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SUMMARY The Energy-aware Multi-mode Accelerator eXtension
[24], [25] (EMAX) is equipped with distributed single-port local mem-
ories and ring-formed interconnections. The accelerator is designed to
achieve extremely high throughput for scientific computations, big data,
and image processing as well as low-power consumption. However, be-
fore mapping algorithms on the accelerator, application developers require
sufficient knowledge of the hardware organization and specially designed
instructions. They also need significant effort to tune the code for im-
proving execution efficiency when no well-designed compiler or library is
available. To address this problem, we focus on library support for stencil
(nearest-neighbor) computations that represent a class of algorithms com-
monly used in many partial differential equation (PDE) solvers. In this
research, we address the following topics: (1) system configuration, fea-
tures, and mnemonics of EMAX; (2) instruction mapping techniques that
reduce the amount of data to be read from the main memory; (3) perfor-
mance evaluation of the library for PDE solvers. With the features of a
library that can reuse the local data across the outer loop iterations and map
many instructions by unrolling the outer loops, the amount of data to be
read from the main memory is significantly reduced to a minimum of 1/7
compared with a hand-tuned code. In addition, the stencil library reduced
the execution time 23% more than a general-purpose processor.
key words: CGRA, coarse grained reconfigurable architecture, accelera-
tor, library, stencil, optimization

1. Introduction

1.1 Performance Enhancement of Computations

To speed up the scientific and technological computa-
tions required in such fields as image processing and 3-
dimensional simulation, many studies and developments
have been reported from the views of hardware and soft-
ware. From the view of the former especially in the HPC
field, computer systems have employed high-performance
processors equipped with SIMD units, such as SPARC64
with HPC-ACE [7], Intel with SSE/AVX extensions [3], and
ARM with Neon extensions [4], or such general-purpose
accelerators as GPGPU [6], [9] and Xeon Phi [8]. To im-
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prove the execution efficiency of these computer systems,
new algorithms, efficient compilers, and libraries have been
proposed to make the best use of each CPU architec-
ture [10], [15], [16].

1.2 Partial Differential Equations (PDE)

In general, SPEC [1] and NPB [2] are widely used to rep-
resent the performance of computer systems. However, in
the HPC field, the importance is growing of measuring the
performance obtained by several standard partial differen-
tial equations (PDE) [11]. The PDE solver’s kernel code,
which is obtained by some finite differential method, is
called stencil computation because of the memory access
pattern that forms predefined stencils across each dimen-
sion of the data array. Since stencil computation funda-
mentally has both spatial and temporal localities, the perfor-
mance depends significantly on the quality of the instruc-
tion scheduling where the size of the data does not fit in the
cache memories. However, it is difficult to schedule com-
plicated patterns in the memory access so that traditional
cache-based multi-core systems can avoid the contentions of
cache lines. To address this problem, optimization schemes
have been proposed for parallel resource allocation, such as
data reuse [12] and a domain-specific language compiler for
stencil computing [13], [14], [16].

1.3 CGRA for Stencil Computations

In contrast to previous studies, we proposed for stencil
computations Coarse Grained Reconfigurable Architectures
(CGRAs) [20]–[26], which have many processing elements,
local memories, and inter-connection networks so that many
operations can be executed simultaneously on several data
streams. We also focused on how to design general-purpose
stencil libraries on plural specific CGRAs. The optimization
scheme of stencil libraries for CGRA depends closely on
the stencil pattern and the sequence of calculations, the fre-
quency and width of the memory system, and the frequency
of PEs.

1.4 3D-Stencil Library for EMAX

In this paper, we propose a 3D-Stencil Library that can
receive input parameters, such as the number of CGRA
columns and the degree of stencil calculation, and generate
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optimized code. For quantitative evaluation, we assume a
specific CGRA that we call the Energy-aware Multi-mode
Accelerator eXtension (EMAX), which is equipped with
distributed single-port local memories and a 2-dimensional
interconnection network. To understand easily such a sten-
cil library, it is necessary to grasp the inter-PE structure of
CGRA, including columns (horizontal connections), rows
(vertical connections), and memory hierarchy. The EMAX
structure will be described below. The structure of this paper
is as follows. In Sect. 2, an overview of stencil computing
is given. In Sect. 3, some key features of EMAX are shown.
In Sect. 4, the techniques in a 3D-Stencil Library for op-
timizing and generating codes for EMAX are described. In
Sect. 5, the performance as measured by certain benchmarks
is presented, and we conclude in Sect. 6.

2. Stencil Computation

This section describes the structure of stencil computing that
is supported by the 3D-Stencil Library.

2.1 3D-Stencil Kernels

Figure 1 shows two examples of 3D-stencil kernels repre-
sented by C language. Each of the kernels has neighbors
that spread from the center in three directions along the X,
Y, and Z axes. The difference between these two examples
is the number of elements in each of the three directions. In
this paper, the number of elements (the distance) from the
center is called the “degree”. A 7-point stencil kernel has
degree = 1, and a 13-point stencil kernel has degree = 2
(Fig. 1). A 3D-stencil kernel with “degree = 1” expresses
a 3D Jacobi solver from the Rodinia benchmark suite [17],
which is used for the evaluation of heterogeneous comput-
ing [18], [19].

Fig. 1 3D-Stencil kernels.

3. Overview of EMAX

In this section, such general features of CGRA as columns,
rows, mnemonics, and memory hierarchy are described as
is our proposed EMAX configuration [24], [25].

3.1 System Diagram of EMAX

As shown in Fig. 2, EMAX consists of two or more basic
processing elements (PEs) arranged in the shape of a ma-
trix. Each PE has several arithmetic logical units (e.g., EX1,
EX2), distributed single-port local memories (LMM), an ef-
fective address generator (EAG), and several FIFOs that can
hold a certain amount of recent data read from LMM. In
EMAX, the LMM and FIFOs in the same row are connected
with a common data path. In the case of the configuration
shown in Fig. 2, the data in an LMM can be sent to a max-
imum of 8 FIFOs in the same row. Additionally, the PEs at
the top are connected with the PEs at the bottom in a ring
fashion. The number of rows is defined by the number of
stages required by specific application programs.

3.2 Interface with Host Computer

In general, accelerators have a local DDR3 memory and are
connected to host computers through an external I/O bus
(Fig. 2). Consequently, the overhead for sending instruc-
tions and data to the accelerators should be taken into con-
sideration for modeling performance.

3.3 EMAX Mnemonics

For describing the 3D-Stencil Library, it is convenient to
prepare some typical mnemonics for controlling the EMAX.
The framework of the mnemonics is shown in Fig. 3. The
preceding combination of row and col specifies the logical
location of PE to be assigned with the succeeding function.
To explain the EMAX operation, we describe three load in-
structions in the same Z coordinates (Fig. 4 (1) at Y = 0, 1, 2
and Fig. 4 (2) at Y = 1, 2, 3). Each load instruction can incre-

Fig. 2 EMAX configuration.



INAGAKI et al.: PERFORMANCE EVALUATION OF A 3D-STENCIL LIBRARY FOR DISTRIBUTED MEMORY ARRAY ACCELERATORS
2143

Fig. 3 EMAX mnemonics.

ment the load address in the X axis count times. Therefore,
one load instruction can read the data of the count points
from the stream data along the X axis. In the 1st processing
on EMAX at Y = 0, 1, 2 (Fig. 4 (1)), three load instructions
read the count points data from the stream data along the X
axis (three stream data are Y = 0, Y = 1, and Y = 2). Then
these three load instructions are mapped on PE at rows 0,
2, 4 (Fig. 4 (3)). After the 1st processing is completed, the
next processing starts to read the count points data from the
three stream data at Y = 1, 2, 3 (Fig. 4 (2)). Then the two
data streams at Y = 1 and Y = 2 on the X axis are used
on PE at rows 2 and 4 in the 1st processing. However,
because these data exist in the LMM of another PE when
the instruction is similarly arranged, it cannot be read. To
reuse these data streams, the Dist field exists in the EMAX
mnemonics. Dist specifies the distance of the vertical lo-
cation between LMMs that hold neighbor streams for each
other for the stencil computation. After EMAX has finished
processing on a stencil stream at Y = 0, 1, 2 along the X
axis (Fig. 4 (1)), some LMMs can supply data for the next
processing on the next stencil stream at Y = 1, 2, 3, because
the neighbor stencil streams overlap each other at Y = 1
and Y = 2 (Fig. 4 (2)). If the LMM that holds the stream
corresponding to Y = 1 is located on row 2, and Y = 2 is
located on row 4, then dist should be 2. For the next pro-
cessing with Y = 1, 2, 3, the previous contents of LMMs
are kept and the mapping of instructions is shifted by dist,
as shown in Fig. 4 (4). Consequently, the next processing
can reuse the streams at Y = 1 and Y = 2 (black LMMs in
Fig. 4 (4)). The operations for EX1 and EX2 are specified
by ALU OP, as shown in Figs. 3 (b) and (c). The load oper-
ation from EX2 FIFO can be specified as EX1 operations.
The MEM OP (Fig. 3 (d)) is the load/store operations from
LMM or LMM FIFO. The initial value of the register for
ALU OP and MEM OP can be specified by RGI.

Fig. 4 Instruction shift by “dist”.

4. 3D-Stencil Library for EMAX

This section describes the user interface of the 3D-Stencil
Library and a technique for generating instructions for
EMAX. For the best use of EMAX, we must reduce the
amount of data transmission between LMM and the main
memory (DDR3). The optimization scheme must focus on
how to map local memory to the stencil streams.
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4.1 User Interface of 3D-Stencil Library

As shown in Fig. 1, typical templates for stencil kernels
are easily written in C language. The parameters for cus-
tomizing the templates and implementation on EMAX are
the “degree” of the stencil and the “number of columns” of
EMAX. Figure 5 (1) is an example of a customizable sten-
cil library. When the degree is one, the Jacobi 3D stencil
computation is expressed, as described in Sect. 2. When the
degree is three, a FD6 kernel is expressed. Application de-
velopers can embed various stencil computations on various
EMAXs by customizing 3D-Stencil Libraries with specific
parameters (Fig. 5 (2)).

4.2 Structure of 3D-Stencil Library

The structure of the 3D-Stencil Library is shown in Fig. 6.
When an application program calls the stencil library, the li-
brary first generates EMAX instructions based on the given
parameters. Then the instructions and the data are sent to

Fig. 5 Interface of stencil kernel.

Fig. 6 Structure of 3D-Stencil Library.

EMAX through DDR3. Finally, EMAX executes the in-
structions mapped on PEs simultaneously and stores the re-
sult in DDR3. The following is the processing flow of using
the 3D-Stencil Library:

(1) The stencil application allocates three memory arrays
in the main memory of the host PC. A is the input 3D-
array, B is the output 3D-array, and C is the symmetric-
constant coefficients of the stencil [5].

(2) The stencil application calls the 3D-Stencil Library.
Arguments A, B, and C are the address pointers allo-
cated in the main memory by the stencil application
(1), and size X, size Y, and size Z are the dimen-
sion sizes of the 3D-array.

(3) The 3D-Stencil Library automatically generates in-
structions (mapping data) of the EMAX including in-
put 3D-array data from the input parameter. If the data
size of the X-direction exceeds the LMM capacity, the
3D-Stencil Library divides the 3D-Stencil space and
executes EMAX multiple times. Figure 7 shows the
divided image.

(4) The 3D-Stencil Library transmits the instruction data
including the data for the EMAX activation to EMAX’s
DDR3 with DMA.

(5) When the activation data are written on DDR3, EMAX
is activated automatically and prefetches the input 3D-
array data from the DDR3 to the LMMs. Then each PE
of EMAX executes the instructions and sends the result
to DDR3.

(6) The result of the stencil computation is transmitted by
DDR3 to the pointer of array B in the main memory of
the host PC.

4.3 Basic Instruction Mapping

As mentioned above, the amount of data, which is transmit-
ted between LMMs and the main memory (DDR3), must be
reduced to increase EMAX’s execution efficiency. The sten-
cil computation has spatial (horizontal) locality in the X-
direction and temporal (vertical) locality in the Y-direction.
Horizontal locality can be maximally utilized by employ-
ing FIFOs in the same row of the EMAX. The FIFOs are

Fig. 7 Divided 3D-Stencil space.
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Fig. 8 Basic instruction mapping.

filled with the data from the LMM in the same row and can
hold several neighbors in the X-direction. In contrast, ver-
tical locality can be maximally utilized by reusing LMMs
that hold different streams in the Y-directions. Figure 8
describes the basic memory mapping of stencil computa-
tion when the “degree” equals one. Figure 8 (1) shows the
load instructions for a stencil kernel expressed by EMAX
mnemonics. First, seven load instructions are mapped on
corresponding EAGs (Fig. 8 (2)). Then for utilizing FIFOs
to load the neighbor data in the X-direction, the load instruc-
tions from A[z][y][x−1], A[z][y][x], and A[z][y][x+1] must
be mapped in the same row, and the load instructions from
A[z][y − 1][x], A[z][y][x − 1], and A[z][y + 1][x] must be
mapped in the same column to reuse the data in the LMMs.
By setting each dist field of the instructions to 1, subse-
quent processing can reuse the LMMs of A[z][y][[x] and
A[z][y + 1][x − 1] (Fig. 8 (3)).

Fig. 9 Parallel mapping.

4.4 Packing of Instructions

After basic mapping is completed, the packing of instruc-
tions should be considered by unrolling in the Z-direction.
As mentioned above, the X-direction is mapped on the se-
quential access with FIFOs, and the Y-direction is mapped
on the reusing of LMMs. Moreover, we have another chance
to parallelize the Z-direction by unrolling so that two con-
tiguous stencil computations can be performed simultane-
ously. An example of the program and an arrangement for
unrolling is shown in Fig. 9. The load instructions from
A[z][y][x − 1], A[z][y][x], A[z][y][x + 1], A[z][y − 1][x],
and A[z][y + 1][x] are defined as a fixed pattern in the 3D-
Stencil Library due to utilizing FIFOs and reusing LLMs.
The neighbor stencil on the Z-direction is mapped on empty
PEs in a mirrored fashion (Fig. 9 (2)). By having unrolled
codes share two load instruction (A[z][y][x], A[z+1][y][x]),
two load instructions can be eliminated. Therefore, we ex-
pect that the packing of instructions reduces the total amount
of data to be transmitted between LMMs and the main mem-
ory (DDR3).

4.5 Evaluation of Packing

If we assume that the target EMAX has an infinite number
of rows, the number of parallel mappings in the Z-direction
can theoretically be increased infinitely. To compute the op-
timal degree of parallelizing in the Z-direction based on the
number of EMAX rows, the amount of data to be transmit-
ted in each case is evaluated. The flow of prefetching data to
LMM in the case of stencil computation is shown in Fig. 10,
where each block corresponds to a stream in the X-direction
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Fig. 10 Data transmission to LMM on stencil computing.

and is stored in each LMM. The two dimensions of Y and
Z in Fig. 10 correspond to the Y- and X-directions. The
amount of data to be transmitted to LMM can be estimated
by the following formulas: p: number of parallel mappings,
d: number of stencil degrees, y: size of Y-direction, and z:
size of Z-direction.

(1) First required bit of data: (4d + 1) + p(2d + 1)
(2) Subsequent required data: (2d + 1) + (p − 1) = 2d + p
(3) Total data in xy-iteration: y(2d + p)
(4) Total data in xyz-iteration: z((1) + (3))/p
(5) Total data (approximate value): yz(2d + p)/p

Formula (1) is the amount of data to be transmitted to
LMM at the first iteration of the Y-direction, and formula
(2) is the amount of data required by the subsequent incre-
mental stencil in the Y-direction. The total amount of data
with the incremental to the Y-direction is expressed by for-
mula (3) (i.e., (2) ∗ y). Since the number of iterations in
the Z-direction (z) is divided by the number of parallel map-
pings (p), formula (4) becomes the total amount of data to be
transmitted to LMM. Since the stencil calculation has many
dimensions (p < y), the value of (1) can be ignored, and the
amount of required data can be approximated as the value of

Fig. 11 Instruction mapping of stencil [degree = 1].

formula (5). Therefore, the more p increases, the more the
required data are reduced. In the case of degree = 1, the ra-
tio of without parallelization (p = 1) to with parallelization
becomes 3 : (2 + p)/p. When p is assumed to be infinite,
the ratio becomes 3 : 1. Therefore, by parallelization, the
amount of data to be transmitted is reduced to a maximum
of 1/3 of that without parallelization, and for degree = 2
and degree = 3, it is reduced to a maximum of 1/5 and 1/7,
respectively.

4.6 Parallel Mapping in 3D-Stencil Library

It has become obvious that parallelization can reduce the
amount of data transmission based on the above evaluation.
Therefore, the 3D-Stencil Library must automatically gener-
ate instructions to increase the number of parallel mappings
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at least to the maximum number of EMAX rows. First,
the 3D-Stencil Library maps the instructions according to
the basic pattern. When degree = 1, the basic pattern is
copied in seven rows (Fig. 11 (1)). If the number of EMAX
columns is seven or less, the 3D-Stencil Library maps the
instructions in the form of Fig. 11 (1) (i.e., p = 1). If the
number of EMAX columns is eight or more, for comput-
ing the neighbor stencil in the Z-direction, the basic pattern
occupies the flipped horizontal location next to the original
pattern (Fig. 11 (2) (i.e., p = 2)). When the number of sets
for parallel mapping is 3 or 4, the basic pattern is copied
and put in the lower location. Then the added number of
the EMAX rows becomes four because the empty units are
used (Fig. 11 (3)). For example, when the number of EMAX
columns is 11 or 12, the number of parallel mappings be-
comes three or four, respectively. On the other hand, if
degree = 3, since the PEs in the same row are occupied
by the basic pattern using eleven rows, all of the basic pat-
terns should be located in subsequent rows. The number of
rows, generated by the 3D-Stencil Library according to the
degree of the stencils and the number of parallel mappings,
can be defined as the following formulas (p: number of par-
allel mappings):

• degree = 1: 8 + 4((p/2) + (p mod 2) − 1) − (p mod 2)
• degree = 3: 11p

5. Results and Analysis

In this section, the execution time of the 3D-Stencil Library
is estimated by a clock-accurate EMAX simulator. The re-
sults are compared with general-purpose processors.

5.1 Simulation Model for Performance Measurement

For an accurate estimation of the execution time in EMAX,
we developed a clock-accurate simulator that represents the
activities of the memories and the registers in EMAX. The
assumptions of the frequency in each component, the mem-
ory bandwidth, and the host bandwidth are shown in Table 1.
After performing circuit composition by CAD with 28-nm
technology using design data that became LSI by Rohm 0.18
(it operates at 52.6 MHz), we learned that EMAX operates
at an internal clock speed of 252 MHz. Therefore, in the
simulator condition, the EMAX frequency is assumed to be
200 MHz. When the 3D-Stencil Library executes 3D stencil
computation with a dimension size of 320 × 320 × 320, the
3D-Stencil Library activates EMAX 320 × 320 times (when
not using parallel mapping). For degree = 1 in the first ex-
ecution, five data streams along the X axis are transmitted

Table 1 Simulation parameters.

EMAX frequency 200 MHz
HOST-DDR3 bandwidth (USB 3.0) 400 Mbyte/sec

DDR3-LocalMEM bandwidth 800 Mbyte/sec
DDR3 SDRAM capacity 256 Mbyte

Local MEM capacity 8 Kbyte

to DDR3 to get the results of 320-points data with the same
X axis. This execution pattern resembles the processing in
Fig. 4 (1), and the unit of the execution corresponds to the
stream in Fig. 12. To obtain all the stencil computing re-
sults, the 3D-Stencil Library activates EMAX in increments
with the Y and Z axes, and the total activated time becomes
320 × 320. Figure 12 describes the timing chart of EMAX.
Each execution is composed of five states.

• State 1
Data transmission is executed between the main mem-
ory of the host PC and the DDR3 in EMAX.
• State 2

Data prefetching is executed from DDR3 to LMM.
• State 3

The instructions mapped on the PEs are executed si-
multaneously on the data stream.
• State 4

The result stored in LMM is transmitted to DDR3.
• State 5

Data transmission is executed from DDR3 to the main
memory of the host PC.
• [Other conditions]

– Each state can be started after the previous state
when identical execution is completed.

– States 1 and 5 and States 2 and 3 use the same
data path. Therefore each state exclusively uses
the data path.

– Each state can be overlapped by another state.
– Since the data size of the control information in-

cluding the operation of the EMAX activation is
much smaller than the 3D-array, it is ignored.

5.2 Evaluation of 3D-Stencil Library

We measured the execution time of the 3D-Stencil Library
using the simulator. Figure 13 presents the execution time
for running stencil kernels with degree = 1. The results
with degree = 3 are shown in Fig. 14. The size of the X,
Y, and Z-directions in the 3D space is fixed to 320, and
each point has a double precision floating point value. The
“stage count” shows the number of EMAX rows. In Fig. 13,
“stage count = 7” corresponds to a hand-tuned code (the

Fig. 12 Execution sequence of EMAX.
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Fig. 13 Execution time of 3D-Library [degree=1].

Fig. 14 Execution time of 3D-Library [degree=3].

Table 2 General-purpose processors for comparison.

CPU Compiler Compile option
Intel (R) Xeon (R) CPU
E5405 2.00 GHz

gcc 4.1.2 -O3 -msse2 -ffast -math

Intel (R) Core (TM) i5-4670
CPU@3.40 GHz (Haswell)

gcc 4.6.3 -O3 -msse2 -ffast -math

number of parallel mappings = 1) and the others correspond
to the 3D-Stencil Library. In the same manner, in Fig. 14,
“stage count = 11” corresponds to a hand-tuned code, and
the others correspond to the 3D-Stencil Library. The re-
sults in each case show that, as the degree of parallelization
increases, the 3D-Stencil Library can reduce the execution
time by more than 90% compared with a hand-tuned code.
Our result shows that the evaluation in Sect. 4.5 is correct,
and the execution time can be reduced by more than the ra-
tio of the amount of data transmission. However, this is an
over-estimation; when the size of the data increases, many
conflicts occur on the communication path between DDR3
and the main memory of the host PC. Such a model is not
included in the current simulator yet. However, in general,
commercial accelerators have many banks to increase the
memory throughput. EMAX can also increase the perfor-
mance in the same manner.

5.3 Comparison with General-Purpose Processors

Finally, the execution times of the stencil computation of
EMAX are compared with general-purpose CPUs. The pro-
cessors, the version of compilers, and the compiling options
are shown in Table 2. We also use the same stencil kernels

Fig. 15 Comparison of execution between CPUs and EMAX.

with the same size (the size of the X, Y, and Z-directions
is 320), where degree = 1 and degree = 3. The results are
shown in Fig. 15. In the case of degree = 1, Haswell is faster
than the other processors including EMAX. However, when
degree = 3, EMAX is faster. For reducing memory traf-
fic, fitting many stencil points into FIFOs and LMMs works
better than a normal shared cache system.

6. Conclusion

In this paper, we proposed a 3D-Stencil Library that auto-
matically generates an instruction sequence that efficiently
employs EMAXs. Using a 3D-Stencil Library, applica-
tion developers can easily connect stencil computation on
EMAX with C programs. Moreover, EMAX’s execution
time can be significantly reduced by eliminating the data
transmission by parallelizing instruction mapping. In ad-
dition, with a performance simulator, the 3D-Stencil Li-
brary reduced the execution time 23% more than a general-
purpose processor. The practicality of EMAX and the 3D-
Stencil Library is in sight. We plan to enhance the library
features to cope with many-point stencils, such as 27-point
stencils.
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