
2002
IEICE TRANS. INF. & SYST., VOL.E99–D, NO.8 AUGUST 2016

PAPER Special Section on Security, Privacy and Anonymity of Internet of Things

BFWindow: Speculatively Checking Data Property Consistency
against Buffer Overflow Attacks

Jinli RAO†, Nonmember, Zhangqing HE†a), Student Member, Shu XU††b), Kui DAI†††,
and Xuecheng ZOU†, Nonmembers

SUMMARY Buffer overflow is one of the main approaches to get con-
trol of vulnerable programs. This paper presents a protection technique
called BFWindow for performance and resource sensitive embedded sys-
tems. By coloring data structure in memory with single associate property
bit to each byte and extending the target memory block to a BFWindow(2),
it validates each memory write by speculatively checking consistency of
data properties within the extended buffer window. Property bits are gener-
ated by compiler statically and checked by hardware at runtime. They are
transparent to users. Experimental results show that the proposed mecha-
nism is effective to prevent sequential memory writes from crossing buffer
boundaries which is the common scenario of buffer overflow exploitations.
The performance overhead for practical protection mode across embedded
system benchmarks is under 1%.
key words: embedded system security, buffer overflow, data structure col-
oring, data property consistency, speculatively checking

1. Introduction

With advances of sensors, embedded computing and com-
munication technologies, internet has spread from persons
to things known as Internet of Things(IoT) [1], [2] which
enables an “always-connected” paradigm for our society.
Along with the benefits from IoT, challenges such as in-
frastructure design, data/service management and security
have raised attentions [3]–[5]. Information security attacks
are growing with the widely used of IoT devices. It leads
security become an important metric for system design as
well as function, speed, area and power [6], [7]. In order
to achieve high performance and low-level hardware con-
trollability, embedded software normally adopts unsafe lan-
guages, notably C and C++. Unfortunately, C/C++ are
weak type languages and don’t apply data structure bound-
ary checking for memory access. This allows manipulations
of memory contents with arbitrary data pointer casting and
dereference which natively facilitates memory attacks.

Buffer overflow is one of the top software memory ex-
ploitation threats [8], [9]. Though numbers of protection

Manuscript received November 30, 2015.
Manuscript revised March 28, 2016.
Manuscript publicized May 31, 2016.
†The authors are with School of Optical and Electronic Infor-

mation, Huazhong University of Science and Technology, Wuhan
430074, China.
††The author is with Science and Technology on Information

Assurance Laboratory, Beijing, China.
†††The author is with Institute of National Network Security and

Information, Peking University, Beijing, China.
a) E-mail: ivan hee@126.com
b) E-mail: 18010005098@189.cn (Corresponding author)

DOI: 10.1587/transinf.2015INP0003

methods have been proposed, it still dominates due to secu-
rity limitations and usability poorness of existing methods.

Security limitations: (1) Incomplete protection space:
proposed methods target defending partial attacks such as
corruptions of function pointers and return address, which
can be easily bypassed by new attack approaches. (2) De-
layed attack detection: most protection methods detect at-
tacks when the corrupted data is referred, but the time dif-
ference between malicious data injection and detection may
cause system suffering information leakages or hardware
damages as discussed in Sect. 3.2.

Usability poorness: (1) Performance overhead: soft-
ware based solutions degrade performance significantly and
designers are reluctant to adopt them. (2) Deploy burden:
hardware based solutions need deep changes of system de-
sign and also rely on software explicitly programming the
protection functionality.

In order to bridge the gap among security, performance
and usability, this paper presents an efficient compiler and
hardware based method called BFWindow for embedded
systems. Compiler generates program data structure prop-
erty map and hardware validates memory writes by check-
ing property consistency of an extended buffer window in-
cluding the target data. It efficiently prevents sequential
memory writes from crossing data structure boundary which
is known as buffer overflow. This new angle of view permits
us to contribute in following areas:

Integrity: BFWindow eliminates buffer corruptions
caused by sequential memory writes. Malicious data can’t
be injected and propagated to other variables through buffer
boundary crossing. Moreover, it performs validation before
memory targets being really accessed which detects attacks
immediately after attack attempts and maintains a secure
runtime environment for programs.

Low Overhead: Hardware based checker resides in
memory system for background validation. It releases pro-
cessor resource required by instruction based solutions and
minimizes performance penalty. As it’s decoupled from pro-
cessor pipeline, it also simplifies hardware implementation.

Usability: Long term programming habits hinder pro-
grammers following new software design rules and changes
of legacy code also bring risk to the system. BFWindow
takes advantages of compiler and hardware which are trans-
parent to programmers and legacy code. Neither constraints
to programming style nor patches to legacy code are needed
for security upgrading which makes it easy for deployment.

Copyright c⃝ 2016 The Institute of Electronics, Information and Communication Engineers



RAO et al.: BFWINDOW: SPECULATIVELY CHECKING DATA PROPERTY CONSISTENCY AGAINST BUFFER OVERFLOW ATTACKS
2003

The rest of the paper is organized as follows. Sec-
tion 2 goes over available buffer overflow protection meth-
ods. Section 3 describes models of target system and attacks
from hardware and software perspectives. Proposed protec-
tion mechanism and implementation are detailed in Sect. 4
and 5 respectively. Section 6 presents security and perfor-
mance experiments results and Sect. 7, the conclusion.

2. Related Work

Researches about buffer overflow attack approaches and
protection methods are widely developed since 1960s [27],
[28], [30]. Libsafe [31] targets the common vulnerable li-
brary functions by reimplementing them with buffer over-
flow protection capability, but it cannot protect home-
brew code. Compiler is heavily exploited to automatically
strengthen code with buffer overflow detections. Stack-
Guard [13] and StackShield [14] take advantages of com-
piler to insert code into function prologue and epilogue to
perform control data protection. StackGuard protects the
function return address through a canary guard word while
StackShield duplicates the function return address with the
assumption that attacker may not override them at the same
time. However, both StackGuard and StackShield target
function return address only and leave function pointers as
well as local variables vulnerable to attacks like “return-to-
libc” [15]. ProPolice/SSP [16] enhances StackGuard with
local variable protection by reordering buffers to the op-
posite direction of buffer growing, but adjacent buffers are
left to be attackable. CCured [10] and CRED [11] use static
analysis and runtime boundary checking to prevent buffer
access abuse. WIT [12] uses points-to analysis to get the
full map of pointer usages and employs operating system
to maintain data coloring table in a separate virtual memory
space. Its mechanism is similar to our solution. But the anal-
ysis time increases dramatically with source code size and
the multiple bits coloring table is visible to attackers which
may potentially be overridden.

Hardware methods are proposed for higher efficiency
and security. Non-eXecute(NX) bit marks memory sec-
tions as non-executable [17] to prevent execution of injected
code. Secure Return Address Stack(SARS) is a hardware
implementation of StackShield targeting function return ad-
dress protection [18]. Memory tag technologies [19], [20]
implement fine grain control of memory access with asso-
ciate bits to memory items, but it relies on software to man-
ually implement the protection mechanism which hinders
its deployment. [21]–[23] track data flow and strictly avoid
suspicious inputs to be used as control data. The imple-
mentations need redesign of hardware and may cause soft-
ware compatibility issues such as function pointer table us-
ages. Recently hardware based boundary checking solu-
tions appear. [24] implements implicit boundary checking
while [25], [26] implement explicit boundary checking. A
pointer table of (address, base, size) is generated by com-
piler and maintained by hardware µops or extended instruc-
tions. They can effectively eliminate memory errors. But

even for the most efficient liner pointer table implementa-
tion, it costs 2 times memory space overhead which is not
practical for embedded systems.

3. Security Model

3.1 System Security Model

An m bits register-based computing system is illustrated as
Fig. 1. Its security domain includes trusted computing con-
texts and untrusted inputs. Computing contexts include run-
time code, data and devices which are either physically un-
touchable like remote access only or secured by other pro-
tection mechanisms like data encryption or anti-tampering
chips. And inputs are exposed to attackers which are easily
controlled through software provided user interfaces.

The inputs and computing contexts are connected by
system state transformation as Fig. 2 with inputs I, outputs
O, system architecture visible states M, system function µ,
state to function converter f and system state change δ for
instruction i. The formal representations are:

(Oi,Mi+1) = µi(Ii,Mi) {Ii,Oi ∈ [−2m, 2m − 1]} (1)

µi = f (Mi) (2)

δi = Mi+1 − Mi {δi ∈ [−2m, 2m − 1]} (3)

If the system has incomplete validation of inputs, mali-
cious data can be injected without triggering system alarms.

Fig. 1 m bits datawidth computing system diagram

Fig. 2 m bits integer computing system state transformation



2004
IEICE TRANS. INF. & SYST., VOL.E99–D, NO.8 AUGUST 2016

Fig. 3 Program runtime data layout

According to Eq. (1) and (2), it can propagate to pollute
computing contexts and compromise the system eventually.

3.2 Buffer Overflow Attack Model

Taking data in processor Instruction Set Architecture(ISA)
defined types as metadata, a buffer is a continuous block of
homogeneous metadata items residing in program memory
space. It can be defined as BFm(Tw, n) {w ∈ N + and w ≤
m/8, n ∈ N+}. Tw is a metadata type occupying w bytes
memory and n is the buffer length. If n = 1, the buffer
regresses to a scalar with programming language defined
types(e.g. char, short, int in C), otherwise it is correspond-
ing to an array. The k-th metadata can be referred as
BFDm(Tw, k) {k ∈ N and k < n}.

Program runtime data layout in little-endian memory
system is shown as Fig. 3. Typical attack scenarios are
detailed in [27], [28]. The common concept is to extend
BFm(Tw, n) to BFm(Tw, t) with t > n and exploit program
control with the additional (t − n) ∗ w bytes data. Accord-
ing to Sect. 3.1, polluted Mi affects Oi, Mi+1 as well as µi+1

and eventually attackers can hijack the program to achieve
special purposes.

Figure 4 shows a typical vulnerable code and Fig. 5 il-
lustrates its context after buffer overflow attack [29]. The
possible attacks are:

(1) Device attack: Override key data such as device pa-
rameters to affect hardware running states and cause system
damages.

(2) Information Leakage: Override control data such
as branch conditions to affect program execution flow and
provide a window for attackers to spy upon system secrets.

(3) Control Hijack: Override control data such as func-
tion return address to redirect program to injected malicious
code and hijack the system.

Buffer overflow attacks succeed by feeding program
with invalid structure of inputs to overflow program runtime
contexts. Inputs with invalid values in valid data structures

Fig. 4 Example code for buffer overflow attack

Fig. 5 Program context after buffer overflow attack

only trigger parameter errors instead of buffer overflows.
Value validation of inputs is one of program’s basic func-
tionalities and not considered in this paper.

4. BFWindow Protection

4.1 Data Structure Coloring

For a 16 byte memory block, it can be interpreted as a 16
byte array or a 12 byte array plus 1 word as shown in Fig. 6.
This “poly-interpretation” facilitates attacks with memory
access crossing data structure boundaries.

To avoid such “poly-interpretation”, data structure in-
formation should be recorded when memory is allocated.
This paper takes data structure coloring method. By associ-
ating each byte with one additional property bit p, data struc-
ture view is clearly reflected with interleaving 0/1. Contigu-



RAO et al.: BFWINDOW: SPECULATIVELY CHECKING DATA PROPERTY CONSISTENCY AGAINST BUFFER OVERFLOW ATTACKS
2005

Fig. 6 Poly-interpretation and coloring of memory block

ous bytes with same property belong to one data structure.
And the boundary is drawn by property changes.

With data coloring mechanism, the data buffer defi-
nition in Sect. 3.2 is extended to BFm(Tw, n, p) {w ∈ N +
and w ≤ m/8, n ∈ N+, p ∈ {0, 1}}. The k-th metadata
item and its property are referred as BFDm(Tw, n, k) and
BFPm(Tw, n, k) {k ∈ N and k < n} respectively.

4.2 Property Consistency Checking

Buffer overflow is triggered by multiple memory writes
crossing data structure boundaries within the same program
context. Instead of pairing corresponding writes for bound-
ary checking which is impractical for hardware, this paper
defines a buffer overflow free write based on speculatively
data property consistency checking with following lemma.

Lemma 1: If a metadata has adjacent homogeneous meta-
data with the same data structure property in buffer growing
direction, memory write to the metadata is safe.

Proof 1: The target and its adjacent metadata memory
blocks can be defined as Mm(addr, value, size, prop) and
M′m(addr′, value′, size′, prop′).
∵ size′ = size, addr′ = addr + size, prop′ = prop
∴ {M,M′} = BFm(size, 2, prop)
∴ bu f f er boundary is not within BFm(size, 2, prop)
=⇒write to BFDm(size, 0, prop) sa f e
=⇒write to Mm(addr, value, size, prop) sa f e

BFm(Tw, n, p) is also called BFWindow(n). By extend-
ing target BFDm(Tw, k, p) to a corresponding BFWindow(2)
and speculatively checking its property consistency, it’s easy
to validate legality of sequential writes.

For a buffer BFm(Tw, n, p) (n ∈ N+, n ≥ 2), BFWin-
dow(2) convinces that writes to {BFDm(Tw, k, n) (k ∈ N, 0 ≤
k ≤ n− 2)} are always safe while the write to BFDm(Tw, n−
1, n) is misinformed as unsafe. In order to get the correct
set of BFWindows, 1 additional homogeneous metadata is
padded after BFm(Tw, n, p) to form a new BF′m(Tw, n + 1, p)
as Fig. 7. Writes to original buffer {BFD′m(Tw, n, k) (0 ≤
k ≤ n − 1)} are now safe while the write to the padded
BFD′m(Tw, n + 1, n) will be marked as unsafe. The padded
item is used as embedded guard to trigger buffer overflow
exception if sequential writes try to cross buffer boundary.

Fig. 7 Extending BFm(Tw, n) to BF′m(Tw, n + 1) to avoid misinforming
with BFWindow(2)

Fig. 8 Property bit map memory organization

5. Implementation

5.1 Memory Organization

The property map needs to be stored for later consistency
checking. It can be either closely coupled with each byte
or grouped in a separate memory block as Fig. 8. Closely
coupling method needs to modify current physical mem-
ory structure by extending 1 more bit per byte while sepa-
rate memory block method can be easily implemented with
memory space extending. This paper will take the separate
bit map memory block for implementation and evaluation.

Property bits are stored in reserved memory which is
unaddressable to normal memory access instructions at run-
time. This defeats potential property overriden attacks.

5.2 Property Management

Property management includes property generation, initial-
ization and cleanup. Enhanced compiler generates the prop-
erty map during compilation. For stack buffers, compiler
pads each buffer with one more homogeneous item and cal-
culates properties of the new constructed buffer. It also au-
tomatically insert property initialization and cleanup code to
function prologue and epilogue. For BS S and data buffers,
padding items are also allocated during compilation. Initial-
ization and cleanup code are inserted after main() entry and
before main() exit respectively. While for heap buffers, en-
hanced malloc() and f ree() library functions perform guard



2006
IEICE TRANS. INF. & SYST., VOL.E99–D, NO.8 AUGUST 2016

allocation, property initialization and cleanup. When an ar-
ray is inside a struct, the struct is rewrited as Fig. 11 to main-
tain source compatibility.

Special instructions SETP(Set Property Bits) and
CLRP(Clear Property Bits) are extended to ISA for prop-
erty operation. Their syntaxes are shown as Fig. 9.

In order to optimize performance, this paper enables
users to control buffer set to be protected. A basic idea is that
input buffers exposed to attackers are unsafe while internal
temporary buffers are safe. By removing unnecessary pro-
tections for safe buffers, it can minimize performance over-
head. This paper introduces a “guided-protection” mech-
anism. The enhanced compiler supports different protec-
tion modes and a map file which contains the list of target
buffers. The syntax of buffer protection map is shown in
Fig. 10.

Combinations of protection modes and map files im-
plement 3 levels of buffer protection as shown in Table 1.

We take CIL(C Intermediate Language) [32] and GCC
to implement these features. The frontend tool automati-
cally does all necessary instruments to source code which
avoids extra efforts for application security upgrading.

Fig. 9 SETP/CLRP instruction syntax

Fig. 10 Buffer protection guide file syntax

Fig. 11 Rewrite struct with buffers

Table 1 Protection level based on BFWindow(2)

Level Mode Map File Targets
0 –no-lbuf-prot Ignore None
1 –light-lbuf-prot Effective Map file specified buffers
2 –full-lbuf-prot Ignore All local buffers

5.3 Property Checking

BFWindow(2) detects buffer overflow before memory be-
ing really accessed based on hardware. Take a classic five
stage RISC processor pipeline for example, the checking
is performed at “Memory Access” stage with “read-check-
write” mechanism. Processor issues the data write transac-
tion to memory bus. Memory controller reads correspond-
ing property bits of target BFWindow from reserved prop-
erty memory and checks the consistency. If the consistency
is approved, it accepts the memory write and updates target
memory block. Otherwise, buffer overflow is detected and
it raise a memory bus error exception due to data structure
property inconsistency. If data cache is presented, the same
checking sequence is performed by cache controller instead.

As the memory write operation is after instruction com-
mitment, the validation process dosen’t block the instruc-
tion pipeline. Additionally, memory system performs the
implicitly validation which eliminates additional checking
instructions. These are important for performance sensitive
embedded systems.

6. Results

This paper takes SimpleScalar [33] and GCC targeting
ARM processor to validate security enhancement and eval-
uate performance overhead. BFWindow(2) protection and
data structure map generation are implemented in Sim-
pleScalar and CIL/GCC. Table 2 summarizes the tar-
get system model which is based on ARM SA-1100
core [34]. And the implementation source is available at
https://github.com/rynxr/BFWindow.

Related protection methods introduced in Sect. 1 are
evaluated on X86 desktop with age-old Ubuntu 6.06 which
doesn’t have any buffer overflow protection mechanisms and
will not introduce interferences [35]. The practical com-
bination of Address Space Layout Randomization(ASLR),
NX and stack protector is evaluated in Ubuntu 12.04 with
appropriate OS/compiler switches(randomize va space =
2, -z noexecstack, -fstack-protector-all). [12], [24]–[26] are

Table 2 System configurations for simulations

Architecture Value
Instruction Fetch Queue 8 entries

Decode width 1 instruction per cycle
Issue width 1 instruction per cycle

Commit width 1 instruction per cycle
RUU(Register Update Unit) 4 entries

LSQ(Load/Store Queue) 4 entries
Function units 1 IALU, 1 IMUL, 1FPALU, 1FPMUL

Branch predictor not taken

I/D-TLB
32-entry, 32-set,

FIFO replacement, 30-cycle miss

L1 I/D-cache
16KB, 32-way, 32-byte cache line,

FIFO replacement, 1-cycle hit
L2 I/D-cache None

Memory system
1 port, pipelined,

64/1 cycle for first/inter chunk



RAO et al.: BFWINDOW: SPECULATIVELY CHECKING DATA PROPERTY CONSISTENCY AGAINST BUFFER OVERFLOW ATTACKS
2007

Table 3 Buffer overflow protection efficiency comparison

Methods Tech
Target Buffer Location Sensitive Data Protection

Detection R.T. Failure
stack heap BSS data ctrl var func ptr ret addr

No protection(Ubuntu6.06) - N N N N N N N - - 0%
Libsafe Lib Y/N Y/N Y/N Y/N Y/N Y/N Y/N @Access Hight 7%

StackShield CC Y N N N N N Y @Refer Low 36%
SRAS HW Y N N N N N Y @Refer Low ≈ 36%

ProPolice CC Y N N N N N Y @Refer Low 40%
SecureBit OS/HW Y/N Y/N Y/N Y/N Y/N Y Y @Refer Low < 79%

CRED CC Y/N Y/N Y/N Y/N Y/N Y/N Y/N @Access High 79%
ASLR+NX+Stack-protector CC/OS/HW Y Y Y Y N N Y @Refer Low 90%
BFWindow(2)+no-lbuf-prot - N N N N N N N - - 0%

BFWindow(2)+light-lbuf-prot CC/HW Y Y Y Y Y Y Y @Access High 100%
BFWindow(2)+full-lbuf-prot CC/HW Y Y Y Y Y Y Y @Access High 100%

impractical to embedded system due to high memory over-
head and not included for comparison.

6.1 Security Efficiency

The comprehensive buffer overflow dedicated testbed
RIPE [36] is run for security validation. It crosses 5 at-
tack dimensions including buffer locations(e.g. stack, heap,
BSS etc.), target code pointers(e.g. return address, function
pointer etc.), direct/indirect pointer overflow techniques, at-
tack assist code classes(e.g. shellcode, return-to-libc etc.)
and target vulnerable functions(e.g. memcpy(), strcpy(), fs-
canf() etc.) to provide 850 practical attack scenarios.

Table 3 shows results of security efficiency. In “Tech”
column, Lib/CC/HW/OS denote that the implementations are
based on library, compiler, hardware and operating sys-
tem respectively. “Target Buffer Location” lists buffer lo-
cations which can be protected by corresponding methods.
“Sensitive Data Protection” includes ctrl data, func ptr and
ret addr which are abbreviations of control data(e.g. branch
condition, pointer table index etc.), function pointer and
function return address. “Detection” column indicates when
attacks are identified, either at data access stage or data re-
ferring stage. “R.T.” column summarize the attack response
timeliness level corresponding to “Detection”. “Failure”
column lists the experiment results of applying RIPE.

Result “Y” means that the method supports protecting
targets and “N” means not. “Y/N” means corresponding
method either effective or ineffective for different programs.
For example, Libsafe can only protect buffers operated by
enhanced library functions, ProPolice can’t protect adja-
cent buffers in buffer growing direction and CRED targets
string buffers only to reduce performance overhead. Though
SRAS and SecureBit are hardware methods which cannot
be simulated, SRAS is similar to StackShield and SecureBit
only targets control data flowing to Program Counter(PC)
which is weaker than CRED, their “Failure” are derived
from StackShied and CRED respectively.

Most protections like StackShield, SRAS, ProPolice,
SecureBit and NX detect attacks at data referring stage such
as function returns to corrupted address. It may be a long pe-
riod after the attack occurrence. Libsafe and CRED perform
boundary checking at data access stage. However, home-

brew code and performance issues limit their practicabil-
ity. BFWindow(2) aggressively validates sequential memory
writes based on underlying data layout. It timely prevents
malicious inputs from polluting program runtime contexts.

Exploitations from real applications are also evalu-
ated. CVE-2015-0235(“GHOST”) is from glibc which over-
flows caller-supplied buffers(heap, stack, bss etc.). And
cve-2015-5291 from mbed T LS overflows heap buffers.
Both have serious impacts on information security of em-
bedded systems. BFWindow(2) can effectively detect at-
tacks as soon as memory writes crossing buffer boundaries†.

6.2 Performance Overhead

Embedded MiBench [37] is adopted for performance evalu-
ation with following selected benchmarks: susan - an image
package; string search - search algorithm for given words in
phrases; dijkstra - an Dijkstra’s algorithm implementation;
FFT - Fast Fourier transforms used in digital signal process-
ing; sha - the standard secure hashing algorithm; rijndael
- a popular symmetric cryptography algorithm used in in-
dustry. All benchmarks are simulated with large data set
inputs. Taking system without buffer protection mechanism
as baseline, Fig. 12(a) shows the total simulation cycles and
Fig. 12(b) shows ratios of normalized simulation time.

The performance overhead mainly comes from data
structure property map management and struct rewrites. It’s
highly depends on the protected buffer scale of programs.
The full protection mode protects all buffers compulsively.
It introduces less then 1% performance overhead for most
benchmarks except 8.3% for rijndael and 7.2% for sha. The
large overheads are due to that these 2 algorithm implemen-
tations uses large number temporary buffers which intro-
duces unnecessary protections. For example, rijndael takes
2 local buffers, each with 16 bytes, as state memory for each
round and large lookup tables for substitution and multi-
plication on GF(28), while sha aggressively allocates 8192
bytes to temporarily hold data slices. In light protection
mode simulation, it protects buffers related to inputs only
and filters out the internal safe buffers. The performance
penalty for light mode protection are under 1%.

†https://github.com/rynxr/BFWindow/tree/master/src/cve



2008
IEICE TRANS. INF. & SYST., VOL.E99–D, NO.8 AUGUST 2016

Fig. 12 Performance results with different BFWindow(2) protection levels

Hardware resource overhead contains instruction ex-
tension logic and property map memory space. Both
SETP/CLRP are similar with normal memory instruc-
tions(e.g.store) and the extra decoding logics are negligible.
The memory overhead includes property bits and padding
items. As a property bit is associated to each byte, it takes
extra 12.5% memory in total. But it can dramatically de-
creases the overhead to 3.125% by padding buffers, aligning
them with 4 bytes boundary and associating property bits to
words which are practical for common 32 bit systems. Sys-
tem designers can also remove unnecessary property bits for
scalars. By separating buffer memory space with proper-
ties to scalar memory space without properties, it further
decreases property memory overhead. And the space of
padding items depends on the number of protected buffers.
It is acceptable for security system designers considering the
gained security enhancements.

7. Conclusion

This paper proposed a technique called BFWindow to pro-
tect program buffers from buffer overflow attacks caused by
sequential memory writes. Based on data structure color-
ing with single property bit and speculatively property con-
sistency checking of target BFwindow(2), it aggressively
prevents unsafe memory writes at early data access stage.
The malicious inputs with invalid data structures can never
cross a buffer boundary to pollute other local data. The se-
curity enhancements are proved by both theory and exper-
iments. Property bits reside in an unaddressable memory
space which also prevents potential overridden attacks.

We also implement guided protection mechanism in
compiler with fine control of protection targets to mini-
mize performance overhead. Performance evaluation results
show that the practical light protection of input buffers in-
troduces less then 1% performance loss. All instruments are
transparent to programmers and it’s easy to deploy for se-
curity upgrading without extra efforts or risks. Hardware
based checker resides in memory system minimizes impacts
on processor design and runtime performance.

By extending BFWindow(2) to BFWindow(3) with two
separate guard items before/after target buffer, it can effec-
tively protect buffers from overflow as well as underflow at-

tacks. Furthermore, enhancing f ree() to scramble property
bits of freed memory block with interleaving 0/1, it prevents
accidently access to unallocated memory which is know as
“use-after-free” and “double-free” attacks of pointers.

References

[1] L. Atzori, A. Iera, and G. Morabito, “The Internet of Things: A
survey,” Comput. Netw., vol.54, no.15, pp.2787–2805, 2010.

[2] J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami, “Internet of
Things (IoT): A vision, architectural elements, and future direc-
tions,” Future Generation Computer Systems, vol.29, no.7, pp.1645–
1660, 2013.

[3] H. Li, M. Dong, and K. Ota,, “Radio Access Network Virtualization
for the Social Internet of Things,” IEEE Cloud Computing, vol.2,
no.6, pp.42–50, 2015.

[4] J. Wu, M. Dong, K. Ota, L. Liang, and Z. Zhou, “Securing dis-
tributed storage for Social Internet of Things using regenerating code
and Blom key agreement,” Peer-to-Peer Networking and Applica-
tions, vol.8, no.6 pp.1133–1142, 2015.

[5] S.K. Sowe, T. Kimata and M. Dong, and K. Zettsu, “Managing
Heterogeneous Sensor Data on a Big Data Platform: IoT Services
for Data-Intensive Science,” COMPSAC Workshops, pp.295–300,
2014.

[6] P. Kocher, R. Lee, G. McGraw, and A. Raghunathan, “Security as
a new dimension in embedded system design,” Proc. 41st annual
Design Automation Conference, pp.753–760, 2004.

[7] S. Ravi, A. Raghunathan, P. Kocher, and S. Hattangady, “Security
in embedded systems: Design challenges,” ACM Trans. Embedded
Computing Systems (TECS), vol.3, no.3, pp.461–491, 2004.

[8] M. Dalton, H. Kannan, and C. Kozyrakis, “Real-world buffer over-
flow protection for userspace and kernelspace,” USENIX Security
Symposium, pp.395–410, 2008.

[9] CERT, OpenSSL heartbleed, https://www.us-cert.gov/ncas/alerts/
TA14-098A, 2014.

[10] G.C. Necula, S. McPeak, and W. Weimer, “CCured: Type-safe
retrofitting of legacy code,” ACM SIGPLAN Notices, vol.37, no.1,
pp.128–139, 2002.

[11] O. Ruwase and M.S. Lam, “A practical dynamic buffer overflow de-
tector,” NDSS, pp.159–169, 2004.

[12] P. Akritidis, C. Cadar, C. Raiciu, and M. Castro, “Preventing mem-
ory error exploits with WIT,” IEEE Symposium on Security and Pri-
vacy, pp.263–277, 2008.

[13] C. Cowan, C. Pu and D. Maier, et al., “Stackguard: Automatic adap-
tive detection and prevention of buffer-overflow attacks,” USENIX
Security Symposium, vol.98, pp.63–78, 1998.

[14] S.S. Vendicator, “A stack smashing technique protection tool for
linux,” http://www.angelfire.com/sk/stackshield/info.html

[15] M. Tran, M. Etheridge, T. Bletsch, X. Jiang, V. Freeh, and P.
Ning, “On the expressiveness of return-into-libc attacks,” Recent

http://dx.doi.org/10.1016/j.comnet.2010.05.010
http://dx.doi.org/10.1016/j.comnet.2010.05.010
http://dx.doi.org/10.1016/j.future.2013.01.010
http://dx.doi.org/10.1016/j.future.2013.01.010
http://dx.doi.org/10.1016/j.future.2013.01.010
http://dx.doi.org/10.1016/j.future.2013.01.010
http://dx.doi.org/10.1109/mcc.2015.114
http://dx.doi.org/10.1109/mcc.2015.114
http://dx.doi.org/10.1109/mcc.2015.114
http://dx.doi.org/10.1007/s12083-014-0286-y
http://dx.doi.org/10.1007/s12083-014-0286-y
http://dx.doi.org/10.1007/s12083-014-0286-y
http://dx.doi.org/10.1007/s12083-014-0286-y
http://dx.doi.org/10.1109/compsacw.2014.52
http://dx.doi.org/10.1109/compsacw.2014.52
http://dx.doi.org/10.1109/compsacw.2014.52
http://dx.doi.org/10.1109/compsacw.2014.52
http://dx.doi.org/10.1145/996566.996771
http://dx.doi.org/10.1145/996566.996771
http://dx.doi.org/10.1145/996566.996771
http://dx.doi.org/10.1145/1015047.1015049
http://dx.doi.org/10.1145/1015047.1015049
http://dx.doi.org/10.1145/1015047.1015049
http://dx.doi.org/10.1145/565816.503286
http://dx.doi.org/10.1145/565816.503286
http://dx.doi.org/10.1145/565816.503286
http://dx.doi.org/10.1109/sp.2008.30
http://dx.doi.org/10.1109/sp.2008.30
http://dx.doi.org/10.1109/sp.2008.30
http://dx.doi.org/10.1007/978-3-642-23644-0_7
http://dx.doi.org/10.1007/978-3-642-23644-0_7


RAO et al.: BFWINDOW: SPECULATIVELY CHECKING DATA PROPERTY CONSISTENCY AGAINST BUFFER OVERFLOW ATTACKS
2009

Advances in Intrusion Detection, pp.121–141, Springer, 2011.
[16] H. Etoh and K. Yoda, “Propolice: Improved stack-smashing attack

detection,” IPSJ SIGNotes Computer Security, 2001.
[17] NX bit, https://en.wikipedia.org/wiki/NX bit
[18] J.P. McGregor, D.K. Karig, Z. Shi, and R.B. Lee, “A processor archi-

tecture defense against buffer overflow attacks,” Information Tech-
nology: Research and Education, pp.243–250, 2003.

[19] N. Zeldovich, H. Kannan, M. Dalton, and C. Kozyrakis, “Hardware
enforcement of application security policies using tagged memory,”
OSDI, vol.8, pp.225–240, 2008.

[20] S. Chiricescu, A. DeHon, D. Demange, S. Iyer, A. Kliger, G.
Morrisett, B.C. Pierce, H. Reubenstein, J.M. Smith, G.T. Sullivan,
A. Thomas, J. Tov, C.M. White, and D. Wittenberg, “SAFE: A clean-
slate architecture for secure systems,” IEEE International Confer-
ence on Technologies for Homeland Security (HST), pp.570–576,
2013.

[21] J.R. Crandall and F.T. Chong, “Minos: Control data attack preven-
tion orthogonal to memory model,” MICRO-37, pp.221–232, 2004.

[22] G.E. Suh, J.W. Lee, D. Zhang, and S. Devadas, “Secure program
execution via dynamic information flow tracking,” ACM SIGPLAN
Notices, vol.39, no.11, pp.85, 2004.

[23] K. Piromsopa and R.J. Enbody, “Secure bit: Transparent, hardware
buffer-overflow protection,” IEEE Trans. Dependable and Secure
Computing, vol.3, no.4, pp.365–376, 2006.

[24] S. Nagarakatte, M.M.K. Martin, and S. Zdancewic, “Watchdog:
Hardware for Safe and Secure Manual Memory Management and
Full Memory Safety,” 39th Annual International Symposium on
Computer Architecture, 2012.

[25] Intel, “Intel Architecture Instruction Set Extensions Programming
Reference,” 319433-015 edition, 2013.

[26] S. Nagarakatte, M.M.K. Martin, and S. Zdancewic, “WatchdogLite:
Hardware-accelerated compiler-based pointer checking,” Interna-
tional Symposium on Code Generation and Optimization, pp175,
ACM, 2014.

[27] C. Cowan, F. Wagle, C. Pu, S. Beattie, and J. Walpole, “Buffer
overflows: Attacks and defenses for the vulnerability of the
decade,” DARPA Information Survivability Conference and Expo-
sition, vol.2, pp.119–129, 2000.

[28] G. Richarte, “Four different tricks to bypass stackshield and stack-
guard protection,” World Wide Web, 2002.

[29] Z. Shao, Q. Zhuge, Y. He, and E.H.-M. Sha, “Defending embed-
ded systems against buffer overflow via hardware/software,” IEEE
Computer Security Applications Conference, pp.352–361, 2003.

[30] S. Jisha, D. Thomas, and S. Jamal, “A categorized survey on buffer
overflow countermeasures,” IJARCCE, vol.2, pp2068–2074, 2013.

[31] A. Baratloo, N. Singh and T.K. Tsai, et al., “Transparent run-time
defense against stack-smashing attacks,” USENIX Annual Technical
Conference, General Track, pp.251–262, 2000.

[32] G.C. Necula, S. McPeak, S.P. Rahul, and W. Weimer, “CIL: Inter-
mediate language and tools for analysis and transformation of c pro-
grams,” Compiler Construction, pp.213–228, Springer, 2002.

[33] T. Austin, E. Larson, and D. Ernst, “SimpleScalar: An infrastructure
for computer system modeling,” Computer, vol.35, no.2, pp.59–67,
2002.

[34] Intel, “SA-1100 Microprocessor Technical Reference Manual,”
1998.

[35] Canonical, Ubuntu Wiki, https://wiki.ubuntu.com/Security/Features,
2016.

[36] J. Wilander, N. Nikiforakis, Y. Younan, M. Kamkar, and W. Joosen,
“RIPE: runtime intrusion prevention evaluator,” Proc. 27th An-
nual Computer Security Applications Conference, pp.41–50, ACM,
2011.

[37] M.R. Guthaus, J.S. Ringenberg, D. Ernst, T.M. Austin, T. Mudge,
and R.B. Brown, “Mibench: A free, commercially representative
embedded benchmark suite,” Workshop on Workload Characteriza-
tion, pp.3–14, IEEE, 2001.

Jinli Rao was born in 1987. He received the
B.S. and M.S. degrees in Microelectronics and
Solid State Electronics from Huazhong Univer-
sity of Science and Technology, China in 2009
and 2012 respectively. Currently He is a Ph.D
candidate in Huazhong University of Science
and Technology, China. His research interests
include information security, computer architec-
ture and VLSI design.

Zhangqing He received his B.S. Degree
from Hubei University of Technology and M.S.
Degree from Huazhong University of Science
and Technology, China in 2003 and 2008. Cur-
rently he is a Ph.D student in Huazhong Uni-
versity of Science and Technology and also is a
associate professor in Hubei University of Tech-
nology, China. His research interests include
embedded system and security.

Shu Xu received B.S. degree in mathemat-
ics from Peking university in 1984 and Ph.D.
degree in cryptology from Zhengzhou Informa-
tion Science and Technology Institute in 2008
respectively. Now he is a research fellow in Sci-
ence and Technology on Information Assurance
Laboratory. His research interests include com-
puter architecture, cryptology and information
security. He has been awarded 1 time the special
grade prize, 1 time the first prize and 2 times the
second prize of national award for Science and

Technology Progress, 7 times the first prize of ministerial awards, 7 times
the second prize of ministerial awards.

Kui Dai received B.S. degree in informa-
tion science and technology from Harbin Uni-
versity of Technology and the Ph.D. degrees
in Computer Science and Technology from Na-
tional University of Defense Technology, China
in 1989 and 1994 respectively. He joined
the National University of Defense Technology
in 1995. Since 2008 he was a professor in
Huazhong University of Science and Technol-
ogy. Now he is a professor in the Institute
of National Network Security and Information,

Peking University.

Xuecheng Zou received the B.S. M.S. and
Ph.D. degrees, all in electrical engineering, from
Huazhong Unversity of Science and Technol-
ogy, China in 1985, 1988 and 1995 respectively.
He is currently a professor and doctoral supervi-
sor in School of Optical and Electronic Informa-
tion, Huazhong University of Science and Tech-
nology. His research interests span microelec-
tronics and solid state electronics, information
security, VLSI design.

http://dx.doi.org/10.1109/itre.2003.1270612
http://dx.doi.org/10.1109/itre.2003.1270612
http://dx.doi.org/10.1109/itre.2003.1270612
http://dx.doi.org/10.1109/ths.2013.6699066
http://dx.doi.org/10.1109/ths.2013.6699066
http://dx.doi.org/10.1109/ths.2013.6699066
http://dx.doi.org/10.1109/ths.2013.6699066
http://dx.doi.org/10.1109/ths.2013.6699066
http://dx.doi.org/10.1109/ths.2013.6699066
http://dx.doi.org/10.1109/micro.2004.26
http://dx.doi.org/10.1109/micro.2004.26
http://dx.doi.org/10.1145/1037187.1024404
http://dx.doi.org/10.1145/1037187.1024404
http://dx.doi.org/10.1145/1037187.1024404
http://dx.doi.org/10.1109/tdsc.2006.56
http://dx.doi.org/10.1109/tdsc.2006.56
http://dx.doi.org/10.1109/tdsc.2006.56
http://dx.doi.org/10.1109/isca.2012.6237017
http://dx.doi.org/10.1109/isca.2012.6237017
http://dx.doi.org/10.1109/isca.2012.6237017
http://dx.doi.org/10.1109/isca.2012.6237017
http://dx.doi.org/10.1007/978-1-4302-5927-5_3
http://dx.doi.org/10.1007/978-1-4302-5927-5_3
http://dx.doi.org/10.1145/2581122.2544147
http://dx.doi.org/10.1145/2581122.2544147
http://dx.doi.org/10.1145/2581122.2544147
http://dx.doi.org/10.1145/2581122.2544147
http://dx.doi.org/10.1109/discex.2000.821514
http://dx.doi.org/10.1109/discex.2000.821514
http://dx.doi.org/10.1109/discex.2000.821514
http://dx.doi.org/10.1109/discex.2000.821514
http://dx.doi.org/10.1109/csac.2003.1254340
http://dx.doi.org/10.1109/csac.2003.1254340
http://dx.doi.org/10.1109/csac.2003.1254340
http://dx.doi.org/10.1007/3-540-45937-5_16
http://dx.doi.org/10.1007/3-540-45937-5_16
http://dx.doi.org/10.1007/3-540-45937-5_16
http://dx.doi.org/10.1109/2.982917
http://dx.doi.org/10.1109/2.982917
http://dx.doi.org/10.1109/2.982917
http://dx.doi.org/10.1145/2076732.2076739
http://dx.doi.org/10.1145/2076732.2076739
http://dx.doi.org/10.1145/2076732.2076739
http://dx.doi.org/10.1145/2076732.2076739
http://dx.doi.org/10.1109/wwc.2001.990739
http://dx.doi.org/10.1109/wwc.2001.990739
http://dx.doi.org/10.1109/wwc.2001.990739
http://dx.doi.org/10.1109/wwc.2001.990739

