
condition is decidable.

Proof. By Proposition 11, v ∃-preserves q if v j preserves q
for some j. Every s-lb transduction is in (s-eltR)∗. Thus
the preservation is decidable by Theorem 15 of [10], which
states that it is decidable for v̄ ∈ (s-eltR)∗ and q̄ ∈ dmsot
(or dtR), whether v̄ preserves q̄ (see Table 1). �

Let ∃-Pres be the algorithm that decides the above suf-
ficient condition by using Theorem 12. We are not sure
whether ∃-Pres (and the other algorithms that are sound in

†Here the size of a b transducer M is denoted by |M|, which
is the sum of the sizes of all its rules (see [21] for more formal
definition).

the rest of this paper) is complete for existential preserva-
tion, because even when ∃-Pres answers “no,” another s-lb
transduction v′ may exist such that v′ ⊆ v and v′ preserves q.
The problem of deciding whether such v′ exists seems to be
hard, because one is required to prove a given query q is not
preserved by vi (i ∈ [K]) for every possible way of decom-
posing a finite-valued tree transduction v into single-valued
ones v1, . . . , vK .

Extending the domain of a view. Let v be a view given by a
finite-valued lb transducer and q be a query given by a dm-
sot transducer. When ∃-Pres answers “no,” there remains
a possibility that v existentially preserves q. When decom-
posing a view v into v1, . . . , vK by Theorem 12, the domain
of the resulting transduction vi may be a proper subset of
the domain of the original transduction v. Consider the case
when dom(q) � dom(vi) for each i ∈ [K]. In the case, by
the definition of query preservation, every vi does not pre-
serve q. Still, there may be S ⊆ [K] such that the union v′

of transductions ∀-preserves q where v′ = ∪ j∈S v j. If so,
we can conclude that ∪ j∈[K] v j ∃-preserves q. Hence the fol-
lowing result holds as a corollary of Theorem 10. Note that
every union of s-lb transductions is an lb transduction.

Corollary 14. Let v1, . . . , vK ∈ s-lb and q ∈ dmsot. It is de-
cidable whether there is S ⊆ [K] such that v′ ∀-preserves q
where v′ = ∪ j∈S v j. If such an S exists, ∪ j∈[K] v j ∃-
preserves q (by Proposition 11).

Let q be a query given by an s-b transducer. Since s-b
is incomparable with dmsot, we cannot apply Theorem 10
directly to obtain a decidable sufficient condition similar to
the one stated in Corollary 14 for q ∈ s-b. For the case, in or-
der to construct an appropriate view v′(⊆ v) from v1, . . . , vK
obtained by decomposing v by Theorem 12, each compo-
nent v j of v′ is required not to be joinable with another. For
views vi, v j and a query q, we say that vi and v j are join-
able against q if there exists a pair of trees (t1, t2) such that
q(t1) � q(t2) and vi(t1) = v j(t2). To show why transductions
must not be joinable, let us suppose that vi and v j are joinable
against q with a pair (t1, t2) and v′ = vi ∪ v j (at least) existen-
tially preserves q, then there exists q′ in the same class as q’s
(s-b) such that for all t ∈ dom(q) there exists t′ ∈ v′(t) satis-
fying q(t) = q′(t′). However, q′(t′1,2) for t′1,2 = vi(t1) = v j(t2)
has to be {q(t1), q(t2)} but q′ is single-valued, which is a con-
tradiction. Thus, each component v j of v′ is required not to
be joinable against q with another. We show that joinabil-
ity is decidable by using the single-valuedness test for eb
transducers with “grafting” presented in [7].

Lemma 15. Let v1, v2 ∈ s-lb and q ∈ s-b. It is decidable
whether v1 and v2 are joinable against q.

Proof. Construct elb transducers with grafting (elb+g for
short) that realize v−1

1 and v−1
2 , respectively. The detailed

construction is given in [7] (see Lemma 6 in it). Next, con-
struct a ta A that accepts the intersection of the ranges of v1
and v2, i.e., L(A) = ran(v1) ∩ ran(v2). A can be effectively
constructed by the fact that the range of every lb transducer
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is effectively regular (see, e.g., Corollary 3.11 of [34]) and
by the construction of product automaton. After that, con-
struct an elb+g transducer that realizes w = v−1

1 ∪ v−1
2 |L(A),

which is the union of v−1
1 and v−1

2 , and the domain of which
is restricted to L(A). Finally, decide whether q′ = w ◦ q
is single-valued or not, which is decidable by Lemmas 7–8
of [7]. It is not difficult to show that v1 and v2 are joinable
against q if and only if q′ is not single-valued. The left-to-
right direction holds obviously by the definition of joinabil-
ity. Conversely, if q′ is not single-valued, there exists a tree
t ∈ dom(q′) ⊆ ran(v1) ∩ ran(v2) such that |q′(t)| ≥ 2. Hence,
there exist t′1, t′2 ∈ q′(t) with t′1 � t′2. Since q is single-valued,
there exist t1, t2 (t1 � t2) such that q(t1) = t′1 � t′2 = q(t2) and
v1(t1) = v2(t2). Thus v1 and v2 are joinable against q. �

Lemma 16. Let v1, . . . , vK ∈ s-lb and q ∈ s-b. The union v′

∀-preserves q if and only if (1) each component v j of v′ is
not joinable against q with another, (2) v j preserves q|dom(v j),
and (3) dom(q) ⊆ dom(v′).

Proof. As described in the beginning of this subsection, if
(1) does not hold, v′ does not ∃-preserve q, and hence v′ also
does not ∀-preserve q. On the other side, suppose (1), (2),
and (3) hold. For simplicity, suppose K = 2. By (2), let q′1,
q′2 be s-lb transductions such that q|dom(vi) = vi ◦ q′i (i ∈ [2]).
For any t12 ∈ dom(v1)∩dom(v2), q(t12) = (v1◦q′1)(t12) = (v2◦
q′2)(t12). Hence for any t ∈ dom(v1) ∪ dom(v2), q(t) = (v1 ∪
v2) ◦ (q′1 ∪ q′2)(t) holds. Also, q′1 ∪ q′2 is single-valued by (1).
Therefore, v1 ∪ v2 ∀-preserves q|dom(v1)∪dom(v2). Generally,
v1 ∪ · · · ∪ vK ∀-preserves q|dom(v1)∪···∪dom(vK ), therefore v′ ∀-
preserves q by (3). �

By Lemmas 15, 16, we obtain the following result for
queries realized by s-b transducers.

Theorem 17. Let v1, . . . , vK ∈ s-lb and q ∈ s-b. It is decid-
able whether there is S ⊆ [K] such that v′ ∀-preserves q
where v′ = ∪ j∈S v j. If such an S exists, ∪ j∈[K] v j ∃-
preserves q (by Proposition 11).

Proof. It suffices to show that the three conditions (1)–(3)
in Lemma 16 are decidable. (1) is decidable by Lemma 15
and (2) is also decidable [7] (see Table 1). (3) is decidable
due to the regularity of dom(q) and dom(v′). �

7. Nondeterministic Queries

Let v be a view and q be a nondeterministic query. In this
section, we show two algorithms that are sound for the prob-
lem of deciding whether v universally or existentially pre-
serves a part of q (see Sect. 4 for definition).

We can adopt the idea of Theorem 13 to obtain an algo-
rithm called ∀-PresPart that is sound for query preservation
for finite-valued queries. ∀-PresPart is almost the same as
∃-Pres (see the previous section), but it decomposes a given
query q into q1, . . . , qK instead of a given view v, after that
for each i ∈ [K] it tests whether v ∀-preserves qi.

Theorem 18. For v ∈ (eltR)∗ as a view and a finite-valued

lb transduction q as a query, the algorithm ∀-PresPart is
sound for the problem of deciding whether v ∀-preserves a
part of q.

Proof. Suppose q1, . . . , qK ∈ s-lb that are obtained by de-
composing q. By Proposition 4 and by Theorem 10, it is de-
cidable whether v ∀-preserves qi for each i ∈ [K]. Our algo-
rithm ∀-PresPart answers “yes” (that means v ∀-preserves
a part of q) if and only if there exists j ∈ [K] such that v
∀-preserves q j. �

By Theorems 13, 18, and by Theorem 21 of [7] that
states query preservation is decidable for a view realized by
an s-elb transducer and a query realized by an s-b trans-
ducer (see Table 1), we also obtain an algorithm (called
∃-PresPart) for the case when views and queries are both
finite-valued. We do not describe explicitly the algorithm
∃-PresPart here because it can easily be obtained by modi-
fying slightly the algorithm ∀-PresPart.

Corollary 19. For a view v (resp. query q) realized
by a finite-valued lb (resp. b) transducer, the algorithm
∃-PresPart is sound for the problem of deciding whether
v ∃-preserves a part of q.

By the way, in [10] the “weak condition” is consid-
ered. For a view v ∈ V and a query q ∈ Q, v (∀- or ∃-
) preserves q if there exists a mapping q′ ∈ Q such that
(1) dom(v ◦ q′) = dom(q) and (2) (v ◦ q′)(t) = q(t) for ev-
ery t ∈ dom(q). For some situation in practice, the condi-
tion (1) is weakened to dom(v ◦ q′) ⊇ dom(q). The above
results (Theorems, Lemmas, and Corollaries 10–19) can
be applied to the weak condition by restricting dom(v) to
dom(q) ∩ dom(v)†.

8. Conclusions and Open Problems

We have defined two kinds of query preservation problem
for nondeterministic views and queries on ranked trees: uni-
versal preservation and existential preservation. We have
proved that the universal preservation problem is decidable
for compositions of extended linear top-down tree transduc-
ers with regular look-ahead as views and deterministic MSO
tree transducers as queries (see Theorem 10). To obtain
the result we have slightly generalized the result [20] of the
equivalence problem for deterministic MSO tree transduc-
ers (see Theorem 9). Moreover, we have shown an algorithm
that is sound for the existential preservation for finite-valued
linear bottom-up tree transducers as views and determinis-
tic MSO tree transducers as queries (see Theorem 13), and
also shown additional algorithms that are sound for the prob-
lem for nondeterministic queries realized by finite-valued
(linear) bottom-up tree transducers (see Theorem 18 and
Corollary 19). We would like to know whether (1) a sound

†It is known that dom(q) and dom(v) are regular for every q
realized by a dmsot or an lb transducer and every v realized by
(eltR)∗, hence dom(q) ∩ dom(v) is also effectively regular.
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and complete algorithm exists for the existential preserva-
tion, and (2) our results can be extended to more expressive
classes of tree transducers such as macro tree transducers
(see, e.g., [32], [36], [37]). Obtaining a positive solution
for the question (1) seems difficult, because one is required
to prove a given query q is not preserved by vi (i ∈ [K])
for every possible way of decomposing a finite-valued tree
transduction v into single-valued ones v1, . . . , vK .

As mentioned in Theorem 12, finite-valued bottom-up
tree transducers can be effectively decomposed into a finite
number of single-valued ones of double-exponential order
of the size of the original transducers. Whereas, in the word
case, k-valued (word) transducers can be effectively decom-
posed into k single-valued (unambiguous) ones [38], [39] of
single-exponential size [40]. Can k-valued tree transducers
decomposed into k single-valued ones of single-exponential
size? It is an important problem that remains open for
twenty years.
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