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SUMMARY The crossbar-based switch fabric is widely used in today’s
high performance switches, due to its internally nonblocking and simply
implementation properties. Usually there are two main switching architec-
tures for crossbar-based switch fabric: internally bufferless crossbar switch
and crosspoint buffered crossbar switch. As internally bufferless crossbar
switch requires a complex centralized scheduler which limits its scalabil-
ity to high speeds, crosspoint buffered crossbar switch has gained more
attention because of its simpler distributed scheduling algorithm and bet-
ter switching performance. However, almost all the scheduling algorithms
proposed previously for crosspoint buffered crossbar switch either have un-
satisfactory scheduling performance under non-uniform traffic patterns or
show poor service fairness between input traffic flows. In order to over-
come the disadvantages of existing algorithms, in this paper we propose
two novel high performance scheduling algorithms named MCQF RR and
IMCQF RR for crosspoint buffered crossbar switches. Both algorithms
have a time complexity of O(log N), where N is the number of input/output
ports of the switch. MCQF RR takes advantage of the combined weight
information about queue length and service waiting time of input queues to
perform scheduling. In order to further reduce the scheduling complexity
and make it feasible for high speed switches, IMCQF RR uses the com-
pressed queue length information instead of original queue length informa-
tion to schedule cells in input VOQs. Simulation results show that our novel
scheduling algorithms MCQF RR and IMCQF RR can demonstrate excel-
lent delay performance comparable to existing high performance schedul-
ing algorithms under both uniform and non-uniform traffic patterns, while
maintain good service fairness performance under severe non-uniform traf-
fic patterns.
key words: crosspoint buffered crossbar switches, scheduling, delay, fair-
ness

1. Introduction

With the new network applications and services increas-
ing continually, Internet traffic tends to grow rapidly. To
keep pace with the growth demand of Internet traffic,
it is necessary to explore high-performance switches and
routers. Many switch fabrics for switches and routers have
been studied and implemented in the past academic re-
searches [1]–[3]. One of the most important switch fab-
rics is crossbar-based architecture, because of its internally
non-blocking property and simplicity. Since the output con-
tention that traffic arrivals from different inputs ports may be
simultaneously destined for the same output port, it’s neces-
sary to add buffering in crossbar-based switch fabric to avoid
packets loss. Based on the location relationship between
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the buffers and the switch fabric, crossbar-based switch fab-
ric can be classified into output queued (OQ) switch, input
queued (IQ) switch, virtual output queued (VOQ) switch,
combined input and output queued (CIOQ) switch and com-
bined input-crosspoint queued (CICQ) switch.

For OQ switches, packets can only be buffered at the
output ports, as shown in Fig. 1 (a). Once a packet arrives
at the input, it can be immediately transferred to the output
queues. OQ switches can provide excellent switching per-
formance and Quality of Service (QoS) guarantees applying
sophisticated scheduling algorithms [4], [5]. However, OQ
switches become impractical due to the high switch fabric
bandwidth and memory bandwidth requirements. For a N ×
N OQ switch, the switch fabric needs to operate at the speed
of N times the line rate, in order to meet the situation when
N input ports transfer packets to the same output simulta-
neously. Besides, the output buffer access speed requires
N times the line rate. Thus, OQ switches are infeasible for
high-speed and large-scale applications.

On the other hand, IQ switches have attracted more at-
tention because of the low-bandwidth requirement and high
scalability. The IQ structure is shown in Fig. 1 (b), where
the packets can only be buffered at the input ports. The
switch fabric just needs to operate at the line rate with-
out internal speedup. However, IQ switches suffer from
the head-of-line (HoL) Blocking problem which makes the
switch throughput degrade to just 58.6% [6]. In order to
overcome HoL blocking, it is well-known to use VOQ ar-
chitecture [7]. Figure 1 (c) shows a VOQ switch, where
each input port maintains a separate FIFO queue for each
output port, and the packet destined for an output will be
buffered in the corresponding VOQ. Because VOQ switches
significantly improve the throughput performance upon IQ
switches, they become more attractive. However, VOQ
switches need centralized schedulers to resolve input con-
tention and output contention [8]. For this purpose, many
scheduling algorithms for VOQ switches have been pro-
posed, which can be modeled as the matching problem in
a bipartite graph [9]. These centralized scheduler collects
all the input requests to select a match without contention
from all possible matches [10], [13], [14]. Unfortunately,
almost all these scheduling algorithms either have a high
time complexity which is impractical for high-speed imple-
mentation [11] or couldn’t achieve good switching perfor-
mance [12].

The common solution to improve performance inef-
ficiency of VOQ switches is to provide internal speedup
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Fig. 1 Architectures of four crossbar-based switch fabrics. (a) OQ switches. (b) IQ switches. (c)
VOQ switches. (d) CIOQ switches.

f > 1. As is shown in Fig. 1 (d), CIOQ switches require
buffers at both the input ports and output ports to store pack-
ets, to make packets arrive at an output at a higher speed
than the line rate. It has been proved that CIOQ switches
with two times speedup can provide 100 percent throughput
working with maximal matching algorithms [15]. However,
there are several drawbacks for the CIOQ switch: (1) it also
needs a complex centralized scheduler to resolve input con-
tention and output contention, hence the time complexity is
still high; (2) internal speedup reduces the time available for
the scheduler and results in the increasement of implemen-
tation complexity; (3) internal speedup seriously affects the
switch’s power consumption. All these drawbacks limit the
CIOQ switch’s scalability at high-speed.

Crosspoint buffered crossbar switches, also called
CICQ switches, have been considered as an alternative solu-
tion to VOQ switches to overcome the high scheduling com-
plexity and improve the switching performance [16]. Fig-
ure 2 depicts a CICQ architecture, where a small buffer is
added at each crosspoint in traditional crossbar fabric. Due
to the introduction of crosspoint buffers, input contention
and output contention of VOQ switches can be relaxed,
which significantly simplifies the scheduling task. There are
two independent and distributed scheduling phases involved
in a CICQ switch: input scheduling and output scheduling.
In input scheduling, each input selects a HoL packet from
the input VOQs and delivers it to the corresponding cross-
point buffer. In output scheduling, each output selects a
HoL packet from crosspoint buffers for the same output port
and transfers it to the output port. The distributed schedul-
ing algorithms for CICQ switches are different from the
centralized scheduling algorithms for VOQ/CIOQ switches.
Compared with VOQ switches, time complexity of dis-

Fig. 2 Crosspoint buffered crossbar (CICQ) switches.

tributed scheduling algorithm is dramatically reduced and
the switching performance can be significantly improved. It
was shown that CICQ switches can achieve better through-
put and delay performance than internally bufferless cross-
bar switches [17]. Therefore, CICQ architecture is consid-
ered to be a good choice for high performance switches.

So far there have been much research on scheduling
algorithms for the CICQ architecture [18]–[20]. Compared
to conventional internally bufferless crossbar switches, these
algorithms exhibit better throughput and delay performance.
However, they either cannot achieve satisfactory perfor-
mance under non-uniform traffic patterns [18], [20] or have
poor service fairness performance [19]. Tracking Fair
Quota Allocation (TFQA) [30] aims for achieving both good
scheduling performance and fairnes by employing a Fair
Quota Allocation (FQA) mechanism and Prioritized Dual
Round Robin (PDRR) input scheduling scheme. However,
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for some non-uniform traffic TFQA is still unable to main-
tain stability at heavy input load, and the fairness is poor
under severe non-uniform traffic patterns.

In this paper, we propose a novel high performance
scheduling algorithm for CICQ architecture, named Most
Critical Queue First-Round Robin (MCQF RR), and evalu-
ate its performance under various traffic patterns. It takes
advantage of the combined weight information about queue
occupancy and service waiting time of input VOQs to make
efficient scheduling decisions. MCQF RR can provide good
fairness performance superior to existing high performance
scheduling algorithm in [19] while maintain excellent de-
lay performance under uniform and non-uniform traffic pat-
terns. The time complexity of MCQF RR is O(log N).
In order to further reduce the scheduling complexity of
MCQF RR, we then propose the Improved Most Critical
Queue First-Round Robin (IMCQF RR) algorithm, which
uses compressed weight information instead of original
weight information in input scheduling. The implementabil-
ity complexity of IMCQF RR is greatly reduced comparing
with MCQF RR. Simulation results show that IMCQF RR
could also achieve low delay comparable to the existing effi-
cient algorithms under uniform and non-uniform traffic pat-
terns. In addition, IMCQF RR can maintain great fairness
performance under severe non-uniform traffic patterns.

The remainder of this paper is organized as follows:
Section 2 presents an overview of the existing scheduling
algorithms for CICQ switches and points out their advan-
tages and limitations. In Sect. 3 and Sect. 4, we introduce
our scheduling algorithms and make a detailed description
and analysis for them. In Sect. 5, we present an experimental
study about delay and fairness performance of different ex-
isting algorithms, and discuss the implementability briefly.
In Sect. 6, we conclude the paper.

2. Related Work

Several important requirements must be taken into account
to design an efficient scheduling algorithm for high per-
formance switches [3]: (1) Scheduling efficiency. A good
scheduling algorithm should provide high throughput and
low delay; (2) Fairness. The algorithm should maintain
good service fairness among different queues without queue
starvation; (3) Scheduling complexity. The scheduling algo-
rithm should have a low time complexity, otherwise the scal-
ability in high-speed switches will be limited. There have
been many scheduling algorithms proposed for CICQ archi-
tecture, which can be classified into three main categories.

One category is Round Robin (RR) based scheduling
algorithm. In [18], RR RR uses a simple pointer updating
mechanism in input scheduling as well as output schedul-
ing, which contributes good fairness performance. The
time complexity of RR RR is only O(1), and it can achieve
100% throughput and good delay performance under uni-
form traffic. However, it performs unstably under non-
uniform traffic. Many improvements for the performance
inefficiency have been made, such as Round Robin with

Adaptable-size Frame (RR-AF) [21], Differential Round
Robin (DRR) [22] and Round Robin-Longest Queue Detect-
ing (RR-LQD) [23]. The basic idea of them is based on dif-
ferent pointer updating mechanisms to ensure efficient ser-
vice of long queues and service fairness of short queues. Al-
though they show satisfactory performance with O(1) time
complexity under uniform traffic, the performance under
some non-uniform traffic patterns are still not good enough.

The other category is weight-based scheduling al-
gorithm, such as Longest Queue First-Round Robin
(LQF RR) [19] and Oldest Cell First-Oldest Cell First
(OCF OCF) [16]. They take advantage of weight informa-
tion of input VOQs such as queue length or waiting time of
HoL cells in scheduling processes, to achieve high perfor-
mance under both uniform and non-uniform traffic. It has
been proved that through fluid model techniques, LQF RR
can provide 100 percent throughput for uniform input traffic
and exhibit good stability for unbalanced traffic [19]. How-
ever, since LQF RR always favors the most occupied VOQ
in input scheduling, some queues with low occupancy will
appear poor service fairness and even permanent queue star-
vation. In [16], OCF OCF performs scheduling based on
comparison of waiting time of HoL cells, which could im-
prove the fairness performance. However it needs a complex
time stamping mechanism and the implementation complex-
ity will be largely increased. Both LQF RR and OCF OCF
have a time complexity of O(log N) with hardware paral-
lel comparison circuits. However, it is still time consuming
to perform input scheduling due to complex comparison for
weight information of input VOQs, which are represented as
a large number of input values. For LQF RR, it consumes
at least O(log N · log B) time units to complete the compari-
son of queue lengths [24] in input scheduling, where N is the
port number and B is the number of bits needed to represent
the maximum queue length. For today’s switches, the buffer
size for an input port can be dozens or even hundreds of MB,
that means the maximum queue length is much large, thus
the scheduling time O(log N · log B) will be much longer.

In order to shorten the scheduling time, a class of cross-
point buffer state based scheduling algorithms were pro-
posed, such as Most Critical Buffer First (MCBF) [20] and
Shortest Crosspoint Buffer First (SCBF) [25]. The main idea
of these algorithms is to perform scheduling based on com-
parison of crosspoint buffer occupancies instead of input
VOQs’ information. The time complexity of MCBF and
SCBF are respectively O(log N) and O(N · log N). Because
the capacity of crosspoint buffer is smaller than input VOQ,
input values of comparison circuit of the schedulers can be
decreased compared with LQF RR [19], hence the schedul-
ing time will be shorter. However, they could not keep good
performance for some non-uniform traffic patterns since
they don’t consider the influence of VOQ’ length on sta-
bility of VOQs. CAF PRMV was proposed to overcome the
lack of performance without using input VOQs’ informa-
tion under non-uniform traffic [26]. It has a time complexity
of O(log N) and short scheduling time like MCBF. However,
CAF PRMV has poor scalability for large-scale switches. In
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addition to crosspoint buffer occupancies returned from the
buffered crossbar chip, CAF PRMV needs more informa-
tion about served cells in input VOQs exchanged between
input ports and buffered crossbar chip. With the increase-
ment of the number of switch ports and capacity of cross-
point buffer, the buffered crossbar chip must provide more
pins resource for information exchange, which is usually un-
acceptable for realization.

3. The Most Critical Queue First-Round Robin
Scheduling Algorithm (MCQF RR)

In this section, we propose a Most Critical Queue First-
Round Robin scheduling algorithm, named MCQF RR for
the CICQ architecture. The purpose is to improve the
performance inefficiency of existing outstanding schedul-
ing algorithms. As mentioned in Sect. 2, the well-known
LQF RR [19] can achieve relative higher throughput and de-
lay performance under any traffic patterns among the exist-
ing three categories. However, as LQF RR always favors
the VOQ with the highest occupancy in input scheduling,
the VOQ with low occupancy will suffer poor service fair-
ness and even permanent queue starvation. In order to over-
come the disadvantage of poor service fairness performance
LQF RR has, meanwhile to maintain excellent delay perfor-
mance under various admissible traffic patterns, MCQF RR
takes advantage of combined weight information about
queue occupancy and service waiting time of input VOQs to
make efficient scheduling decisions. MCQF RR favors the
VOQ with the largest combined weight in input scheduling,
namely the most critical queue will obtain preferential ser-
vice. More specifically, the low occupied VOQ with much
longer service waiting time will get efficient service, thus
the good service fairness will be ensured. In the next sec-
tion we first introduce some basic notations which will be
used in this article, then describe MCQF RR in details.

3.1 Notation

The architecture of an N × N CICQ switch model illustrated
in Fig. 2 is considered in this paper. The CICQ switch oper-
ates at the line rate, and consists of N input ports, N output
ports and a buffered crossbar fabric. The input ports and out-
put ports are connected by the buffered crossbar fabric. As-
sume that packets with variable length arriving to the input
ports are first segmented into fixed length cells for switch-
ing, and then reassembled into original variable length pack-
ets before leaving the output ports. Each input port main-
tains N separated VOQs to store cells destined for N output
ports, where VOQi, j holds cells arrived to input port i and
destined for output j. There are N2 crosspoint buffers placed
at the crosspoints inside the buffered crossbar fabric. The
crosspoint buffer CBi, j holds cells coming from input port
i and destined for output port j. We give some definitions
which will be used throughout the paper as follows:

Time slot: A time slot is the fixed time required to
transmit a cell at the input line rate.

Eligible VOQi, j (EVOQi, j): VOQi, j is considered to be
eligible if it is nonempty and its corresponding crosspoint
buffer CBi, j is not full.

Eligible crosspoint buffer (ECBi, j): CBi, j is considered
to be eligible if it is nonempty.

Li, j(n) denotes the queue length of VOQi, j at the begin-
ning of time slot n, represented as the number of cells hold
in VOQi, j.

Ti, j(n) denotes the service waiting time of VOQi, j

which continuously loses service opportunities by time slot
n since the last service.

3.2 Algorithm Description

MCQF RR is based on the Most Critical Queue First
(MCQF) policy at the input scheduling, and the output
scheduling is based on the Round Robin (RR) policy. The
input scheduling MCQF performs arbitration based on the
combined weight information about the queue length Li, j(n)
and service waiting time Ti, j(n) of input VOQs. It gives the
priority to the EVOQ with the greatest combined weight,
to keep good delay performance and improve fairness per-
formance upon LQF RR. In order to achieve simplicity
and fairness among crosspoint buffers, the output schedul-
ing uses the fair round robin arbitration scheme similar to
LQF RR [19]. The process of the MCQF RR is as follows:

Input Scheduling Phase:
For each input i (0 � j � N-1), in each time slot n:

• Step 1. Starting from the highest priority pointer’s
location, select the first EVOQi,a corresponding to
min jLi, j(n), and the first EVOQi,b corresponding to
maxjLi, j(n) respectively.
• Step 2. Compare the service waiting time Ti,a(n) of

EVOQi,a with Li,b(n) + Ti,b(n) of EVOQi,b.
– If Ti,a(n) > Li,b(n) + Ti,b(n), then give the priority
to EVOQi,a and send its HoL cell to crosspoint buffer
CBi,a.
– Otherwise, serve EVOQi,b and send its HoL cell to
crosspoint buffer CBi,b.
• Step 3. At the end of the time slot n, update the service

waiting time Ti, j(n) of each VOQi, j (0 � j � N-1) and
the highest priority pointer’s location.
– If a VOQi, j has obtained the cell service, set Ti, j(n) =
0 and move the highest priority pointer to the location
( j + 1)(modN).
– Else, set Ti, j(n) = Ti, j(n) + 1.

Output Scheduling Phase:
For each output j, in each time slot n:
Starting from the highest priority pointer’s current lo-

cation, select the first Eligible crosspoint buffer ECBi, j.
– If any ECBi, j is found, send its HoL cell to the output

j and move the highest priority pointer to the location (i +
1)(modN) at the end of the time slot.

– Else, the highest priority pointer’s location remains
unchanged.

Figure 3 shows the service unfairness problem for a 2
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× 2 CICQ switch MCQF RR considered. Traffic flows from
different inputs to different outputs with λ1,1 = 1, λ1,2 = 0
arrive at the switch, where λi, j is the cell arrival rate of
VOQi, j. We assume that for all i and j, the queue length
of each input VOQ is one cell at the beginning. In time slot
1, there is a single cell arriving at input VOQ1,1, but no cells
arrive at VOQ1,2. If Longest Queue First (LQF) scheme [19]
is used in input scheduling phase, it will give preference to
VOQ1,1 with longest queue length, thus VOQ1,2 will lose
service. As there are continuous incoming cells in VOQ1,1

in the following times slots, VOQ1,2 will remain unserved
all the time. Therefore, LQF will lead to service unfairness
among different VOQs and even starve the queue with low
occupancy. By contrast, our input scheduling phase MCQF
improves this unfairness problem and maintains high delay
performance of the switch taking advantage of combined
weight information of each VOQ to schedule.

• Good fairness performance. If a VOQi, j is not served,
its service waiting time Ti, j(n) will increase, that is the
VOQi, j that hasn’t receive effective service for a long
time will be assigned a larger Ti, j(n). In Fig. 3, if the
service waiting time T1,2(n) of VOQ1,2 with lowest oc-
cupancy increases to large enough being greater than
the combined weight T1,1(n) + L1,1(n) of VOQ1,1 with
longest occupancy, which means that VOQ1,2 may ap-
pear service unfairness and need urgent service, then
MCQF guarantees service to the VOQ1,2. Hence, no
queues will be starved of service permanently.
• High delay performance. If a VOQi, j has continuous

new cells arriving, its queue length Ti, j(n) will increase,
thus VOQi, j with larger occupancy that hasn’t receive
effective service for a long time will be assigned a
larger combined weight Ti, j(n) + Li, j(n). As is shown
in Fig. 3, if VOQ1,1 with highest occupancy has a com-
bined weight value of T1,1(n) + L1,1(n) greater than or
equal to the service waiting time T1,2(n) of VOQ1,2 with
lowest occupancy, it means that the cells in VOQ1,1

may have much longer queue delay which will affect
the overall delay performance of CICQ switch, then
VOQ1,1 will obtain priority service. In this way, the
queue occupancy of each input VOQ will be stable and
high delay performance can be ensured.

Similar to LQF RR, we select round-robin as the out-
put scheduling scheme in MCQF RR because of its fairness
and simple implementation.

3.3 Complexity of MCQF RR

In term of time complexity, for input scheduling, the selec-
tion of EVOQi,a with highest occupancy and EVOQi,b with
lowest occupancy in Step 1 both are O(N · log N) at most,
and can be reduced to O(log N) implemented with hardware
parallel comparison circuits. The comparison in Step 2 has
a time complexity of O(1). The time complexity of output
scheduling is also O(1). Therefore, the overall time com-
plexity of MCQF RR is O(log N).

Fig. 3 Service unfairness problem for a 2 × 2 CICQ switch.

We set the variation range of the queue length Li, j(n)
and service waiting time Ti, j(n) of input VOQi, j respec-
tively as [0, Lmax] and [0, Tmax], where Lmax is the maxi-
mum number of cells VOQi, j can hold and Tmax is the max-
imum service waiting time. Since variation range of the
queue length Li, j(n) is [0, Lmax], the number of bits needed
to represent Lmax is log Lmax. Therefore, it will consume
O(log N · log Lmax) time to complete the parallel comparison
of queue lengths in Step 1, and the input scheduling time
will be O(log N · log Lmax), which is the same as LQF RR.

4. The Improved Most Critical Queue First-Round
Robin Scheduling Algorithm (IMCQF RR)

To further reduce the input scheduling complexity of
MCQF RR, in this section we present an improved Most
Critical Queue First-Round Robin scheduling algorithm
(IMCQF RR), which uses compressed weight information
instead of original weight information in input scheduling
while maintains high delay performance and fairness per-
formance for various traffic patterns.

4.1 Algorithm Description

In order to reduce the parallel comparison time of queue
lengths, we first use a transformation function to compress
the range [0, Lmax] of original queue length Li, j(n) into a
short range before input scheduling, the range [0, Tmax] of
original service waiting time Ti, j(n) is compressed as well.
Compressed queue length, denoted as CLi, j(n), reflects the
queue length of VOQi, j compressed, and compressed ser-
vice waiting time, denoted as CTi, j(n), reflects the service
waiting time of VOQi, j compressed. An efficient transfor-
mation function for compression should satisfy the require-
ments as follows:

(1) For input VOQi, j, CLi, j(n) should increase mono-
tonically with Li, j(n);

(2) For input VOQi, j, CLi, j(n) should be less than or
equal to Li, j(n);

(3) Transformation function for compression should be
easily implemented in hardware.

There are two common classes of transformation func-
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tions: linear function and nonlinear function. Different
functions have different influences on the scheduling per-
formance of the scheduling algorithm. In this paper, we use
a nonlinear function f(x) given in (1) to map original queue
length and service waiting time information to a short range:

f (x) = �log2(1 + x)� (x > 0) (1)

For queue length Li, j(n), its variation range can be com-
pressed from [0, Lmax] to [0, �log2(1 + Lmax)�] of CLi, j(n)
using f(x), and the number of bits needed to represent
the maximum queue length reduced from log Lmax to just
log�log2(1 + Lmax)�. For hardware implementation of f(x),
two simple ways can be chosen: (1) The correspondence be-
tween original queue length Li, j(n) and compressed queue
length CLi, j(n) can be defined as a lookup table; (2) The
compression of original queue length Li, j(n) can be imple-
mented with a simple encoding circuit.

According to the compressed queue length CLi, j(n) and
compressed waiting time CTi, j(n) of VOQi, j, we present IM-
CQF RR as follows:

Input Scheduling Phase:
For each input i (0 � j � N-1), in each time slot n:

• Step 1. Starting from the highest priority pointer’s
location, select the first EVOQi,a corresponding to
min jCLi, j(n), and the first EVOQi,b corresponding to
maxjCLi, j(n) respectively.
• Step 2. Compare the compressed service waiting

time CTi,a(n) of EVOQi,a with CLi,b(n) + CTi,b(n) of
EVOQi,b.
– If CTi,a(n) > CLi,b(n) + CTi,b(n), then give the pri-
ority to EVOQi,a and send its HoL cell to crosspoint
buffer CBi,a.
– Otherwise, serve EVOQi,b and send its HoL cell to
crosspoint buffer CBi,b.
• Step 3. At the end of the time slot n, update the service

waiting time Ti, j(n) of each VOQi, j (0 � j � N-1) and
the highest priority pointer’s location.
– If a VOQi, j has obtained the cell service, set Ti, j(n) =
0 and move the highest priority pointer to the location
( j + 1)(modN).
– Else, set Ti, j(n) = Ti, j(n) + 1.

The Output Scheduling Phase is based on Round Robin
scheme, the same as MCQF RR.

4.2 Properties of IMCQF RR

In this section, we compare IMCQF RR with existing
scheduling algorithms and summarize its main characteris-
tics as follows:

First of all, with the transformation function f(x),
IMCQF RR based on compressed weight information can
maintain good delay performance similar to MCQF RR
based on original weight information, which means that the
compressed weight information can reflect actual queue sit-
uation very well.

Second, input IMCQF scheduling essentially favors

the input VOQ with the maximum combined compressed
weight, so that each VOQ can receive efficient service with-
out queue starvation. Similar to MCQF RR, IMCQF RR
can achieve good service fairness performance.

Finally, the overall time complexity of IMCQF RR is
also O(log N). However, since the value of compressed
queue length CLi, j(n) is much smaller than that of original
queue length Li, j(n), the number of bits needed to repre-
sent CLi, j(n) is just log�log2(1 + Lmax)�. The comparison
time of queue length can be largely decreased, and the in-
put scheduling complexity is greatly reduced to O(log N ·
log�log2(1 + Lmax)�), compared with O(log N · log Lmax) for
MCQF RR and LQF RR.

5. Performance Study

We have conducted simulations to evaluate the delay per-
formance and fairness performance of MCQF RR and IM-
CQF RR, aiming to compare with the existing algorithms.

5.1 Simulation Settings

We simulate a 16 × 16 CICQ switch operating with a per-
port line rate of 1 Gbps, each VOQ has a buffer size of
1,000,000 cells. The buffer size of each crosspoint buffer is
1 cell. In our simulations, the principal item for evaluating
switching performance is the cell delay, which is measured
as the time (in time slot) taken for a cell to travel from an
input port to its target output port. The cell delay includes
queuing delays both in the input buffer and the crosspoint
buffer. Average cell delay is the mean value of delay consid-
ering all the cells gathered over a time interval of 1,000,000
time slots. Normalized input load ρ ∈ [0, 1] is denoted as
the percentage of time slots which have cells incoming over
all simulation time slots. In current simulation phase syn-
thetic traffic patterns which have been widely used in pre-
vious papers [17] are adopted, later real life traffic will be
employed to evaluate the performance in the next hardware
implementation phase. Based on the 16 × 16 CICQ switch,
eight scheduling algorithms are selected as below:

• RR RR [18], Round Robin-based, for its low time com-
plexity of O(1) and good fairness.
• RR-LQD [23], another Round Robin-based scheduling

algorithm, where a different pointer updating policy is
used in input scheduling, for its delay performance ap-
proximate to LQF RR under some non-uniform traffic
and low time complexity of O(1).
• LQF RR [19], a weight-based scheduling algorithm,

where the weight is the number of cells queued in the
input VOQ, for its stability and superior performance
over other algorithms under various traffic patterns.
• OCF OCF [16], another weight-based scheduling algo-

rithm, where the weight is the queuing delay of the
HoL cell in corresponding buffer, also for its stability.
• MCBF [20], a crosspoint buffer state based scheduling

algorithm, for its better performance than other algo-
rithms under uniform traffic patterns.
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Fig. 4 Average cell delay under Bernoulli uniform traffic.

Fig. 5 Average cell delay under Bursty uniform traffic.

• MCQF RR and IMCQF RR, the algorithms proposed
in this paper.
• TFQA [30], a scheduling algorithm aiming for good

fairness performance.

5.2 Delay Performance

5.2.1 Uniform Traffic

We use the Bernoulli and Bursty uniform traffic patterns [18]
to analyze the delay performance.

Figure 4 shows the average delay performance of dif-
ferent algorithms under Bernoulli uniform traffic. We see
that all the algorithms behave similarly with low average cell
delay, which increases gradually as the input load grows.

Figure 5 depicts the average delay performance of the
algorithms under Bursty uniform traffic with burst lengths
of 32 cells (l = 32). It is shown that, because of the effect
of burst property, the average cell delays achieved by vari-
ous algorithms significantly increase as the burst length in-
creases and are almost identical. Similar to results in Fig. 4,

MCBF has a slightly lower delay than other algorithms un-
der Bursty uniform traffic.

5.2.2 Non-Uniform Traffic

The performance evaluation of our novel scheduling algo-
rithms is performed under three non-uniform traffic pat-
terns: Diagonal Traffic [27], Log-diagonal [28] and Unbal-
anced Traffic [18]. The non-uniform traffic is more skew
and more difficult to schedule than uniform traffic.

• Diagonal Traffic
For diagonal traffic, two-thirds of input load of each
input i is destined for output i, and the remaining one-
third is destined for output (i + 1) mod N, where N is
the number of ports. The diagonal traffic for a 3 × 3
switch is defined as:

λi, j =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

2ρ/3 ρ/3 0
0 2ρ/3 ρ/3
ρ/3 0 2ρ/3

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(2)

where ρ is the input load of each input.
• Log-diagonal Traffic

In log-diagonal traffic, each input i has input load for
all outputs, but sends twice as much traffic to output j
than to (j+1) mod N, that is λi, j = 2λi,( j+1)modN . For
example, the log-diagonal traffic can be represented by
a traffic matrix as:

λi, j =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

λ0

21 . . . λ0

2N

...
. . .

...
λN−1

2N . . . λN−1

2N−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(3)

where λi is the load at input i.
• Unbalanced Traffic

For unbalanced traffic, there is an unbalanced proba-
bility ω as the fraction of the input load of each input
port destined for a output, and the remaining load is
uniformly distributed among other outputs. The arrival
rate of each VOQi, j is defined as:

λi, j =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ρ(ω + 1−ω
N ) . . . ρ · 1−ω

N
...

. . .
...

ρ · 1−ω
N . . . ρ(ω + 1−ω

N )

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(4)

Figure 6 shows the average delay results of different
algorithms for diagonal traffic. As the figure illustrates,
scheduling algorithms such as RR RR and MCBF which
perform well under uniform traffic show instability even for
load ρ < 0.9 under diagonal traffic. The reason is that
they don’t consider the information about input VOQs dur-
ing input scheduling. Among the other algorithms consid-
ering input VOQ state, TFQA cannot maintain stability at
ρ > 0.9 because the FQA scheme allocating quota for in-
put VOQs based on RR manner may lead to large discrep-
ancy between assigned quotas and actual length of heavily
occupied queues and severely affect their stability in input
scheduling; OCF OCF and RR-LQD perform slightly worse
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Fig. 6 Average cell delay under diagonal traffic.

Fig. 7 Average cell delay under log-diagonal traffic.

than our proposed algorithms for ρ > 0.95, while the aver-
age delays of MCQF RR and IMCQF RR for different input
loads are always close to the best LQF RR.

Figure 7 plots the average delay results under log-
diagonal traffic. We can see that LQF RR has the low-
est average delay, and our proposed algorithms deliver low
average delays almost the same as LQF RR. OCF OCF is
slightly inferior to MCQF RR and IMCQF RR at heavy
load ρ > 0.95, and especially when ρ increases towards
100%, delay differences between OCF OCF and our algo-
rithms tend to increase much more dramatically. TFQA sat-
urates for load ρ > 0.98 due to the reason also for diag-
onal traffic. RR-LQD saturates for ρ > 0.95 because the
input scheduling based on detecting the longest queue may
not guarantee the actual VOQ with the longest occupancy
always get efficient service, then the queue length grows
quickly and becomes unstable. RR RR and MCBF show
instability for load ρ larger than 0.85 and 0.9 respectively,
because of the lack of information about queue length of
input VOQ in input scheduling.

For unbalanced traffic (ω=0.5), the average delay re-
sults are depicted in Fig. 8. We see that RR RR saturates

Fig. 8 Average cell delay under unbalanced traffic.

for load ρ < 0.85, MCBF saturates for load around 0.9 and
TFQA saturates for ρ > 0.98. Among the other scheduling
algorithms, the average delay of OCF OCF increases most
dramatically for heavy load. MCQF RR, IMCQF RR and
RR-LQD always achieve excellent delay performance com-
parable to LQF RR.

From the above results, the proposed MCQF RR and
IMCQF RR exhibit good delay performance comparable to
LQF RR and are superior to other algorithms for heavy load
under non-uniform traffic patterns. This attributes to that
they take advantage of queue length and service waiting
time of input VOQs in input scheduling, making the queues
with heavy load efficiently served and guaranteeing the sta-
bility of the queues with different occupancy.

5.3 Fairness Performance

In addition to achieving good delay performance, an ef-
ficient scheduling algorithm must guarantee good service
fairness among the input traffic. In this section, the fair-
ness performance of MCQF RR and IMCQF RR will be
examined. According to the delay results of all the algo-
rithms displayed in Sect. 5.2, we mainly compare the fair-
ness performance of our proposed algorithms with LQF RR,
OCF OCF and TFQA. As the output scheduling phase has
little effect on the switching performance, hence we just
consider different input scheduling phases in fairness per-
formance comparison. In this paper, we make use of the
fairness index defined in [29] to evaluate the fairness perfor-
mance, let

FI(D1,D2, · · · ,DN) =
(
∑N

j=1 Dj)2

N
∑N

j=1 D2
j

(5)

where Dj is the average cell delay of VOQi, j, j ∈
[1, 2, · · · ,N], for input i. The fairness index FI(D1,D2, · · ·,
DN) has a range of [0, 1]. When FI=1, it means that all
the VOQs of input i have the same average cell delay and
the fairness performance is best. And the smaller is FI, the
worse is the fairness performance. Then, we define an av-
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Table 1 FI and AFI results for (A) IMCQF RR, (B) MCQF RR,
(C) LQF RR, (D) OCF OCF and (E) TFQA under log-diagonal traffic.

Input load ρ (A) (B) (C) (D) (E)
90% 0.9343 0.9498 0.8708 0.9143 0.8245
95% 0.8874 0.9404 0.7227 0.8654 0.6765
97% 0.8649 0.9097 0.6621 0.8547 0.4300
98% 0.8946 0.8381 0.6252 0.8401 —
99% 0.8709 0.6568 0.5692 0.8136 —
100% 0.4942 0.4433 0.3740 0.7627 —
AFI 0.8244 0.7897 0.6373 0.8418 0.6981

Table 2 FI and AFI results for (A) IMCQF RR, (B) MCQF RR,
(C) LQF RR, (D) OCF OCF and (E) TFQA under asymmetric traffic.

Input load ρ (A) (B) (C) (D) (E)
90% 0.8486 0.8741 0.8344 0.8991 0.7942
95% 0.8246 0.8087 0.6694 0.7789 0.6502
97% 0.7633 0.7535 0.5803 0.7055 0.5814
98% 0.7288 0.6705 0.5376 0.6253 0.4565
99% 0.7598 0.6569 0.4973 0.6549 0.2881
100% 0.5484 0.5437 0.4332 0.7666 —
AFI 0.7456 0.7179 0.5920 0.7384 0.5541

Table 3 FI and AFI results for (A) IMCQF RR, (B) MCQF RR,
(C) LQF RR, (D) OCF OCF and (E) TFQA under unbalanced traffic.

Input load ρ (A) (B) (C) (D) (E)
90% 0.8193 0.8853 0.7967 0.9421 0.9005
95% 0.7187 0.8313 0.7774 0.8922 0.8614
97% 0.7318 0.8310 0.8416 0.8727 0.8205
98% 0.7906 0.8547 0.9027 0.8547 0.6972
99% 0.8537 0.9151 0.9617 0.8419 —
100% 0.9640 0.9954 0.9948 0.9255 —
AFI 0.8130 0.8855 0.8791 0.8847 0.8199

erage value of FI as average fairness index (AFI), which is
calculated as the fairness index averaged over all the consid-
ered loads of input traffic.

The fairness index results under log-diagonal traffic
and asymmetric traffic [31] for load ρ (90%–100%) are pre-
sented in Table 1 and 2. It is shown that MCQF RR and
IMCQF RR achieve much better fairness than LQF RR for
these two non-uniform traffic patterns, and AFI of IM-
CQF RR is significantly higher than LQF RR by almost
20% for log-diagonal traffic. Because log-diagonal and
asymmetric traffic are much severe [30], the length of high
occupied queue is much longer than low occupied queue.
LQF always favors the longest queue, thus the average de-
lay of the low occupied VOQ will be much higher than
the high occupied VOQ and this results in serious fairness
degradation. On the contrary, our algorithms ensure that all
the VOQs have relatively similar average delay and further
improve the fairness performance greatly. OCF OCF pro-
vides high fairness indexes because of the Oldest Cell First
scheme which gives priority to the HoL cell with the greatest
waiting time among all the queues to avoid service unfair-
ness. The fairness of TFQA are still poor for severe log-
diagonal and asymmetric traffic.

Table 3 shows the fairness index results under unbal-
anced traffic (ω = 0.5) for load ρ (90%–100%). We see that
the fairness of MCQF RR is higher than LQF RR, and IM-

CQF RR performs slightly worse than LQF RR. MCQF RR
achieves better fairness due to the same reason as the se-
vere traffic patterns. Because the unbalanced traffic is much
easier to handle than severe log-diagonal and asymmetric
traffic, LQF based on the queue length enables the average
delay of each VOQ to become close and good fairness could
be obtained.The main reason for slightly reduced fairness of
IMCQF RR may be the influence of transformation function
f(x). For example, if the difference in queue length between
two VOQs is not too large, their corresponding compressed
queue lengths may become equal due to the transformation
function f (x) = �log2(1 + x)�. As IMCQF performs input
scheduling according to the compressed queue length, the
average delay of heavy occupied VOQ may become larger
and the average delay of low occupied VOQ may become
smaller, thus the fairness of IMCQF RR may be affected to
some extent. OCF OCF and TFQA achieve good fairness
for the unbalanced traffic.

From the above results, MCQF RR and IMCQF RR
have significantly improved fairness comparing with
LQF RR under severe log-diagonal and asymmetric traffic
patterns because of the adaptable scheduling scheme based
on the combined information about queue length and wait-
ing time of input VOQs. Although there are some decline in
the fairness of IMCQF RR for unbalanced traffic, the per-
centage of drop is very small and it still has good fairness.

5.4 Comprehensive Comparison

To compare the algorithms more comprehensively, we an-
alyze the implementability briefly in this section. We
mainly realize basic structure for MCQF RR, IMCQF RR
and LQF RR based on FPGA and compare their resource
overheads, while OCF OCF and TFQA are discussed briefly
because of poor implementability.

Table 4 shows the resource overheads of MCQF RR,
IMCQF RR and LQF RR for a 4×4 CICQ switch based on
Xilinx Virtex-5 XC5VFX70T FPGA, and we assume max-
imum VOQ length is represented by 16 bits. The main
macros of LQF-RR are 12 two-input(16-bit) comparators.
For MCQF RR, the macros are 12 two-input(16-bit) com-
parators, a two-input(16-bit) adder and a two-input(17-bit)
comparator. IMCQF RR have three types of macros in-
cluding 12 two-input(4-bit) comparators, a two-input(4-bit)
adder and a two-input(5-bit) comparator. For overall utiliza-
tion in FPGA, MCQF RR utilizes more LUTs than LQF RR
when N=4, but the ratio of increase will be reduced with
the increase of N. As IMCQF RR needs parallel comparison
circuits which are much simpler than MCQF RR, the num-
ber of LUTs is greatly decreased and similar to LQF RR
for N=4. When N becomes larger, IMCQF RR utilizes less
LUTs than LQF RR; and the larger is N, the greater is the
proportion of decrease. Therefore, the realizability of IM-
CQF RR is better than LQF RR.

OCF OCF and TFQA have poor implementability. For
OCF OCF, the OCF scheme performs a complicate time
stamping mechanism which is too difficult and unrealistic
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Table 4 The resource overheads based on Xilinx Virtex-5 XC5VFX70T
FPGA.

Algorithm Main macros Main macros LUTs
(4 Ports) (N Ports) (N=4)

LQF RR 12 2-input(16bit) N(N-1) 2-input(16bit) 137
comparators comparators
12 2-input(16bit) N(N-1) 2-input(16bit)
comparators comparators

MCQF RR A 2-input(16bit) A 2-input(16bit) 225
adder adder
A 2-input(17bit) A 2-input(17bit)
comparator comparator
12 2-input(4bit) N(N-1) 2-input(4bit)
comparators comparators

IMCQF RR A 2-input(4bit) A 2-input(4bit) 139
adder adder
A 2-input(5bit) A 2-input(5bit)
comparator comparator

Table 5 Performance characteristics of IMCQF RR, MCQF RR,
LQF RR, OCF OCF and TFQA.

Algorithm Delay Fairness Implementability
IMCQF RR Very Good Very Good Best
MCQF RR Very Good Very Good Medium
LQF RR Best Worst Medium
OCF OCF Medium Best Worst
TFQA Worst Worst Worst

to implement. Each cell in the switch should be assigned
a time stamp which may become too large to calculate the
cell’s waiting time in the queue. Besides, communication
overhead between input VOQs and buffered crossbar is in-
creased greatly because input scheduling phase needs com-
paring the queue length of crosspoint buffers in addition
to the waiting time of HoL cells. For TFQA, calculation
of the adaptive threshold in input scheduling needs time-
consuming multiplication and division operations which are
difficult to implement. The FQA scheme also significantly
increases the communication overhead such as quota and
VOQ length information interaction between input VOQs
and buffered crossbar.

According to the experimental and discussion results,
we obtain the performance characteristics include delay,
fairness and implementability of various algorithms as
shown in Table 5. The performance characteristics are
classified into four grades: Best, Very Good, Medium and
Worst. We see that the proposed IMCQF RR behaves the
best, MCQF RR performs less well due to the medium im-
plementability. LQF RR and OCF OCF are weaker than our
algorithms respectively because of the worst fairness and the
worst implementability. TFQA is the worst-performing al-
gorithm.

6. Conclusion

This paper first introduces a Most Critical Queue First-
Round Robin (MCQF RR) scheduling algorithm for CICQ
switches, which is based on the combined weight infor-
mation about queue length and service waiting time of
input VOQs in input scheduling and round robin in out-

put scheduling. The time complexity of MCQF RR is
O(log N). Simulation results show that MCQF RR can
provide good delay performance comparable to high per-
formance scheduling algorithm LQF RR under any admis-
sible input traffic patterns, and more importance is that
it achieves fairness performance superior to LQF RR un-
der non-uniform traffic patterns. To further reduce the
scheduling complexity of MCQF RR, we then propose an
Improved Most Critical Queue First-Round Robin (IM-
CQF RR) scheduling algorithm. The implementability
complexity of IMCQF RR is much lower than LQF RR and
MCQF RR as the number of ports N increases. Our sim-
ulation results indicate that IMCQF RR also exhibits good
delay performance comparable to LQF RR, and shows sig-
nificantly better fairness performance than LQF RR under
severe non-uniform traffic patterns.
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