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SUMMARY In the early phases of the system development process,
stakeholders exchange ideas and describe requirements in natural language.
Requirements described in natural language tend to be vague and include
logical inconsistencies, whereas logical consistency is the key to raising the
quality and lowering the cost of system development. Hence, it is impor-
tant to find logical inconsistencies in the whole requirements at this early
stage. In verification and validation of the requirements, there are tech-
niques to derive logical formulas from natural language requirements and
evaluate their inconsistencies automatically. Users manually chunk the re-
quirements by paragraphs. However, paragraphs do not always represent
logical chunks. There can be only one logical chunk over some paragraphs
on the other hand some logical chunks in one paragraph. In this paper, we
present a practical approach to detecting logical inconsistencies by clus-
tering technique in natural language requirements. Software requirements
specifications (SRSs) are the target document type. We use k-means clus-
tering to cluster chunks of requirements and develop semantic role labeling
rules to derive “conditions” and “actions” as semantic roles from the re-
quirements by using natural language processing. We also construct an
abstraction grammar to transform the conditions and actions into logical
formulas. By evaluating the logical formulas with input data patterns, we
can find logical inconsistencies. We implemented our approach and con-
ducted experiments on three case studies of requirements written in natural
English. The results indicate that our approach can find logical inconsis-
tencies.
key words: requirement analysis, natural language processing, clustering

1. Introduction

Although formal languages like UML and SysML can be
used to describe specifications of documents, stake holders,
in the early phases of the system development process, use
natural language to exchange ideas, design products, and
define requirements because natural language can describe
their ideas better. Under such circumstances, the descrip-
tions of the requirements are likely to be vague and incon-
sistent. Logical consistency is the key to raising the quality
and lowering the cost of system development. Hence, it is
important to find logical inconsistencies at this early stage.
Formal languages offer a number of techniques for evaluat-
ing the logical consistency of requirements. In verification
and validation of the requirements, there are techniques to
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Fig. 1 Framework for detecting logical inconsistencies by clustering
technique in natural language requirements

derive logical formulas from natural language requirements
and evaluate their inconsistencies automatically. Here, there
are a number of techniques to find logical inconsistencies
in natural language requirements. For instance, a frame-
work has been proposed for handling inconsistencies in nat-
ural language requirements [24] by using a natural language
parser to generate logical formulas. However, users still
have to determine how to chunk the requirements into pieces
in which to search for logical inconsistencies. For example,
they may chunk paragraphs into sentences. However, the
logic of these sentences is not independent; that is, in para-
graphs written in natural language, logical aspects in one
sentence relate to logical aspects in other sentences. This
situation suggested to us that we should cluster chunks of
requirements. In this paper, we present a practical approach
to detecting logical inconsistencies by clustering technique
in natural language requirements (See Fig. 1). Software re-
quirements specifications (SRSs) are the target document
type. Functionality descriptions of SRS are the main target
descriptions. Our approach can be applied on other types
of descriptions, however, detecting logical inconsistency for
functionality descriptions is the more important. We devel-
oped semantic role labeling rules to derive “conditions” and
“actions” as semantic roles from requirements by using nat-
ural language processing. We also constructed an abstrac-
tion grammar to transform the conditions and actions into
logical formulas. By evaluating the logical formulas with
input patterns, we can find logical inconsistencies.

We implemented a proof-of-concept prototype of our
framework. We used the natural language processing
parser [4] and conducted dependency analysis on the natural
language requirements. Semantic role labeling, abstraction
grammar, and evaluation of logical formulas were imple-
mented using our own methods developed using the natural
language tool kit [17]. We evaluated our prototype on three
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case studies: “a detailed system design specification for
the coordinated highways action response team (CHART)
mapping applications” [14], “business requirements specifi-
cations of legal notice publication (eNotification)” [15], and
“comprehensive watershed management water use tracking
(WUT) project software requirements specification” [16].

The paper is structured as follows. We present our ap-
proach in Sect. 2, starting with a simple example illustrat-
ing its flow followed by a description of each step of the
approach, i.e., the parsing and dependency analysis, seman-
tic role labeling, logical abstraction grammar, evaluation of
the logical formulas, and creation of the input data patterns.
Section 3 discusses the experiments and the results. A sum-
mary of related work is presented in Sect. 4. We conclude
the paper in Sect. 5.

2. Detecting Logical Inconsistencies by Clustering
Technique in Natural Language Requirements

2.1 An example for Illustrating the Approach

Figure 2 presents an example that we will use to discuss our
approach.

The example requirement,REQ-ex, is: “If the pro-
grams start at the same time, the program listed first in the
menu has priority.”

The results of the parsing and dependency analysis are
that “has” is the root word. The root is defined in [5] as
“The root grammatical relation points to the root of the sen-
tence”. In other words, root is a main word in the sen-
tence., Continuing the example results of the parsing and
dependency analysis, “start” depends on “has”(root), and
“programs” and “time” depend on “start”. The word, “pro-
grams” is substantive according to our logical abstraction
grammar, and hence, “programs” is a propositional variable
of the clause that can be represented as, for example, P1.
The word, “time” is a compliment according to our logi-
cal abstraction grammar; accordingly, “time” is a proposi-
tional variable, represented as P2, for example. The word,
“has” is the root of the sentence; accordingly, “has” is also a
propositional variable, represented as P3, for example. Log-
ical abstraction grammar comes from the definitions of the
meaning of the type of dependency in the parser [5]. Here
we get the logical formula: P1 & P2→ P3. “&”, “|”, and
“→” mean “and”, “or”, and “imply”. To evaluate this logi-
cal formula, it is first translated by negation into -P1 | -P2 |
P3. The symbol “-” means “not”, and P1, P2 and P3 take
values of true or false. In order to evaluate the negated logi-
cal formula, we the input data patterns shown in Fig. 2. The
results of the evaluation reveal a logical inconsistency: pat-
tern 3, i.e., P1 = True, P2 = True and P3 = False, returns
false (-P1 | -P2 | P3).

2.2 Clustering Natural Language Requirements

We use the k-means clustering algorithm to cluster chunks

Fig. 2 Example

Fig. 3 Clustering natural language requirements (from Fig. 3 in [25])

of natural language requirements. Figure 3 illustrates k-
means clustering and clustering paragraphs. k-means clus-
tering is to partition n data points into k clusters [25] and
also is used to cluster natural languages. When a paragraph
of requirements is defined as a data in k-means clustering,
each clusters can be determined by similarity between the
paragraphs at the results of k-means clustering. Paragraphs
are candidate chunks, because the ordinary writing style is
to separate different topics into paragraphs, sections. There
are vague separations of paragraphs in requirements. Then
we focus on similarity between paragraphs by automatic cal-
culation such as k-means clustering.

For instances, figure 3 illustrates when we apply k-
means to paragraphs from paragraph 1.1.1 to 2.1.4, we can
get from cluster 1 to cluster 4 each similarities by k-means
algorithm. In this case, Sub A-1 and Sub A-2 have simi-
larity of their descriptions as cluster 1. Then the scope of
detecting logical inconsistency the cluster 1 is more suitable
than scopes of Sub A-1 and Sub A-2. Other paragraphs are
also clustered into each cluster from 2 to 4. In this example,
there are four scopes of detecting logical consistency.

2.3 Parsing and Dependency Analysis

A natural language processing (NLP) parser assigns num-



2212
IEICE TRANS. INF. & SYST., VOL.E99–D, NO.9 SEPTEMBER 2016

Table 1 Dependency analysis

bers to the words and punctuation in the natural language
requirements. For example, REQ-ex is parsed into “If-1
the-2 programs-3 start-4 at-5 the-6 same-7 time-8

,-9 the-10 program-11 listed-12 first-13 in-14

the-15 menu-16 has-17 priority-18 .-19”. Here, in-
tegers are joined to each word or punctuation mark with a
hyphen.

The NLP parser also analyzes the dependencies among
the words. Table 1 shows the results of the dependency anal-
ysis of the example. Each parser defines a set of dependency
types. We used the NLP parser [18].

The meanings of dependency types are defined in [5]
as follows:

• prep: prepositional modifier. A prepositional modifier
of a verb, adjective, or noun is any prepositional phrase
that serves to modify the meaning of the verb, adjec-
tive, noun, or even another preposition.
• cop: copula. A copula is the relation between the com-

plement of a copular verb and the copular verb.
• dobj: direct object. The direct object of a VP is the

noun phrase which is the (accusative) object of the
verb.
• nsubj: nominal subject. A nominal subject is a noun

phrase which is the syntactic subject of a clause.
• nsubjpass: passive nominal subject. A passive nominal

subject is a noun phrase which is the syntactic subject
of a passive clause.
• aux: auxiliary. An auxiliary of a clause is a non-main

verb of the clause.
• auxpass: passive auxiliary. A passive auxiliary of a

clause is a non-main verb of the clause which contains
the passive information.

Fig. 4 Semantic role labeling algorithm

• neg: negation modifier. The negation modifier is the
relation between a negation word and the word it mod-
ifies.
• root: root. The root grammatical relation points to the

root of the sentence.

2.4 Semantic Role Labeling

The purpose of semantic role labeling in this paper is to label
“actions” and “conditions” in a sentence. Even though re-
quirements are written in natural language, the style of their
descriptions will likely be formalized to some extent. Re-
quirements are used to inform stakeholders or force him/her
to act in accordance with them. Hence, their descriptions
consist of condition sub clauses and action sub clauses, for
example, “If (a) is (b), then (c) is (d)”, where clauses (a) to
(d) represent words and phrases. At this point, we label the
requirements with semantic roles.

The labeling is defined as follows:

• S is a sentence.
• i is a number of each words parsed from S.
• m(i) is a word parsed from S.
• T is the number of root of S.
• m(T) is the root of S.
• D(i) is the word number of m(i) depending on.
• C(i) is the type description of m(i) depending on.
• B(i) is a clause constructed from all words depending

on m(i) as the clause ending word.
• Cn indicates “conditions” and Ac indicates “actions”

as attributes of B.
• R is a set of semantic role labeling rules.

– Ra is the subset of action labeling rules.

∗ Ra1: C(i) is one of {“prep”, “cop”, “dobj”,
“nsubj”, “nsubjpass”, “aux”, “auxpass”,
“neg”, “ROOT”}.

– Rc is the complementary subset of condition la-
beling rules.

∗ Rc1:not Ra1

Below Fig. 4 shows the algorithm of semantic role la-
beling.
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Fig. 5 Example of semantic role labeling

These definitions are used to interpret the requirements
that have been parsed and whose dependencies have been
analyzed as in Table 1. Figure 4 shows the semantic role
labeling algorithm. The first step is to search for the root
word. The next step is to search for all the words that depend
on the root word. Clauses are constructed from the depen-
dencies on the root word, and are labeled according to the
“actions” and “conditions” rules. The rules depend on the
language and the requirements. We have constructed ones
for English and Japanese. Moreover, each language has its
own natural language parser and dependency types. Ra1 is
a rule that when dependency types are one of “prep”, “cop”,
“dobj”, “nsubj”, “nsubjpass”, “aux”, “auxpass”, “neg”, and
“ROOT” the words are labeled “action”.

All of the dependency types identify semantic label as
actions when their dependence is on the root word. On the
other hand, an adverbial clause modifier, i.e., “advcl” is a
typical dependency type for labels identified as conditions.
An adverbial clause modifier of a VP or S is a clause modi-
fying the verb [5]. The output consists of clauses labeled as
“actions” and “conditions”.

Figure 5 shows how the example requirement is as-
signed semantic role labels. The results of the parsing and
dependency analysis is that “has” is m(T), the root word.
The words, “priority”, “program” and “start” have depen-
dency to “has”. For instance, the type of dependency from
“priority” to “has” is “dobj”; thus, “priority” is determined
as part of the action from rule Ra1. “program” and all of its
dependent words are also determined as part of the action
from Ra1. The word, “start”, is not determined as part of
Ra1; thus, it is determined as part of the condition from rule
Rc1.

2.5 Abstraction Grammar of the Structured English

Figure 6 lists the abstraction grammar of the structured En-
glish. The highlighted characteristics of this grammar are
as follows: action and condition sub clauses, root word, and
propositional variables. By applying this grammar, require-
ments can be translated into logical abstractions. A simi-
lar grammar is proposed in [1]. It supports present, future

Fig. 6 Abstraction grammar

and passive tenses with correct syntax according to English
grammar. In this paper, we focus on action and condition
sub clauses first. After action and condition sub clauses
are determined, propositional variables are determined in
the root word, substantive, and complement. The root word
is determined by dependency analysis and is defined as a
propositional variable representing the action clause. First
order logic is one way to translate natural language into log-
ical formulas, and some translation techniques use first order
logic; however, their results are too complex for the purpose
of finding logical inconsistencies. In first order logic trans-
lation, every word is translated into a function. By contrast,
proposition logic is sufficient for finding logical inconsis-
tencies. That is why we choose to use propositional vari-
ables and logic. A substantive is defined as a propositional
variable representing substantive phrases in the condition
sub clause. The complement is defined as a propositional
variable representing complement phrases in the condition
sub clause. Propositional logic formulas are then defined
using these variables. Note the current grammar only sup-
ports “if” and “when” subordinators, and the case studies’
requirements only have these subordinators.

The grammar was constructed from the description
style of the requirements in the same way as the seman-
tic role labeling. Requirements are formal at some level.
They are used to inform stakeholders and force them to act
accordingly. Hence, their style consists of condition sub
clauses and action sub clauses.

Now let us show how the grammar works in more de-
tail by using the sample sentence as an example. The sen-
tence consists of two sub clauses, “If the programs start at
the same time” and “the program listed first in the menu has
priority” The root word “has” is identified by dependency
analysis. The clause “the program listed first in the menu has
priority” is an action subclause, and the root word “has” is
identified as a propositional variable. The other clause has
the subordinator “if”; this clause is identified as a condi-
tion subclause. The condition subclause is divided up into
(subordinator).(clause) and (subject).(predicate) as the ab-
stract grammar description. Finally, the subject is translated
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into substantives, and the word “programs” is identified as
a propositional variable representing propositional logic. In
the same way, the word “time” is identified as a proposi-
tional variable representing propositional logic.

2.6 Evaluate Logical Formulas

Logical formulas are generated by using the abstraction
grammar, for example, P & Q → R and S | Q & T → U.
In order to evaluate all logical formulas to find inconsisten-
cies, the logical formulas are translated into their negation
and the product of the negations is taken, for example, (-P |
-Q | R) & (-S & -Q | -T | U). In this example, the propo-
sitional variables are P, Q, R, S, T and U. Q appears in
each formula. Then, patterns of TRUE or FALSE for all
propositional variables are generated as input data of logi-
cal formulas to check whole logical formulas. If the result
of some pattern is false, there are logical inconsistencies in
the particular data patterns and the requirements sentence is
considered inconsistent.

We used combinatorial testing to create input data pat-
terns for evaluation of the logical formulas. The SAT solver
is a program for checking logical constraints [19], [22], [23].
The solver checks validity and consistency. Validity and
consistency are really two ways of looking at the same
thing and each may be described in terms of syntax or se-
mantics [21]. SAT also has semantic versions of validity
and consistency that are defined in terms of the concept of
structure [21]. It, however, only checks satisfiability as to
whether there is at least one data pattern that solves the logi-
cal formula. That means it is insufficient for our objective of
finding logical inconsistencies in data patterns and raising a
false flag on all of the logical formulas. We must also evalu-
ate the logical formulas using all combinations of input data
patterns or by using combinatorial testing.

2.7 Input Data Patterns

We evaluated the logical formulas by using combinatorial
testing (CT) instead of checking all patterns of variables be-
cause the number of patterns is so large. Given n propo-
sitional variables, the number of patterns is 2 to the n-th
power. For example, there are 85 propositional variables in
Sect. 2.2 of the CHART case study. The number of combi-
nations of these variables is 2ˆ82, i.e., 4.8*10ˆ24. This is
not a practical number of data patterns in which to find log-
ical inconsistencies using the present computer resources.
CT is the solution for this problem. CT can detect failures
triggered by interactions of parameters in the software un-
der test (SUT) with a covering array test suite generated by
some sampling mechanism. CT has the following charac-
teristics [20]: (1) it creates test cases by selecting values for
parameters and by combining these values to form a cover-
ing array; (2) it uses a covering array as the test suite; (3)
not every parameter of SUT can trigger a fault, and some
faults can be exposed by testing interactions among a small
number of parameters; (4) being a specification-based test-

ing technique, CT requires no knowledge about the imple-
mentation of SUT; (5) tests can be automatically generated,
which is a key to CT gaining in popularity. Characteristic
(3) is not suitable for our framework. That is, even if the
results of evaluation for logical formulas have no inconsis-
tency by using data which CT produced, that is not a proof
of no inconsistency. Thus, we only use CT as a way of cre-
ating input data patterns and finding inconsistencies, not as
a means of guaranteeing there are none. Our approach uses
pairwise selection [20] which is a CT technique.

3. Experiments and Evaluations

3.1 Experiments

We implemented for a proof-of-concept prototype of our
framework. We used the Natural Language Processing
parser [4] and dependency analysis on natural language re-
quirements. We developed our own tools using the Python
natural language tool kit [17] for the semantic role labeling,
abstraction grammar, and evaluation of the logical formulas.

We tested the prototype on three case studies of natural
language requirements.

• CHART: The purpose of this design document is to
provide implementation details that form the basis for
the software coding. The details presented in this de-
sign fit within the high level approach documented in
the high level design document [14]. We used sections
2-1, 2-2 and 2-3 describing general system functional-
ities.
• eNotification: The purpose of this document is to de-

fine the electronic transmission of data exchanged be-
tween a party that has to get a legally required notice,
e.g. a public procurement notice, published by a jour-
nal or newspaper [15]. We used section 5-1-1 of the
business requirements statements.
• WUT: The Water Use Tracking (WUT) System’s sys-

tem requirements specifications is a collection of arti-
facts that were developed separately during the imple-
mentation phase of the project [16]. We used the func-
tional requirements section (4-1-1-1).

The experiments used two types of chunk: paragraph
chunks chunked by paragraph number and clustered chunks
chunked by the k-means algorithm. In order to compare the
effects of varying number of paragraphs and number of clus-
ters, we set different numbers of paragraphs on the number
of clusters. We set the number of clusters in each case study
to two and got the following clusters:

• CHART cluster 1 (C1) includes sections 2-1 and 2-2-1,
and cluster 2 (C2) includes sections 2-2-2 to 2-3.
• eNotification (eNot) C1 includes functions numbering

from 1 to 19, whereas C2 includes those from 20 to 28.
• WUT C1 includes functions 1 to 6, C2 includes func-

tions 7 to 10.

Table 2 shows the chunked-by-paragraph results and
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Table 2 CHART case study

Table 3 eNot case study

Table 4 WUT case study

the chunked-by-clustering results in case study CHART.
The columns show the number of instances of each arti-
fact. Table 3 shows the chunked-by-paragraph results and
the chunked-by-clustering results in case study eNotification
(eNot). Table 4 shows the chunked-by-paragraph results and
the chunked-by-clustering results in case study WUT.

The number of requirements is the number of sentences
used in the experiments. Each requirement is transformed

into logical formulas and propositional variables. The fol-
lowing is an example of a requirement and corresponding
logical formula in the CHART C1 case study:

Requirement: “If a layer is due for update, the client
fs browser will initiate remote scripting request to re-
trieve a new VML layer and replace the current layer.”
Logical formula: (-layer | -update | initiate)
The words “layer”, “update” and “initiate” are just

representative words of the propositional logic transformed
from the requirements, as in Fig. 2. This formula is to be
evaluated with input data patterns. For example, when the
input data pattern is true, true and false, the logical formula
is false.

The data input patterns were created by CT selection of
true and false for each propositional variable. After evaluat-
ing the logical formulas by using these input data patterns,
we calculated the inconsistency hit ratio (number of incon-
sistencies divided by number of input patterns).

3.2 Evaluations

The inconsistency hit ratios in Table 2 show that our cluster-
ing approach could find more logical inconsistencies than
paragraph chunking in the CHART case study. Our cluster-
ing approach found 19 total inconsistencies for which the
inconsistency hit ratio was 0.719. By contrast, the chunked-
by-paragraph approach found 12 total inconsistencies from
a total of 24 data inputs, for which the inconsistency hit ratio
was 0.583. Table 3 shows the eNotification case study. Our
clustering approach found 7 total inconsistencies more than
4 total inconsistencies by chunked-by-paragraph. The eNo-
tification case study had an inconsistency hit ratio of 0.438
chunked by clustering and 0.500 for chunked by paragraph.
Table 4 shows the WUT case study. Our clustering approach
found 6 total inconsistencies more than 4 total inconsisten-
cies by chunked-by-paragraph. The WUT case study had an
inconsistency hit ratio of 0.500 for both chunked by para-
graph and chunked by clustering.

The clustering approach found more total numbers of
logical inconsistencies in all case studies. Even when it
has fewer chunks than paragraph approach in CHART case
study, the clustering approach found more numbers of logi-
cal inconsistencies. These results promise for usefulness of
our approach in detecting logical inconsistencies.

Each case study has its own sentence style. CHART
has a paragraph style, and its sentences have subjects and
predicates. The function requirements are described in a
number of sentences. eNotification has a list style: each
function requirement is described in one sentence. WUT
has an imperative style; its function description sentences
do not have subjects but do have predicates. The number of
propositional variables is an indication of the difference be-
tween these sentence styles. In CHART and eNotification,
the propositional variables outnumber the requirements. In
WUT, however, the number of propositional variables is
smaller than the number of requirements.

Even though the requirements consisted of only dozens
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of sentences, there were a huge number of propositional
variable combinations. For an example, CHART C1 has
2ˆ106, i.e., 8.1*10ˆ31, combinations of variables. In the re-
quirements, stakeholders describe their desires in terms of
scenarios that cover up a huge amount of the total logic. Un-
derneath them are vast arrays of logical combinations. To
find logical inconsistencies from the vast arrays of logical
combinations, our approach uses pairwise selection and the
SAT solver to create a feasible amount of input data. When
we tried only pairwise (true, false) selection on each propo-
sitional variable, the evaluations were mostly false because
the logical formulas were so complex. Thus we used the
SAT solver to select “base” input data patterns with which
the logical formulas produce true. After that, we used pair-
wise selection on the base patterns.

In order to reproduce the experiments according with
our framework described in Sect. 2, we discuss tools, steps
and execution time. We used Minisat which is one of state-
of-the-art SAT solver [22], [26]. We used Stanford NLP
parser [5], [18] for parsing sentences in requirements. We
implemented semantic role labeling, abstraction grammar,
and evaluation of logical formulas by Python with the natu-
ral language tool kit [17]. We used Minisat for SAT solver,
Allpairs for pairwise tool [27] in creating feasible amount of
input data. The execution time of each programs from sec-
onds to minutes. We implemented as we mentioned, how-
ever, some of inconsistency checking processes have man-
ual execution, e.g. copy files, start programs, etc. Then, to-
tal time of checking process depends on case studies. Total
time of checking was about one hour at maximum so far.

In the experiments, we fixed the number of clusters cre-
ated by the k-means clustering, because we wanted to com-
pare the number of paragraphs of requirements and number
of clusters of requirements. There is another clustering algo-
rithm that calculate the number of clusters automatically like
as x-means. The x-means is an extending k-means and has a
new algorithm that quickly estimates k [28]. When this kind
of automatic clustering algorithm cluster chunks of require-
ments by results of morphological and dependency analysis
of them, our framework would be able to use it.

There is another framework for handling inconsisten-
cies in natural language requirements [24]; like ours, it uses
an NLP parser and transforms requirements into logical
formulas. The difference is that framework does not use
chunks of requirements and transforms sentences into first
order logic in order to find logical inconsistencies. Our ap-
proach clusters chunks of requirements and uses proposi-
tional logic. We will discuss the other related work in the
next section.

4. Related Work

Natural language processing and consistency checking are
essential parts of requirement engineering. Yan2015 pre-
sented a formal consistency check of specifications writ-
ten in natural language [1]. This “requirement consistency
maintenance framework” produces consistent representa-

tions. The first part is an automatic translation from the nat-
ural language describing the functionalities to formal logic
with an abstraction of time. It extends pure syntactic parsing
by adding semantic reasoning and support for partitioning
input and output variables. The second part uses synthesis
techniques to determine if the requirements are consistent
in terms of realizability [1]. Our framework differs from
Yan2015 as follows: it creates abstraction logic by trans-
forming propositional logic not only time constraints, it uses
input data patterns to find logical inconsistencies and per-
form semantic role labeling. It uses a SAT solver to check
the validity and consistency of the logical constraints [19].
The validity and consistency are really two ways of looking
at the same thing and each may be described in terms of syn-
tax or semantics [21]. It uses combinatorial testing to deal
with large numbers of data patterns. Combinatorial Testing
(CT) can detect failures triggered by interactions of param-
eters in the software under test (SUT) with a covering ar-
ray test suite generated by some sampling mechanisms [20].
There is a method for creating test patterns using pairwise
selection from the parameter values. The method uses a
knowledge base for identifying pair-wise parameter values
by using document analysis, boundary analysis and defects
analysis [3].

Bos2007 describes a way to change natural sentences
into logical expressions and devised the BOXER tool for En-
glish [6]. Masuda2015 used natural-language processing to
identify the logical pattern “If (A) is (B), (C) is (D)” in sen-
tences [2], but did not identify conditions or actions. There
are also linguistic studies on use cases [10] and test case gen-
eration [13]. Sneed2007 made test cases from requirements
described in natural language [11]. This study showed how
to interpret specifications as descriptions of inputs and out-
puts. It didn’t include any morphological analysis or syn-
tactic analysis/analyses using -natural language processing.
IEEE 830 recommends practices for software requirements
specifications [7], [8]. The standard describes the consid-
erations that go into producing a good software require-
ments specification and provides templates. Kim2008 [9]
presented a way of measuring the level of quality control
in software development. They defined the notion of am-
biguity. Uetsuki2013 presented an efficient software testing
method [12] that verifies the logical consistency of the docu-
ment and source code by comparing decision tables created
from them. They targeted documents written in formal lan-
guage, not natural language.

5. Conclusion

We presented a practical approach to detecting logical in-
consistencies by clustering technique in natural language
requirements. The method uses k-means clustering to clus-
ter chunks of the requirements and labeling rules to derive
“conditions” and “actions” as semantic roles from the re-
quirements by using natural language processing. We also
constructed an abstraction grammar to transform the condi-
tions and actions into logical formulas. By evaluating the
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logical formulas with input data patterns, we can find log-
ical inconsistencies. We experimented with this approach
on three case studies of requirements written in natural En-
glish. The results indicate that our approach can find logical
inconsistencies.

In the future, we will use our framework to find vague
requirements and provide feedback in early stage of the sys-
tem development process. In addition, we will construct
new rules and grammar for requirements descriptions. We
will contribute to requirement engineering by developing
new means to check whether descriptions have vague or in-
consistent requirements.
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