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SUMMARY Location-based services (LBSs) are useful for many appli-
cations in internet of things(IoT). However, LBSs has raised serious con-
cerns about users’ location privacy. In this paper, we propose a new location
privacy attack in LBSs called hidden location inference attack, in which the
adversary infers users’ hidden locations based on the users’ check-in histo-
ries. We discover three factors that influence individual check-in behaviors:
geographic information, human mobility patterns and user preferences. We
first separately evaluate the effects of each of these three factors on users’
check-in behaviors. Next, we propose a novel algorithm that integrates the
above heterogeneous factors and captures the probability of hidden loca-
tion privacy leakage. Then, we design a novel privacy alert framework to
warn users when their sharing behavior does not match their sharing rules.
Finally, we use our experimental results to demonstrate the validity and
practicality of the proposed strategy.
key words: location privacy, inference attack, privacy enhancing technol-
ogy, location-based services, internet of things

1. Introduction

With the rapid development of GPS-enabled mobile devices
and wireless communication technology, location-based ser-
vices (LBSs) have been one of the novel uses and most pop-
ular activities in internet of things (IoT). LBSs offer sev-
eral attractive functions, such as getting information about
nearby Points of Interest (POIs), locating nearby friends,
and sharing geo-content with friends, etc. However, a user’s
location history can be analyzed to infer much more infor-
mation about the user than the locations themselves, which
can lead to unwanted information leakage. The ability to
analyze data may lead to privacy mining from simple loca-
tion information, particularly in the era of big data. The po-
tential abuse of users’ location information by unauthorized
entities is evolving into a serious concern.

Some may argue that users are increasingly aware of
the value, potential, and risks of publishing geo-location
content. Users should be aware of the issue of privacy leak-
age and specify the connected users or location-enabled ap-
plications that can access users’ location information. How-
ever, although users are typically able to choose their in-
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formation sharing behavior, they are often unable to ver-
ify whether their sharing selections match their preferred
information-sharing policies for the following reasons: 1)
users want to release as much geo-location content as pos-
sible to receive better services; and 2) users lack knowledge
about risks in the era of big data. Even privacy-aware users
may make uninformed decisions. Sometimes they are not
even aware of the leakage of private location information.
Thus, it is not sensible to place the burden of verifying loca-
tion privacy leaks on users.

In recent years, many approaches [1]–[6] have been
proposed to address the location privacy protection prob-
lems in LBSs, including spatial cloaking [2], [3], dummy
locations [4], [5], and anonymity [6], [7]. However, in the
era of big data, these approaches are vulnerable to side in-
formation based inference attacks, in which the information
multiplies and is shared ever more widely. An adversary can
easily extract a great deal of side information from various
types of communications, which are summarized as follows:

(1) Geographical information, e.g., the road network
and the distance between POIs.

(2) Check-in history, e.g., users’ check-in information
that is available via the internet.

(3) User preferences, e.g., users’ ratings of POIs and
information in their homepages, such as interests and his-
torical check-in POIs.

This paper aims to address the privacy-aware location
information sharing problems in LBSs. The key challenges
include accurately and efficiently evaluating whether shar-
ing behavior meets users’ sharing rules and designing a pri-
vacy alert framework for LBSs users. In response to these
challenges, we first evaluate and model the impact of these
factors - spatial context information, human mobility pat-
terns, and user preferences - and their separate impacts on
users’ check-in behaviors. Then, we propose a novel al-
gorithm based on Multiple Linear Regression to integrate
the above-referenced heterogeneous factors and to provide
a personalized check-in behavior prediction for each user.
Finally, a novel privacy alert framework for LBSs users is
proposed to warn users when their actual sharing behaviors
are not congruent with their sharing rules. Therefore, this
paper makes the following contributions:

1) We discover and model three key factors that can
be used to infer a user’s private location information: geo-
graphic information, human mobility patterns and user pref-
erences.
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2) We develop a novel algorithm to optimally integrate
the multiple heterogeneous factors discussed above into a
single framework that outperforms state-of-the-art methods.

3) We design a novel privacy alert framework to warn
users when their sharing behavior does not correspond with
their sharing rules.

4) We conduct extensive experiments to evaluate the
performance of our methods using two real-world datasets.

The remainder of this paper is organized as follows.
Section 2 discusses related work on location privacy. Sec-
tion 3 introduces our motivation and basic definitions. Our
proposed algorithms are presented in Sect. 4. Section 5 pro-
poses the privacy alert framework. Section 6 presents the
experimental results, which is followed by concluding re-
marks in Sect. 7.

2. Related Work

Recently, protecting the location privacy of mobile users has
become a popular topic in IoT. Most current solutions adopt
the k-anonymity model [1], which stipulates that location in-
formation contained in a message sent from a mobile user to
a location-based service provider(LBSP) should be indistin-
guishable from at least k-1 other messages from different
users, where k is a user-specified anonymity requirement.
Depending on the different methods that are employed to
distort the user’s query before it reaches the LBSP, the previ-
ous research can be classified into the following categories:

(i) Spatial cloaking [2], [3]. The basic objective of
spatial cloaking is to blur users’ exact locations into spa-
tial regions to meet users’ privacy requirements, such as k-
anonymity, l-diversity, or t-closeness. Then, instead of their
exact locations, users send spatial regions to the LBS. How-
ever, in the era of big data, this method is vulnerable to side
information-based inference attacks.

(ii) Dummy location [4], [5]. Users protect their loca-
tion privacy by reporting their real location together with
many faked locations - also known as dummies - to the
LBSP. However, this method does not apply to any network
that emphasizes content authenticity. Moreover, how to gen-
erate dummy locations is still an open question.

(iii) Anonymity or pseudonym [6], [7]. These types
of approaches attempt to protect users’ location privacy
by removing their real identities or replacing them with
pseudonyms. In [6], Barkhuus et al. found that mere
anonymity does not protect users’ privacy and has proposed
that users change pseudonyms over time in a mix zone,
which refers to a small area, such as a road intersection.
Unfortunately, this mix-zone approach is not suited for a
real-name network.

(iv) Encryption [8], [9]. In this method, users’ loca-
tions are encrypted and queries are processed using cipher-
texts. For example, in [8], Zhao et al. proposed a location
privacy preserving framework based on searchable encryp-
tion (SE). In [9], Li et al. proposed a fine-grained privacy
preserving location query protocol based on holomorphic
encryption (HE). The drawback to this approach is that its

cryptographic computations are costly for mobile users.
In addition, most of the above approaches focus on the

“single shot” scenario and fail to take into account the side
information beyond the user’s maximum velocity. However,
in the era of big data, such information multiplies and is
shared worldwide. The adversary can easily extract substan-
tial knowledge about a user from various types of informa-
tion.

Recently, some approaches have been proposed to ad-
dress the inference attack based on side information. Andres
et al. in [10] proposed a notion of geo-indistinguishability
which extends differential privacy and guarantees privacy
against “any side information”. However, a fundamental
difference is that it achieves geo-indistinguishability by lo-
cation perturbation and it does not consider the temporal
correlations of multiple locations. T. Murakami et al. in [11]
quantified the risk of de-anonymization in a realistic situa-
tion where users disclose only a small amount of location in-
formation to the attacker. It proposed a method to overcome
a data sparsity problem when the attacker trains a transition
matrix that is specific to each user. Assuming that the ad-
versary knows the query probability in each location, Niu et
al. in [4] proposed an entropy-based dummy location selec-
tion algorithm, in which the dummy locations with similar
query probabilities are preferentially chosen.In [12], Xue et
al. proposed predicting a trip’s destination by human mo-
bility patterns and presented an algorithm that can minimize
the number of locations a user must hide to avoid privacy
leakage. In [13], Sadilek et al. utilized a dynamic Bayesian-
based inference model, using users’ social ties to infer their
locations. In [14], Huo et al. proposed an inference model
based on a Hidden Markov Model (HMM), using similar
users’ check-in histories to predict the unobserved locations.

However, the studies discussed above only use mobility
pattern [12] or social information [13], [14] to predict users’
behaviors. In addition, the prior preference in these studies
for different factors is not personalized for users. In con-
trast to the above approaches, our method has the following
features: (i) we integrate three heterogeneous factors to cap-
ture the probability of hidden location privacy leakage; (ii)
we provide a personalized behavior prediction for each user;
and (iii) we propose a privacy alert framework to warn users
when their sharing behavior does not correspond with their
respective sharing rules.

3. Preliminaries

In this section, we first present our motivation and then for-
mally define the secure metrics.

3.1 Motivation

Big data has become a hot topic in many fields, including
market research, targeted advertising, workflow improve-
ment, and national security. It is considered a revolution-
ary technology that will transform how we live, work, and
think. On the other hand, in the era of big data, protecting
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location privacy is becoming more difficult as information
multiplies and is shared even more widely throughout the
world. An adversary with big data analytical capacity can
easily extract a great deal of side information from diverse
mass data and then use it to infer user’s privacy. Exist loca-
tion protection approaches always fail to consider the side
information in adversaries’ hands. Due to the ignorance on
the side information, there schemes cannot effectively guar-
antee the desired privacy protection level. We will illustrate
the side information based inference attack with two exam-
ples.

Example 1: Alice wants to find her nearby friends but
she does not want to give away her exact location. Thus, as
shown in Fig. 1(a), instead of the exact location, Alice blurs
her real location into spatial regions to meet her anonymity
constraints (such as k-anonymity) and reports the spatial re-
gion to her friends. The above approach, known as “spatial
location cloaking”[2,3], is a classic method used in the era of
location privacy. However, it is vulnerable to side informa-
tion-based inference attacks. An adversary that can access
Alice’s check-in history may find that she enjoys reading
(e.g.,Alice’s published spatial regions often contain book-
stores), thus inferring that she is more likely to be in the li-
brary than in other places. To achieve the desired privacy
protection level, Alice should use larger k or cloak more
wider area.

Example 2: Bob does not want anyone to know he has
been to the hospital. Therefore, as shown in Fig. 1(b), he
disables location services to avoid privacy leakage while at
the hospital, whereas he releases his location at the cafe and
store. In the era of big data, however, this strategy does
not necessarily prevent an adversary from inferring that the
user has visited the hospital. An adversary with big data
mining ability may gain the knowledge that most users will
follow a path cafe->hospital->store and compute the travel
time between the cafe and the store. The adversary may
infer that Bob visited the hospital because his travel time
between the cafe and the store is longer than the average in-
terval. To achieve the desired privacy protection level, Bob
should hide wider area. That is, if the path information re-
lated with the road below the hospital is totally hidden, the
attack could be protected.

Though the countermeasures in example 1 and 2 are
secure enough by tuning the parameters of the countermea-
sures. Excessive protection may result in serious quality of
service degradation perceived by LBS users. In addition, be-

Fig. 1 Side information based inference attack

cause LBS users lack knowledge about the risks(e.g., all the
users’ check-in history), they cannot logically compare their
actual sharing behavior with their preferred privacy protec-
tion level; sometimes, they are not even aware of location
privacy leakage.

Therefore, this paper is motivated to address the
privacy-aware location information sharing problem in
LBSs. In this paper, side-information is limited to the in-
formation obtained from the knowledge from check-in se-
quences and open street map. We don’t assume any other
side-information (e.g., information deduced from twitter or
blog). We propose a privacy evaluation system under the
assumption above. By using our system, we can detect the
vulnerability of countermeasures shown in example 1,2, and
tune the better parameters of countermeasures for prevent-
ing the vulnerability. Our goal is not to prevent users from
sharing location information but to let users share as much
location information as possible when their privacy require-
ments are satisfied. To achieve this goal, we propose a novel
privacy metric that formally represents different users’ per-
sonal privacy requirements, and we then explore approaches
that meet those requirements.

3.2 Threat Model

In this paper, we make a widely acceptable assumption that
the location-based services provider (LBSP) in IoT provides
honest but curious services. LBSP acts in an honest fashion
and correctly follows the designated protocol specification.
However, it is interesting in analyzing users’ published lo-
cations so as to infer the users’ sensitive information.

3.3 Basic Definitions

In this paper, we take check-in service as an example for all
the discussions and illustrations. However, it can be easily
extended to other LBSs in IoT. The following are the defini-
tions used in the article.

Definition 1. Share rules: In LBSs, a user always
specifies a group of users or applications that either can or
cannot access their location information. These specifica-
tions are known as share rules. Three examples are shown
below.

Share rule r1: I do not want anyone know I have been
to the hospital.

Share rule r2: Only my classmates can know my loca-
tion when I am at the pub.

Share rule r3: Google Map can not access my location
when I am at home.

Definition 2. Hidden location: Given user u1’s share
rules, if user u2 does not have access to u1’s location when
u1 is at POI li, then li is u1’s hidden location for u2.

Definition 3. Hidden location inference attack: In
the era of big data, the adversary can extract substantial side
information about users from various sources, including ge-
ographic information, social information, and check-in his-
tories. Based on this side information, the adversary can
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infer users’ likely hidden locations using their visible loca-
tions.

Definition 4 Users’ check-in sequence: User uk’s
published locations can be represented as a check-in se-
quence C(uk) = (< l1, t1 >, · · · , < li, ti >, · · · , < lm, tm >),
in which ti denotes uk’s check-in time at POI li. All POIs
are sorted by check-in time.

Definition 5 s-confidence privacy: Given the sharing
rule ri and the corresponding hidden location li, we say the
system provides s-confidence privacy for sharing rule ri if
no adversary can use C(uk) to deduce that the probability
that uk has visited li is higher than s.

Definition 6 Users’ privacy requirement: Given user
uk, we represent his privacy requirement as PR(k) =<
(r1, l1, s1), · · · , (ri, li, si), · · · , (rn, ln, sn) >, where li denotes
the hidden POI deduced from uk’s sharing rule ri, and si

denotes the privacy requirement for rule ri (POI li) is si-
confidence. Notably, different users may have different per-
sonal sharing rules, and the privacy requirements for various
sharing rules may be different.

4. Hidden Location Inference Model

In this section, we first provide an overview of the inference
model and then perform an in-depth analysis regarding the
impact of different factors on users’ check-in behaviors. Fi-
nally, we show how different features are fused together to
infer users’ hidden locations.

4.1 Overview

Through the analysis of users’ check-in data, we find that
users pay the most attention to the following three aspects
when they choose the POIs that they will visit:

1) Geographic information: Typically, the distance to
the user significantly affects the probability that the user will
the visit the POI. For example, most users will likely choose
a nearby place when Foursquare recommends restaurants.

2) Human mobility patterns: Users’ behaviors typically
follow certain mobility patterns in specific regions. For ex-
ample, people who check-in at the railway station are then
likely to go either to the airport or to another railway station.

3) User preferences: In real life, people like to visit
certain POIs that fit their own personal interests. For exam-
ple, most people who frequent the library also like visiting
bookstores.

As shown in Fig. 2, we evaluate the impact of these fac-
tors separately from users’ check-in behavior. Moreover, we
propose a novel multi-factor model based on Multiple Lin-
ear Regression to fuse the factors. Finally, we combine the
multi-factor model with the current location in the predic-
tion of the POI that the user will visit or has visited. Details
are provided in the next subsection.

Fig. 2 The overview of the inference model

Fig. 3 The probability distribution of distance between the two consecu-
tive check-in POIs

4.2 Factor Modeling

4.2.1 Geographic Information

As we know, the distance between POIs significantly affects
users’ visitation behaviors. To observe the distance factor in
depth, we conduct an analysis using Foursquare data, which
was made available by Gao [15]. For each user, we calculate
the distance between all the consecutive check-in POIs in his
check-in sequence. Figure 3 depicts the probability distribu-
tion of distance between the two consecutive check-in POIs.
We find that the probability that a user will visit a POI is
inversely proportional to the distance between the POI and
his/her current location. The correlation between the POIs
decreases as the distance between the POIs increases. Thus,
we adopt the Gauss formula to calculate the distance simi-
larity between POI li and l j.

pgeo(li, l j) = exp(−
Distance(li, l j)2

2
) (1)

where Distance (li, l j) denotes the Euclidean distance be-
tween li and l j.

Moreover, we note that human behavior shows strong
daily and weekly periodic patterns, which is not surpris-
ing and has been demonstrated by numerous researchers.
Thus, in addition to the user’s current location, the user’s
check-in history can also be used to predict POIs that
the user will visit next. Given user uk’s check-in history
C(uk) = {l1, · · · , li, · · · , lm} and current location lα, the prob-
ability that user uk will visit POI lβ after lα can be calculated
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as

pgeo(lβ|lα, uk) = apgeo(lα, lβ) + (1 − a)
∑

li∈C(uk)

pgeo(li, lβ)

(2)

where a is turning parameter ranging within [0, 1], and it
can be determined via cross-validation.

4.2.2 Human Mobility Patterns

User behaviors typically follow certain mobility patterns in
a specific region [16]. For example, people who check-in
at the railway station are likely to go either to the airport
or to another railway station. Moreover, in some cases, the
correlation between the POIs is unidirectional. For exam-
ple, people usually check-in at gyms before they check-in at
restaurants. However, few people are tempted to adopt the
reverse order because it is not healthy to exercise right after
a meal.

Mobility patterns have important effects on users’
check-in behaviors. Thus, a basic approach is to use the
majority of users’ historical check-in sequences to capture
their mobility patterns and then use those mobility patterns
to infer their future check-in behaviors. Given all the users’
check-in sequences, we can compute the transition proba-
bility between POIs, which is defined as

phm(l j|li) =
count(li, l j)

count(li)
(3)

where count (li, l j) denotes the number of check-in se-
quences that contains POI li, POI l j in sequence, and
count(li) denotes the number of check-in sequences that
contains POI li. Note that the transition probability is unidi-
rectional and phm(l j|li) is not equal to phm(li|l j) in most cases.
Then, given user uk’s current location lα, the probability that
uk will visit POI lβ after lα is calculated as

phm(lβ|lα, uk) = phm(lβ|lα) (4)

4.2.3 Users’ Preference

In real life, people actually like to visit the POIs that fit
their own personal interests. Thus, an adversary can infer
the probability that a user will visit a POI by analyzing that
user’s interests. An example is illustrated in Fig. 1(b). The
user disables the location service while at the library but
checks in at POIs li−1 and li. Because the interval between
the check-in behaviors is greater than the regular travel time,
the adversary can easily infer that the user has visited an-
other POI between POI li−1 and li. Moreover, suppose that
by analyzing check-in history, the adversary knows user uk

often visits libraries. The adversary will then be able to in-
fer that user uk has visited the library instead of the bar, even
though most people drive along path 1 between li−1 and li.

Definition 4. (Users’ Interest Matrix) Given the
users’ ratings on POIs, we can build a user’s interest ma-
trix I|U |×|L|, which is represented as

I|U |×|L| =


r11 r12 . . . r1n

r21 r22 . . . r2n
...
...
. . .

...
rm1 rm2 . . . rmn

 (5)

where rki denotes uk’s rating on POI li, reflecting how much
user uk likes POI li. In the era of big data, it is not diffi-
cult for an adversary to obtain a huge number of users’ di-
rect or implicit ratings of POIs from various websites, such
as Foursquare, Yelp, and Dianping. Moreover, we can cal-
culate the implicit rating rki by using the number of repeat
visits to POI li from uk. Formally, rki is calculated as

rki =
|qki|∑

l j∈C(uk) |qk j|
(6)

where qki denotes the number of repeat visits to POI li from
uk, and C(uk) denotes user uk’s check-in sequence. How-
ever, we find this method insufficient. For example, uk may
check-in 10 times at Wal-Mart, where a large number of
users will check-in, whereas uk checks-in 10 times at the
museum, where few people go. Equation 6 illustrates that
uk’s rating for Wal-Mart is equal to its rating for the mu-
seum. However, it is apparent that the museum is more im-
portant when analyzing that user’s personal preferences.

Inspired by the TF-IDF [17] (term frequency-inverse
document frequency) scheme in information retrieval sys-
tems, we treat a check-in record as “a term” and treat the
user’s check-in sequence as “a document”. Formally, the
user’s rating rki is computed as

rki =
|qki|∑

l j∈C(uk) |qk j|
∗ log

|U |
|{us|qsi ≥ 1, us ∈ U}| (7)

where U denotes the collection of all the users and qki de-
notes the number of repeat visits to POI li from uk. The first
part of (7) is the TF value of POI li in the check-in sequence
of uk, and the second part denotes the IDF value of POI li.
However, the interest matrix obtained by the above methods
is a sparse-matrix. Thus, we first calculate the POI similarity
among POIs and then integrate it into a collaborative filter-
ing (CF) algorithm [18] to predict users’ ratings on unvisited
POIs.

Definition 5. POI similarity sim(li, l j): POI correla-
tion indicates the correlation between POI li and POI l j in
the space of human behavior. For example, if most people
who often go to the library also like visiting the bookstore,
then the library and the bookstore are similar in the space of
human behavior.

Figure 4 illustrates the computation process: users’ rat-
ings on the POIs are stored as entries in the interest ma-
trix where the matrix rows correspond to the users and the
columns correspond to the POIs. The basic idea behind
calculating the correlation between POI li and l j is to iso-
late those users who have rated both of the POIs and apply
a cosine-similarity to calculate the correlation between the
POIs by using only the ratings of the co-rated users. In this
case, the two POIs li and l j are considered as two vectors in
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Fig. 4 The process of correlation computation

the m-dimensional user-space, and the correlation between
the POIs is measured by computing the similarity between
the vectors. Formally, sim(li, l j) is calculated as

sim(li, l j) =

∑
uk∈co(li,l j) rki ·

∑
uk∈co(li,l j) rk j

|∑uk∈co(li,l j) rki|2|
∑

uk∈co(li,l j) rk j|2
(8)

where co(li, l j) denotes the users who have rated both POI
li and POI l j, and “·” denotes the dot-product between the
two vectors. Then, we use the POI similarity and user’s
rating of visited POIs to predict the user’s rating of unvisited
POIs. Intuitively, predicting uk’s rating of POI l j given the
user’s ratings of POI li−1 and li, if POI li is more related
to l j beyond li−1, then uk’s rating of POI li is likely to be
a far better predictor of POI l j than uk’s rating of POI li−1.
Formally, our approach can be represented as

rk j =

∑
li∈C(uk)(rki + devl j,li ) ∗ sim(li, l j)

|∑li∈C(uk) sim(li, l j)|
(9)

devl j,li =

∑
us∈co(li,l j)(rs j − rsi)

|co(li, l j)|
(10)

where sim(li, l j) denotes the similarity between POI li and
POI l j, and devl j,li is calculated using Eq. (10). Then, given
user uk’s current location lα, the probability that uk will visit
POI lβ after lα is calculated as

pup(lβ|lα, uk) =
rkβ

maxli∈C(uk)(rki)
(11)

where maxli∈C(uk)(rki) is a normalization term.

4.2.4 Factor Fusion and Probability Prediction

As different features have different impacts on different
users, the challenge is determining how to evaluate the sig-
nificance of each and then fuse them together to predict the
probability that the user will visit the POI. As a challenge,
we propose a novel behavior predictor model based on Mul-
tiple Linear Regression, which describes the relationship be-
tween the user’s check-in behavior and the above features.

Multiple Linear Regression [19] is a well-known
method used to model the relationship between two or more
explanatory variables and a response variable by fitting a
linear equation to observed data, and it has been used suc-
cessfully in many different fields, including medicine and
economics. The basic idea of Multiple Linear Regression is
applicable to our system because it delivers good results and

is easy to fine-tune and customize.
As discussed above, in LBSs, check-in behavior is af-

fected by the spatial factor, the sequence factor, and the pref-
erence factor. Then, the probability in Eq. (2) is combined
with the probabilities in Eqs. (4) and (11) to produce a uni-
fied measure through the sum rules:

ptotal(lβ|lα, u) = β0 + β1 ∗ pgeo(lβ|lα, u)

+ β2 ∗ phm(lβ|lα, u)

+ β3 ∗ pup(lβ|lα, u) (12)

where β0, β1, β2 and β3 denote the weights of different fea-
tures. Given user uk’s check-in history C(uk), the user’s
check-in behavior is binary (i.e., 0 or 1), which means she
may or may not visit a POI after a specific POI. Formally,
given n check-in records, the Multiple Linear Regression
model is calculated as follows:

Y = Xβ (13)

Y = (y1, y2, . . . , yn)T (14)

X =


1 x11 x12 x13

1 x21 x22 x23
...
...
. . .

...
1 xn1 xn2 xn3

 (15)

β = (β0, β1, β2, β3)T (16)

where yi denotes the ith observation, xi1 denotes the geo-
graphic factor in the ith observation, xi2 denotes the human
mobility pattern factor in the ith observation, and xi3 denotes
the preference factor in the ith observation. Given the ob-
servations, we can compute the values of β0, β1, β2 and β3

using the least-squares model [20], in which the weight of
different features minimizes the sum of the squares of the
errors made in the results of every single observation.

The inference model can then integrate these three fac-
tors to provide a personalized check-in behavior prediction
for each user. Let pnor(lβ|lα, uk) denote the normalized prob-
ability that uk will visit lβ after lα, and let Lnext denote the
set of the candidate locations that the user may visit after lα
(the details of the computation of Lnext will be given in the
next section). Then, given any POI lα, the probability that
user uk will visit lβ after lα can be calculated as follows:

pnor(lβ|lα, uk) =
ptotal(lβ|lα, uk)∑

li∈Lnext
ptotal(li|lα, uk)

(17)

where ptotal(li|lα, uk) can be calculated using (12). Obvi-
ously,

∑
li∈Lnext

pnor(li|lα, uk) = 1.

5. PLIS: Privacy-Aware Location Information Share
Framework

In this section, we first introduce the system architecture
of our privacy-aware location share framework. Next, we
present the privacy evaluation algorithm.
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5.1 System Architecture

Figure 5 depicts the architecture of our privacy-aware lo-
cation information share (PLIS) framework, which includes
three critical components: mobile users, the inference server
(IS), and the location-based service provider (LBSP). We
describe the details of these components below.

(1) Users: Users in the system are equipped with GPS-
enabled smart phones, which are capable of communicating
with the IS and the LBSP. To receive service from the LBSP,
the user will send his/her location li, the current time ti, and
the identities of those friends who can access location f to
the IS. The check-in request is represented as u(li, ti, f ).

(2) The IS: The IS consists of three main components:
a hidden location finder, a probability calculation compo-
nent, and a privacy estimating component. When the IS
receives the request message, it will evaluate whether the
user’s privacy requirement (sharing rules) will be satisfied;
if so, the current location is released to the specified friends
f . If there is no location privacy leakage, the user’s check-
in request u(li, ti, f ) will be forwarded to the LBSP auto-
matically; otherwise, the IS will return the sharing rule that
has been violated, the probable leaked hidden POIs, and the
leakage probabilities of hidden POIs to the user. Then, the
user will decide whether to release the current location to
his/her friends.

(3) The LBSP: The LBSP provides various services for
the users, such as enabling check-in, locating nearby friends,
or distributing coupons from businesses close to the user’s
current location. In addition, the LBSP provides the IS with
the side information.

5.2 Algorithm

Take user uk as an example: Given user uk’s privacy require-
ment PR(k), the IS can obtain the set of uk’ hidden sensitive
POIs LS (k) and his privacy requirement for the POIs. The
IS will evaluate whether the user’s privacy requirement will
be satisfied if the current location is released to the specified
friends/applications f when it receives uk’s check-in request
uk(li, ti, f ),

First, the IS will evaluate whether the hidden sensi-
tive locations that the user has visited will be leaked if the
current location is published. Given uk’s previous check-in

Fig. 5 System architecture of the privacy-aware location information
share framework

record uk(li−1, ti−1, f ), the IS will calculate the interval be-
tween two check-ins: △t = (ti − ti−1). In the era of big
data, map information and maximum velocity of the road
segments are publicly available via the Internet, and the
IS can thus use the side information to evaluate whether
uk has visited other POIs between the two check-ins. If
△t ≤ (dis(li−1, li)/vmax), the IS may infer that uk definitely
does not have time to visit any other POIs (dis(li−1, li) de-
notes the distance between li−1 and li). Otherwise, as shown
in Fig. 1(b), the IS will calculate the reachable POI set
Lpre = {lm|dis(li−1, lm) + dis(lm, li) ≤ △t ∗ vmax}. Then,
for each l j(l j ∈ (Lpre ∩ LS (k)), the IS will check whether
the deduced probability that uk has visited l j is higher that
his privacy requirement for l j if the current location is pub-
lished. The probability that the user has visited l j between
the two check-ins can be formalized as a posterior probabil-
ity pnor(l j|li−1, li, uk), which can be derived using Bayesian
reasoning. Formally, it can be calculated as follows:

pnor(l j|li−1, li, uk) =
pnor(li−1, l j, li, uk)

pnor(li−1, li, uk)

=
pnor(l j|li−1, uk)pnor(li|l j, uk)∑

ls∈Lpre
pnor(ls|li−1, uk)pnor(li|ls, uk)

(18)

where pnor(ls|li, uk) is calculated using (17).
Then, the IS will evaluate whether the location that

user plans to visit will be leaked if the current location is
published. Identifying all the POIs in the city as the candi-
date locations that the users will visit is unrealistic and use-
less since the probability that the users will visit POIs that
are far or unpopular is low. Therefore, we only take three
types of POIs into consideration: (i) the top k POIs nearest
to the current location; (ii) the top k POIs that other users
will visit; and (iii) uk’s top k highest rated POIs. From this,
we can narrow down the set of POIs, Lnext, that the user may
visit. Then, for each l j(l j ∈ (Lnext∩LS (k)), the IS will check
whether the deduced probability that uk will visit l j is higher
than his privacy requirement for l j if the current location is
published. The probability that the user will visit l j can be
calculated using (17).

If there is no privacy leakage, the IS will forward the
user’s check-in request uk(li, ti, f ) to the LBSP; otherwise,
the IS will return the sharing rule being violated, the prob-
able leaked hidden POIs, and the leakage probabilities of
hidden POIs to the user. Then, the user will decide whether
to release the location. The details of this are shown in Al-
gorithm 1.

5.3 Security Analysis

Since cryptography techniques such as SHA and AES can
be easily used on our algorithms to foil eavesdropping at-
tacks on the wireless channel between the users and the IS,
in this section, we focus on the inference attack performed
by the active adversary.

In a mobile social network, users typically interact with
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Algorithm 1: Evaluate location privacy
Input: User’s privacy requirement

PR(k) =< (r1, l1, s1), · · · , (ri, li, si), · · · , (rn, ln, sn) >,
User’s previous check-in location li−1 and check-in time ti−1

User’s Current location li and current time ti
Output: probable leaked hidden POIs, together with the leakage

probability
1 // Find the candidate POIs the user has visited △t = ti − ti−1;
2 if △t ≤ dis(li−1, li/vmax) then
3 Lpre = ∅;
4 end
5 else
6 Lpre = {lm |dis(li−1, lm) + dis(lm, li) ≤ △t ∗ vmax};
7 end
8 // Find the candidate POIs that user will visit Lnear = {the top k

nearest POI to li};
9 Lma j = {the top k POIs that other users will visit};

10 Lrate = {uk’s top k highest rated POIs };
11 Lnext = Lnear ∪ Lma j ∪ Lrate;
12 //Evaluate whether the users’ privacy requirement is satisfied
13 if (LS (k) ∩ (Lpre ∪ Lnext)) = ∅) then
14 return NULL;
15 end
16 else
17 for each l j in (LS (k) ∩ Lpre) do
18 if pnor(l j |li−1, li, uk) > s j then
19 Hpre = Hpre∪ < l j, pnor(l j |li−1, li, uk) >;
20 end
21 end
22 for each l j in (LS (k) ∩ Lnext) do
23 if pnor(l j |li, uk) > s j then
24 Hnext = Hnext∪ < l j, pnor(l j |li, uk) >;
25 end
26 end
27 end
28 return Hpre ∪ Hnext;

friends via geo-location content. Ideally, the adversary can-
not find the user’s hidden location when the users disable
the location service in locations that they regard as sensitive.
However, a strong adversary may know the history data of
a particular user. When this data is combined with side in-
formation, the adversary can use this information to perform
inference attacks. The goal of the adversary is to improve its
probability of successfully guessing the real hidden location
from the user’s current location. In our algorithms, the in-
ference attack is avoided by using obfuscation, which can be
achieved by deleting the locations that can be used to infer
users’ location privacy. We first calculate the possible POIs
that the users will visit or have visited, and we then made
sure that for each of the candidate POIs, the probability that
the user will visit (has visited) the POI is below the privacy
requirement for the POI. Thus, although the adversary finds
that the user has visited (will visit) other POIs, the adversary
cannot use a user’s check-in locations to reveal that user’s
hidden location. As a result, it is meaningless for adver-
saries to reverse our scheme, which can effectively protect
the user’s location privacy.

6. Performance Evaluations

In this section, we conduct intensive experiments to evalu-

Table 1 Statistics of the two datasets

Statistic Foursquare Yelp

Number of users 121,03 51,714
Number of POIs 78,425 13,916

Number of check-in or ratings 934,531 272,834
Number of social links 136,334 285,219

ate our inference model and privacy-aware location-sharing
framework. We present experimental settings in Sect. 5.1
and analyze the experimental results in Sect. 5.2.

6.1 Simulation Setup

We evaluate our system using the real-world dataset we
created using Foursquare [15] and Yelp [21]. We have the
check-in or rating history, the corresponding check-in time,
and the social ties of each user in the two datasets. Ta-
ble 1 shows the statistics of the data set. Note that the
Foursquare data provide the check-in frequencies of users
to POIs, which can be used to calculate the implicit rating,
whereas the Yelp data set offers the explicit rating of the
users’ POIs. Realistically, we can only use the check-in his-
tory to predict future check-in behaviors. Thus, we use the
half of the check-in data with the earlier check-in time as the
training set and the other half of the check-in data as the test-
ing set. In addition, our proposed method PLIS, which is de-
scribled in Sect. 5, is compared with three existing schemes,
DP, FF and FFC, which represent the inference models used
in [12], [13] and [14], respectively.

6.2 Experimental Results

6.2.1 Study on Accuracy

The sensitive locations are invisible in the two datasets.
Thus, we artificially generate two sensitive location sets for
each user in our experiment. Given a user uk, hidden loca-
tion set A is generated by randomly marking off a portion
of the POIs where he has checked in; hidden location set B
is generated by adding POIs that are geographically located
between li−1 and li where uk did not check in. We then use
the following metrics to evaluate our system: (i) true posi-
tive probability, which refers to the average probability that
the locations in hidden location set A are identified as the
hidden locations; and (ii) false positive probability, which
refers to the average probability that the locations in hidden
location set B are identified as the hidden locations.

Figure 6 shows the effects of the number of marked
POIs on the average true positive probability, whereas Fig. 7
depicts the effects of added POIs on false positive proba-
bility. In Fig. 6, the higher the true positive probability, the
better the approach, whereas the false positive probability in
Fig. 7 represents the opposite. Our proposed method (PLIS)
exhibits the best performance in terms of both true and false
positive probabilities. DP only factors in the majority of
users’ primary historical check-in sequences to predict a
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Fig. 6 Performance evaluations on true positive probability

Fig. 7 Performance evaluations on false positive probability

user’s future destinations. With this approach, it is difficult
to evaluate whether the user has visited a hidden location if
the user’s check-in sequences are personal and unpopular. It
should be noted at this juncture that FF has both low true
positive and false positive probabilities. This result stems
from a data sparsity problem when few of a user’s friends
have visited a hidden location within the given time span.
FFC uses the check-in history of a user’s friends and also
uses common interests to predict the user’s hidden locations.
It generates the second best prediction results. However,
FFC still ignores the geographical distribution in the users’
check-in history. In addition, it is inadvisable to assign the
same weight to all users’ interests (preferences). Some users
are affected more by common interests, whereas others may
rely more on the geographical influence or on the patterns
of the majority of users. Another drawback of FFC is that
it has a high false positive probability, particularly in dense
urban areas with few check-ins.

Our proposed method exhibits the best performance
in terms of both true positive probability and false posi-
tive probability. In particular, PLIS realizes significant im-
provement in comparison with the other prediction tech-
niques. The reason is threefold: (1) we model a personal-
ized geographical check-in distribution for each user based
on the user’s check-in history; (2) we take full advantage
of the user’s preferences by seamlessly combining the bias
of users and the popularity of POIs into a reasonable rele-
vance score based on the TF-IDF scheme; and (3) we com-
bine geographic information, human mobility patterns, and
user preferences to model a personalized prediction for each
user.

Fig. 8 Performance evaluations on different factors

6.2.2 Study of the Three Factors of Our Method

In this section, we study the three factors in PLIS: geograph-
ic information, human mobility patterns, and user prefer-
ences, referred to as Geo, Hm, and Up, respectively. Figure
8 plots the prediction accuracy of the three factors based on
Eqs. (2), (4), and (11), respectively. We have two observa-
tions: (i) all three factors play an important role in PLIS for
hidden location prediction and compete with one another.
For example, Hm outperforms Up on the Foursquare data,
but the reverse is true regarding the Yelp data; (ii) integrat-
ing the three components is helpful in increasing the predic-
tion accuracy. As shown in Fig. 8, PLIS is significantly su-
perior to each factor alone because geographic information,
human mobility patterns, and user preferences affect people
to different degrees in the real world. Thus, the hidden loca-
tion prediction model makes the best use of various types of
valuable information implied by users’ check-in behaviors
at POIs.

6.2.3 Privacy-Utility Tradeoff

In this section, we study the price, in terms of utility, that
users must pay for a formal privacy guarantee. We know that
users in the mobile social network always want to publish
as much geo-location content as required to receive better
service. Therefore, we propose a performance metric, called
the utility ratio, to evaluate the users’ utility. It is calculated
as follows:

Utility =
|Lcan|
|Lwant |

(19)

where Lwant denotes the set of the POIs at which the user
wants to check-in, and Lcan denotes the POIs where the user
can check-in without damaging his/her location privacy.

We randomly select a portion of the POIs (5 percent of
the POIs and 10 percent of the POIs) in the dataset and mark
them as sensitive locations at which no users will check-in.
For purposes of simplicity, in this experiment, we assume
that the privacy requirement for the selected sensitive POIs
is the same for all users. However, PLIS allows users to
define personal privacy requirements for different POIs.

We vary users’ privacy requirements for POIs by
changing the value of confidence si, which is defined above
in Sect. 3.3 and denotes that no adversary can deduce that
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Fig. 9 Performance on utility ratio

the probability of the user visiting li is higher than si. As
shown in Fig. 9, the performance degradation of our system
utility is small. For example, when the ratio of the sensi-
tive POIs is 0.10, and the required confidence level si is 0.3,
the utility ratio of PLIS in Foursquare data is 0.73. This
is because the false positive probability of our approach is
low, while the true positive probability of our approach is
high. Thus, PLIS only suppresses the POIs that are relevant
to the sensitive POIs. The result implies that PLIS can offer
strong privacy guarantees (by choosing a smaller value of
confidence s) without sacrificing too much utility.

7. Conclusion

Privacy-aware location information management is an im-
portant problem in LBSs. In this paper, we proposed a new
location privacy attack called the hidden location inference
attack. By means of data analysis, we discovered three fac-
tors that can be used to infer a user’s private location: geo-
graphic information, human mobility patterns and user pref-
erences. Then, we evaluated the separate impact of each of
these factors on users’ check-in behaviors. Moreover, we
proposed a novel algorithm that is based on Multiple Lin-
ear Regression to integrate the above heterogeneous factors
and provide a personalized check-in behavior prediction for
each user. Based on the predictor model, we proposed a
privacy-aware location-sharing framework that warns users
when their actual sharing behaviors do not match their shar-
ing rules. Finally, we evaluated our scheme using two real-
world datasets. The results of our experiment demonstrate
the validity and practicality of the proposed strategy.

Based on the work presented here, future research will
address the following issues. First, the adversary may use
different models to infer the users’ location privacy, this may
degrade the performance of PLIS mechanism. An extension
mechanism to resist these attack models will be proposed.
Second, because PLIS mechanism does not assume all side
information, there are also plans to study more types of side
information(e.g.,social relationship,gender) to enhance the
effectiveness of the proposed mechanism.
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