
600
IEICE TRANS. INF. & SYST., VOL.E100–D, NO.4 APRIL 2017

INVITED PAPER Special Section on Award-winning Papers

Multimodal Learning of Geometry-Preserving Binary Codes for
Semantic Image Retrieval

Go IRIE†a), Hiroyuki ARAI†, Members, and Yukinobu TANIGUCHI††, Senior Member

SUMMARY This paper presents an unsupervised approach to feature
binary coding for efficient semantic image retrieval. Although the majority
of the existing methods aim to preserve neighborhood structures of the fea-
ture space, semantically similar images are not always in such neighbors
but are rather distributed in non-linear low-dimensional manifolds. More-
over, images are rarely alone on the Internet and are often surrounded by
text data such as tags, attributes, and captions, which tend to carry rich se-
mantic information about the images. On the basis of these observations,
the approach presented in this paper aims at learning binary codes for se-
mantic image retrieval using multimodal information sources while pre-
serving the essential low-dimensional structures of the data distributions in
the Hamming space. Specifically, after finding the low-dimensional struc-
tures of the data by using an unsupervised sparse coding technique, our
approach learns a set of linear projections for binary coding by solving an
optimization problem which is designed to jointly preserve the extracted
data structures and multimodal data correlations between images and texts
in the Hamming space as much as possible. We show that the joint op-
timization problem can readily be transformed into a generalized eigen-
problem that can be efficiently solved. Extensive experiments demonstrate
that our method yields significant performance gains over several existing
methods.
key words: image retrieval, multimodal learning, binary coding

1. Introduction

Image retrieval is a central topic in many research fields like
image processing, multimedia, and computer vision. Sup-
pose we have an image database of n images (image fea-
tures)X := {xi ∈ Fx}ni=1, where Fx ⊂ Rdx is a dx-dimensional
image feature space. Given a query image q ∈ Fx, the task is
to find a subset of database imagesX∗ ⊂ X that is relevant to
the query q. Here, the retrieved subset X∗ is expected to be
semantically similar to the query, e.g., images depicting the
same object as the query. A straightforward solution would
be to use an exhaustive L2 scan. Unfortunately, such a scan
is often prohibitive due to its linear time complexity with
respect to the database size n and feature dimensionality dx.
Classical tree-based indexing techniques like kd-tree [1] are
not satisfactory either, because they are inefficient for the
high dimensional features that are often used in semantic
image retrieval problems.

One promising approach is to use feature binary cod-

Manuscript received October 28, 2016.
Manuscript revised December 21, 2016.
Manuscript publicized January 6, 2017.
†The authors are with Nippon Telegraph & Telephone Corpo-

ration, Yokosuka-shi, 239–0847 Japan.
††The author is with Tokyo University of Science, Tokyo, 125–

8585 Japan.
a) E-mail: irie.go@lab.ntt.co.jp

DOI: 10.1587/transinf.2016AWI0003

ing, a.k.a. binary hashing. In binary coding, the original
database entries ∀x ∈ X (resp. the query q ∈ Fx) are en-
coded into c-bit binary vectors as z := φ(x) ∈ H (resp. zq :=
φ(q) ∈ H), whereH := {±1}c is a c-dimensional Hamming
space such that c ≤ dx and φ is a mapping from Fx to H .
It has been proven that the search time with binary codes
in a Hamming space can be reduced to sub-linear time [2],
so the retrieval process is significantly accelerated. Binary
coding has received much attention recently because of this
property.

Our focus in this paper is on unsupervised feature bi-
nary coding for efficient semantic image retrieval. The
challenge is how to obtain effective binary codes, or the
function φ, for semantic image retrieval without any ex-
plicit supervision (e.g., class labels). One idea would be
to design learning algorithms that can preserve neighbor-
hood structures of data in the Hamming space H as much
as possible. A variety of methods have been proposed for
this, including PCA-based [3], [4], graph-based [5]–[7], and
clustering-based [8], [9], just to name a few. The majority of
these methods aim to preserve the neighborhood structures
of the feature space Fx. However, such neighbors do not
always capture semantically similar images in many real-
world problems. Moreover, in emerging real-world scenar-
ios like web or social media retrieval, an image is rarely
alone. Rather, an image is often surrounded by various
pieces of text information, such as tags, attributes, and cap-
tions. These text data may carry rich semantic information
about images and thus would be useful for learning semantic
binary codes.

In this paper, we present an approach to unsupervised
feature binary coding for semantic image retrieval. Based on
an observation that semantically similar images tend to form
non-linear manifolds in Fx [10]–[12], we first extract such
inherent data structures relevant to image semantics from X
by using an unsupervised sparse coding technique [13]. In
order to learn a set of linear projections used as φ, we design
an optimization problem that jointly preserves the discov-
ered inherent data structures and the multimodal data cor-
relations between images and their associated texts in the
Hamming space H . Furthermore, we show that this opti-
mization problem can be readily transformed into a general-
ized eigenproblem which can be readily solved. Extensive
experiments indicate that our method significantly improves
semantic image retrieval accuracy compared with several
existing methods.

The remainder of this paper is organized as follows.
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We briefly review the previous studies in the next section.
Then we present an overview and the details of our approach
in Sect. 3. Section 4 describes experimental results demon-
strating the effectiveness of our method, and Sect. 5 gives
concluding remarks.

2. Related Work

As mentioned in Sect. 1, many unsupervised binary coding
approaches have been proposed. We here briefly review rep-
resentative methods. One popular approach is to use princi-
pal component analysis (PCA) to learn efficient linear pro-
jections for binary coding [3]. A state-of-the-art PCA-based
method is Iterative Quantization (ITQ) [4]. ITQ refines the
initial PCA projections by finding an orthonormal projection
matrix that can minimize the quantization errors between
the projected real-valued vectors and binary codes. Some
methods learns non-linear mapping functions to preserve
the local proximity of the data in binary codes. Spectral
hashing (SH) [5] and anchor graph hashing [6] learn binary
codes based on the graph Laplacian [14]; they reduce the
feature dimensionality while preserving pairwise data prox-
imities. Inductive hashing on manifolds [7] is based on a
similar idea but uses t-distributed stochastic neighbor em-
bedding [15] instead of a graph Laplacian. There are other
studies [8], [9] that rely on clustering assumptions.

A majority of the existing approaches aim to preserve
the neighborhood structures of the feature space Fx, such
as dominant dimensions of the data variances [3], [4] or lo-
cal data proximities [5]–[9]. However, even data proximity
is not enough to capture the intrinsic structures (i.e., essen-
tial low-dimensional structures) of multiple manifolds, es-
pecially if they are close to each other in the space. This is
because no matter how accurately the data proximities in the
feature space are preserved, it is not possible to distinguish
one manifold from the others. One method [13] considers
the case and uses a locally linear sparse coding technique to
extract the intrinsic structures of separate manifolds. Fol-
lowing this idea, our approach also utilizes locally linear
sparse coding to capture the data structures. However, un-
like [13], which uses non-linear mapping for the binary cod-
ing, our formulation is designed to learn linear projections
for more efficient coding.

Furthermore, our approach uses multimodal sources to
learn binary codes, which allows us to obtain much more
semantic code by leveraging the rich information carried by
text data. Certain recent studies with a similar motivation
use multimodal binary codes obtained from multiple fea-
tures for retrieval [16], [17]. By contrast, we do not assume
that multiple features are available in the retrieval stage,
and instead we aim at improving a single-modal binary
code by leveraging multimodal information sources. Some
studies consider cross-modal hashing [18]–[21], which also
uses multimodal information sources to learn binary codes.
However, they mainly focus on the cross-modal retrieval
problem in which the task is to retrieve data of one modal-
ity type with a query of another type (e.g., retrieve text data

from an image query). Rather, our focus is on uni-modal
retrieval, and our motivation is in improving uni-modal re-
trieval performance by multimodal learning. In addition, our
formulation is different from existing cross-modal hashing
methods and preserves both multimodal data correlations
and intrinsic data structures discovered by the sparse cod-
ing technique.

3. Method

We first define our problem. Let us denote by Fx ⊂ Rdx

and Fy ⊂ Rdy an image and a text feature spaces. Suppose
we have data matrices of images and text, X := [x1, . . . , xn]
and Y := [y1, . . . , yn] where xi and yi, i = 1, . . . , n, are i.i.d.
distributed in each of Fx and Fy, respectively. Furthermore,
we assume that xi and yi, ∀i, are semantically relevant to
each other, e.g., an image and a text description of the im-
age. Given such a dataset, our goal is to obtain a function
φ : Fx −→ H for binary coding of image features. Without
loss of generality, we will hereafter assume that the empir-
ical means over X and Y are 0. Following [3], [4], we will
consistently consider the following signed linear function
for φ.

φ(x) = sign(A	x), (1)

where A ∈ Rdx×c is a linear projection matrix, and sign() is
an element-wise sign function. Compared with non-linear
functions, linear projections have fewer parameters and thus
are more efficient for computing binary codes in terms of
both space and time. The main problem now is how to de-
termine A.

Our approach determines A so as to preserve both the
intrinsic manifold structures of X and Y , as well as multi-
modal data correlations between X and Y . To this end, we
cast this problem as a joint optimization problem of A. The
basic structure of our loss function (to be minimized) can be
written as follows.

λG(X) + (1 − λ)G(Y) + ηC(X,Y), (2)

where G and C are called the geometric loss function and
multimodal loss function, respectively. λ and η are balancing
parameters. We give the details of G and C in Sects. 3.1 and
3.2, respectively; then we describe the total problem and the
algorithm to solve it in Sect. 3.3.

3.1 Geometric Loss Function

This section presents our geometric loss function G which
is designed to preserve the intrinsic data structures of X
(resp. Y). The key idea is based on [13] which aims to
extract the structures of multiple manifolds sampled in X
(resp. Y) by using an unsupervised sparse coding technique
similar to [22].

First, we introduce a key observation that supports the
above idea. Suppose we have a dMx -dimensional manifold
Mx in which x lies (typically dMx 
 dx).
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Definition 1. Mx is a dMx -dimensional manifold if it is a
topological space where each point has a neighborhood that
is homeomorphic to RdMx .

Observation 1. IfMx is a dMx -dimensional manifold, ∀x in
Mx can be linearly spanned by dMx +1 points in the tangent
space at x. IfMx is densely enough sampled by X, it can be
approximately spanned by dMx + 1 neighbor points in Mx

sampled from X.

If Mx is a linear manifold, then the observation stands be-
cause Mx can be globally spanned by arbitrary dMx + 1
points on Mx sampled from X†. If Mx is non-linear, Mx

is locally homeomorphic to RdMx in its tangent space.
The above implies that the local structure of a manifold

around ∀x ∈ F can be effectively captured through a linear
combination of its dMx + 1 neighbor points onMx sampled
from X. Accordingly, the function G is constructed in the
following two steps: (1) extracting locally linear structures
at each point of X (resp. Y) in order to capture the structure
of a manifold around the point. This can be done by finding
a linear reconstruction of x using its (at least) dMx +1 neigh-
bor points; (2) designing a function to preserve the extracted
linear structures in H . In this paper, the same form of G is
used for both X and Y; we hereafter explain the case of X
only, for simplicity.

Extracting locally linear structures [13]. What we want to
do here is to find linear reconstruction weights for ∀x ∈ X.
If we can assume that one manifoldMx is far enough from
the others in Fx and that dMx is known, then it is enough to
just retrieve dMx + 1 Euclidean neighbor points and com-
pute linear reconstruction weights. However, neither can
be assumed in practice. Fortunately, it is possible to take
a set of Euclidean neighbor points N(x) which is large
enough to contain the desired dMx + 1 neighbor points in
Mx (|N(x)| ≥ dMx + 1). Therefore, after obtaining such
a set N(x), we try to select only those in Mx from N(x).
The most efficient, i.e., sparsest, linear reconstruction of x is
achieved when we use only the neighbor points in the same
tangent space ofMx at x. This leads to the following locally
linear sparse coding problem [13].

min
wi

1
2
‖xi −

∑
j∈N(xi)

wi jx j‖2 + τ‖siwi‖1 (3)

s.t.: w	i 1 = 1, (4)

where wi ∈ Rn is a vector of linear reconstruction weights
to be optimized (wi j = 0 if j � N(xi)) and 1 is the vector
of all ones with the same size as wi. siwi means element-
wise multiplication between si and wi. The first term is the
locally linear reconstruction error, and the second term is
a sparsity inducing term that penalizes distant points with
si := (si1, . . . , sin)	. si j is determined so that it takes a larger
value as the distance between xi and x j is larger; we use

†For instance, a 1-dimensional linear manifold (a straight
line) can be uniquely specified by arbitrary two points, and a 2-
dimensional linear manifold (a plane) can be specified by three
points.

si j := ‖xi−x j‖∑
j ‖xi−x j‖ if j ∈ N(xi) and 0 otherwise. τ is a param-

eter which balances two terms. The solution wi (wi j = 0 if
j � N(xi)) obtained by solving this problem is the sparse
linear reconstruction of xi; thus, the non-zero dimensions
are expected to correspond to dMxi

+ 1 neighbor points in
Mxi . Hence, the intrinsic structures of the manifolds can
be captured with W := [w1, . . . ,wn]. Note that this is a
simple small weighted sparse coding problem with |N(x)|
unknown variables so it can be efficiently solved with a typ-
ical sparse coding solver. In this study, we use a homotopy
algorithm [23] since we expect wi to be rather sparse.

Designing G. G is designed to preserve W inH as faithfully
as possible. Here, we denote the binary code for xi (i =
1, . . . , n) by zi ∈ H . G is naturally defined as follows.

G(X) :=
1
n

n∑
i=1

‖zi −
n∑

j=1

wi jz j‖2. (5)

This objective is the linear reconstruction error of
{z1, . . . , zn} with fixed W, hence, minimizing it with respect
to {z1, . . . , zn} will optimally preserve W in H . Note that it
can be rewritten in matrix form as

G(X) =
1
n

n∑
i=1

‖zi −
n∑

j=1

wi jz j‖2 = tr(Z	MxZ), (6)

where Mx := (In − W)	(In − W)/n and Z := [z1, . . . , zn]	.
Since Z = sign(X	A) by Eq. (1),

G(X) = tr(sign(A	X) Mx sign(X	A)), (7)

which gives the final definition of G.
It is worth noting that minimizing the above objective

G immediately gives a uni-modal learning formulation of
geometry-preserving binary codes.

min
A
G(X) = tr(sign(A	X) Mx sign(X	A)) (8)

s.t.: sign(A	X)sign(X	A) = nIc, (9)

where the constraint is imposed to ensure that the bits are
independent of each other [5]. Unfortunately, this is an NP-
hard problem due to the existence of the sign functions. By
replacing each sign function by its signed magnitude [3], [4],
[18], the problem can be relaxed into

min
A

tr(A	XMxX	A) (10)

s.t.: A	XX	A = nIc. (11)

Since both XMxX	 and XX	 are symmetric positive semi-
definite, the above is a standard generalized eigenproblem
and its solution consists of c eigenvectors corresponding to
c minimum eigenvalues of (XX	)−1(XMxX	). After obtain-
ing the optimal A, one can generate binary codes for ∀x ∈ Fx

as z = sign(A	x). Note that this problem is similar to a lin-
ear dimensionality reduction technique called neighborhood
preserving embedding (NPE) [24]. NPE and our approach
differ in the way W is constructed. NPE uses standard linear
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reconstruction weights obtained by solving a least-squares
problem [24], while we optimize W by using sparse coding.

3.2 Multimodal Loss Function

Next, we introduce our multimodal loss function C. Given
n data pairs {(xi, yi)}ni=1, we want that the distance between
two binary codes is small in every data pair in H as much
as possible. Here, we denote by Zx := [z(x)

1 , . . . , z
(x)
n ]	 and

Zy := [z(y)
1 , . . . , z

(y)
n ]	 the binary codes for X = [x1, . . . , xn]

and Y = [y1, . . . , yn], respectively. We define the function
C as the average distance between Zx and Zy which can be
represented as

C(X,Y) :=
1
n

n∑
i=1

‖z(x)
i − z(y)

i ‖2. (12)

Note that z(x)
i = sign(A	xi) and z(y)

i = sign(B	yi) where
B ∈ Rdy×c is the projection matrix for Y; therefore, C can be
defined as

C(X,Y) =
1
n

n∑
i=1

‖sign(A	xi) − sign(B	yi)‖2. (13)

By minimizing this expression with respect to A and B, we
can find A (and B) that minimize the average Hamming dis-
tance over the all pairs {(z(x)

i , z
(y)
i )}ni=1.

3.3 Multimodal Learning of Geometry-Preserving Binary
Codes

By combining the two geometric loss functions, G(X) and
G(Y), one for each modality, and the multimodal loss func-
tion C(X,Y) together, the total problem of learning A (and
B) can be defined as follows.

min
A,B
λG(X) + (1 − λ)G(Y) + ηC(X,Y) (14)

s.t.: sign(A	X)sign(X	A) = nIc, (15)

sign(B	Y)sign(Y	B) = nIc. (16)

The constraints Eq. (15) and Eq. (16) are imposed to ensure
that the learned bits are independent of each other. λ (0 ≤
λ ≤ 1) and η ≥ 0 are balancing parameters. Although this
problem optimizes both A and B (i.e., projections for images
and texts, respectively), we are interested in binary coding
of image features in this paper; thus, we will use only A and
discard B.

When we set λ = 1 (resp. λ = 0) and η = 0, the problem
becomes exactly the same as the uni-modal case Eqs. (8),
(9), where A (resp. B) is trained so as to optimally preserve
the locally linear geometries of X (resp. Y) in H . On the
other hand, when we take η → ∞ and ignore sign(), the
problem turns into

min
A,B

1
n

n∑
i=1

‖A	xi − B	yi‖2 (17)

s.t.: A	XX	A = nIc, (18)

B	YY	B = nIc. (19)

This is exactly canonical correlation analysis (CCA);
namely, in this case A and B are trained to maximize the
multimodal correlations between X and Y . These facts indi-
cate that our formulation finds A (and B) such that the intrin-
sic data geometries and multimodal correlations between the
two modality spaces are jointly preserved in the Hamming
space.

Solution. Interestingly, we can show that the total problem
is equivalent to the uni-modal case presented in Eqs. (8), (9).
Let us define the following two block matrices.

Q :=

[
X 0
0 Y

]
, P :=

[
A
B

]
. (20)

Then the first two terms of the total objective Eq. (14) can
be transformed into

λG(X) + (1 − λ)G(Y)

= λtr(sign(A	X) Mx sign(X	A))

+ (1 − λ)tr(sign(B	Y) My sign(Y	B))

= tr(sign(P	Q) MG sign(Q	P)), (21)

where

MG :=

[
λMx 0

0 (1 − λ)My

]
. (22)

The last term in Eq. (14) can be rewritten as

ηC(X,Y) =
η

n

n∑
i=1

‖sign(A	xi) − sign(B	yi)‖2

=tr(sign(P	Q) MC sign(Q	P)), (23)

where

MC :=
η

n
(I2n −WC), WC :=

[
0 In

In 0

]
. (24)

By using Eq. (21) and Eq. (23), we can rewrite the total ob-
jective Eq. (14) as

λG(X) + (1 − λ)G(Y) + ηC(X,Y)

= tr(sign(P	Q) MG sign(Q	P))

+ tr(sign(P	Q) MC sign(Q	P))

= tr(sign(P	Q)(MG + MC)sign(Q	P)). (25)

Similarly, the constraints Eqs. (15), (16) can be reformulated
as:

sign(P	Q)sign(Q	P) = 2nIc. (26)

Here, we re-define M := (MG + MC), A := P, X := Q,
and n := 2n, respectively. Finally, the total problem can be
transformed into

min
A

tr(sign(A	X) M sign(X	A)) (27)
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s.t.: sign(A	X)sign(X	A) = nIc. (28)

This problem is indeed equivalent to the uni-modal problem
Eqs. (8), (9). Because of this property, the total problem can
be optimally and efficiently solved in exactly the same way
as in the uni-modal case discussed in Sect. 3.1. Specifically,
we obtain the initial solution A of Eqs. (27), (28) by solving
the relaxed problem Eqs. (10), (11) which is a generalized
eigenproblem. The solution A corresponds to P = [A	 B	]	
as in Eq. (20). Then, after obtaining the final A, we can gen-
erate binary codes for ∀x ∈ Fx as z(x) = sign(A	x).

Minimizing the quantization error. Because of the signed
magnitude relaxation, the projection A is likely to incur sig-
nificant binary quantization errors, leading to unsatisfactory
retrieval performance. Following [4], we refine the initial
projection A by solving the following orthogonal Procrustes
problem to minimize the quantization error incurred by the
relaxation.

min
Z,R
‖Z − X	AR‖2F (29)

s.t. R	R = Ic. (30)

where Z ∈ {±1}n×c is the matrix of n binary codes and R is
an orthonormal matrix of size c × c. A local optimum can
readily be obtained by alternating minimization between Z
and R [4], [25], after which the projection can be refined as
A ← AR. Note that this new projection does not change the
optimality of the relaxed problem Eqs. (10), (11).

Observation 2. The objective value of Eq. (10) does not
change as a result of the transformation into A with an ar-
bitrary orthonormal matrix R.

Since R	R = RR	 = Ic, by substituting A = AR for Eq. (10),
we get

tr((R	A	)XMX	(AR)) = tr(A	XMX	A). (31)

Therefore, we can minimize the binary quantization er-
ror by using this post-processing refinement without los-
ing the optimality with respect to geometric loss and mul-
timodal loss. After obtaining the final solution A ← AR,
we can generate c-bit codes for ∀x ∈ Fx as z = sign(A	x).
Hereafter, we refer to our method as Multimodal learning
of Geometry-preserving Linear Projections (mGLP). More-
over, we call its uni-modal learning version (Eqs. (8), (9))
Uni-modal learning of Geometry-preserving Linear Projec-
tions (uGLP). We can say that mGLP is a multimodal learn-
ing extension of uGLP which has been investigated in our
previous work [26].

3.4 Computational Complexity

Now let us analyze the computational complexity of our
method. Overall, as the following discussion shows, its bi-
nary coding time is linear with respect to dx; and its training
time scales linearly in n and quadratically in d, where we
define d := dx + dy and m := 2n.

Binary coding. Our method is based on linear projections
for binary coding in which an image feature x is encoded as
z = sign(A	x). Hence, the time and space complexity for
encoding is O(cdx) which is constant with respect to n and
linear in dx.

Training. The training stage consists of three steps: ex-
tracting linear reconstruction weights W for the two fea-
ture spaces by solving the locally linear sparse coding
problem Eqs. (3), (4), optimizing the projection by solv-
ing Eqs. (27), (28), and refining the projections through the
post-processing to minimize the quantization errors by solv-
ing Eqs. (29), (30). Solving the locally linear sparse coding
takes on average O(t3 + |N(x)|) by using a homotopy al-
gorithm [23], where t is the number of non-zeros of wi in
Eq. (3) (t 
 d) and |N(x)| is the number of the candidate
Euclidean neighbor points. An exhaustive Euclidean search
typically takes O(n) to collect the candidateN(x). However,
we do not need the exact Euclidean neighbors, because the
sparse coding itself has the ability to select only desirable
points from N(x) (see Sect. 3.1); hence, N(x) can be col-
lected using arbitrary approximate nearest neighbor search
methods such as locality sensitive hashing (LSH) [27] in
sub-linear time in n†. Moreover, this step can readily be par-
allelized using multiple CPUs or cores. Second, we solve
Eqs. (10), (11) and Eqs. (29), (30). Note that M is very
sparse and there are only t × t non-zero entries on average
(t 
 d). Therefore, XMX	 and XX	 can be computed in
O((d2+ t2)m). Moreover, the sparse eigenproblem can be ef-
ficiently solved by, for example, using the Lanczos method
in O(cdt) time [28]. Lastly, refining the initial projections A
by Eqs. (29), (30) takes O(mcd + c2) time which is also lin-
ear in m. To this end, the total time required for training is
O((d2 + cd + t2)m+ cdt + c2) ∼ O((d2 + cd + t2)n+ cdt + c2)
which is linear in n and quadratic in d. The space complex-
ity is O((d + c + t)n + d2 + c2) which is also linear in n and
quadratic in d.

4. Experiments

We experimentally analyze the retrieval performance of
mGLP and uGLP in semantic image retrieval tasks us-
ing two popular benchmark datasets, a-Pascal [29] and
COCO [30]. mGLP and uGLP obtain different binary cod-
ing results depending on whether or not each is coupled with
post-processing for minimizing the quantization error. Thus,
we evaluate both versions in our experiments. Below, we re-
fer to the versions with the quantization error minimization
as mGLP and uGLP and those without it as mGLP− and
uGLP−.

We compare our methods with several of the previ-
ous methods for unsupervised binary coding including uni-
modal (ITQ [4] and SH [5]) and cross-modal ones (CCA [4],

†Typically, a few hundred Euclidean neighbor points collected
with short LSH codes (say 16 bits) were enough in our experi-
ments. There was no significant difference in retrieval quality from
that of an exhaustive linear search.
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Fig. 1 Retrieval performance on a-Pascal. Comparison with existing methods. (a) Precision of top 10
retrieved images vs. number of bits; Precision vs. number of retrieved images for (b) 64-, (c) 48-, and
(d) 24-bit codes.

CCA-ITQ [4] and CVH [18]). To run these methods, we use
the Matlab code provided by the authors of each method.
Their parameters (if they have any) are tuned using a grid-
search. Specifically, k for the k-nearest neighbor graphs
used in CVH is set as the best one from {2, 3, 5, 10, 20}. For
mGLP, λ is chosen from [0, 1] and η is the best from [0, 3].

We follow the common evaluation protocol used in the
previous studies [4], [5]. We split each dataset into database
and query sets. The database set is used to train binary codes
for up to 64-bit codes and construct the database against
which the queries are performed. We evaluate Hamming
ranking performance; i.e., the retrieved images are sorted
according to their Hamming distances to the query. This
procedure is exhaustive but fast enough in practice [4]. Fol-
lowing [4], we measure the performance in terms of the pre-
cision of the top ranked images (averaged over the query
set). The precision is measured using the semantic labels;
i.e., we judge the retrieval to be successful if and only if the
label of the retrieved item is the same as that of the query.

4.1 Datasets

We use the following benchmark datasets.

a-Pascal† [29]: a-Pascal contains 12, 695 images in the 20
object categories defined in the Pascal VOC 2008 challenge
(e.g., people, dog, and car). Following [29], we use multi-
ple low-level features as our image feature; we first extract
texture, HOG, edge, and color descriptors, which result in a
9751-dimensional vector, and reduce the dimensionality of
the vector to 512 by using PCA. Each image is also asso-
ciated with 64-dimensional binary attributes, each of which
indicates a part or some semantic property of an object (e.g.,
leg, wing, and 2D-boxy). We use these binary attributes as
our text features. We randomly sample 500 images for the
query set and use the rest for the database set.

COCO†† [30]. Microsoft COCO v2014.1 is a large-scale
image dataset that contains 123,558 images in 80 categories
of objects. Each image is associated with five short sen-
tences describing its content. In our experiments, we keep
only the first sentence for each image. Our image feature is

†http://vision.cs.uiuc.edu/attributes/
††http://mscoco.org/

extracted by using the Caffe implementation††† of a convo-
lutional neural network (CNN) called AlexNet [31]. Specifi-
cally, we extract 4, 096-dimensional activation features from
its fc6 layer, then reduce their dimension to 128 by PCA, as
is done in [32]. For the text feature, we use 300-dimensional
skip-gram word vectors [33] learned by word2vec†††† and
compute the mean vector of the word vectors of the words
appearing in each text description. We randomly sample
1, 000 images for the query and use the rest to construct
the training and database sets. In the dataset, each image
is allowed to have multiple labels, therefore, we judge the
retrieval is successful if a query and a retrieved image share
at least one common label.

4.2 Results

Results on a-Pascal. Figure 1 compares the results of our
approaches (mGLP, mGLP−, uGLP, and uGLP−) with the
other methods (ITQ, SH, CCA, CCA-ITQ, and CVH). Fig-
ure 1 (a) gives the precision of the top 10 retrieved images
for various code lengths, and Fig. 1 (b-d) plot the precisions
for different numbers of retrieved images. We can make
several observations about the results. First, mGLP is al-
ways superior to the other methods on this dataset. The gain
of mGLP relative to the second best method, CCA-ITQ, is
40.7% for 64-bit codes. Second, some methods that learn
binary codes using multimodal information sources, such as
CCA, CCA-ITQ, CVH, mGLP and mGLP−, tend to yield
better retrieval performance compared with the uni-modal
learning approaches like ITQ, SH, uGLP and uGLP−. This
clearly indicates that multimodal learning is important for
improving binary codes for semantic image retrieval. Third,
mGLP− is consistently better than CCA and CVH. This
highlights how effective our formulation, Eqs. (14)–(16),
is compared with these approaches. In contrast, mGLP−
is slightly worse than CCA-ITQ. However, this difference
mainly comes from the quantization error minimization in
CCA-ITQ, which is vital to improving binary codes, espe-
cially for learning relatively longer codes [4]. As mentioned
above, once it is coupled with the quantization error mini-
mization, i.e., mGLP, its retrieval performance becomes su-

†††http://caffe.berkeleyvision.org/
††††https://code.google.com/p/word2vec/
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Fig. 2 Retrieval performance on COCO. Comparison with existing methods. (a) Precision of top 10
retrieved images vs. number of bits; Precision vs. number of retrieved images for (b) 64-, (c) 48-, and
(d) 24-bit codes.

perior to CCA-ITQ. Lastly, uGLP− is always competitive
to or better than the existing uni-modal learning methods
such as ITQ and SH. This suggests that capturing the intrin-
sic structures of the data is essential for improving semantic
image retrieval accuracies, and our geometric loss function
is designed to achieve this goal.

Results on COCO. Figure 2 shows the results for COCO.
Figure 2 (a) shows the precision of top 10 retrieved images
for different code lengths, and Fig. 2 (b-d) show the pre-
cision for different numbers of retrieved images. Again,
mGLP consistently performs better than the other methods.
The gain of mGLP to the second best method, CCA-ITQ, is
around 5.9% for 48-bit codes. Some of the other tendencies
are similar to the a-Pascal case; mGLP is consistently better
than CCA and CVH, and its performance is further boosted
when it is coupled with the quantization error minimization.
These results highlight the effectiveness of our formulation
and the quantization error minimization. Comparing the re-
sults on a-Pascal, we can see that the differences between the
uni-modal learning methods (ITQ, SH, uGLP, and uGLP−)
and the other methods which use multimodal information
sources (CCA, CCA-ITQ, CVH, mGLP, and mGLP−) are
not so large. This may be because the image feature used in
this dataset, the off-the-shelf CNN activation, is much more
consistent with the semantic labels of the images [34], [35]
than the hand-crafted features used in a-Pascal; hence, the
binary codes learned by the uni-modal learning methods are
already correlated to the semantic information of the im-
ages. Furthermore, our mGLP is always competitive with or
better than the existing methods. This result emphasizes the
consistency of our geometric loss function with the image
semantics; our formulation preserves the semantics in the
binary codes.

Impact of individual components. Now let us examine the
impact of each component of mGLP on the retrieval per-
formance. The main components of mGLP can be sum-
marized as follows: (i) Sparse coding: our method learns
the intrinsic data structures W used in the geometric loss
function by using locally linear sparse coding (Eqs. (3),
(4)), instead of a least-squares approach as in NPE [24];
(ii) Multimodal learning: our model considers not only the
geometric loss but also multimodal loss to learn the projec-
tion A by solving a joint minimization problem (Eqs. (14)–

Fig. 3 Evaluation of main components. Precision of top 10 retrieved
images vs. number of bits on (a) a-Pascal and (b) COCO.

(16); (iii) Projection refinement: our method refines the
initial A by solving Eqs. (29), (30) to minimize the quan-
tization errors. We remove each of these components
one-by-one from the full mGLP configuration and evalu-
ate the resulting retrieval performance. The experiment
compare the following four variants of mGLP: (1) mGLP:
the full configuration; (2) mGLP-P: mGLP without the
post-processing projection refinement, which is equivalent
to mGLP−; (3) mGLP-P-M: mGLP-P without multimodal
learning, which reduces to uGLP−; and (4) mGLP-P-M-
S: mGLP-P-M without sparse coding. This can be done
by taking the signs of real-valued vectors obtained by NPE.
The results, shown in Fig. 3, indicate that mGLP clearly out-
performs the other methods on both datasets; and that per-
formance gradually decreases as components are removed.
These results illustrate the importance of all of the compo-
nents for learning semantic binary codes.

Parameter studies. Our mGLP formulation has three pa-
rameters, τ, λ, and η (see Eq. (3) and Eq. (14). In Fig. 4, we
analyze their impact on the retrieval performance. For com-
parison, we also show the results of CCA-ITQ which yields
the best performance among the existing methods. One can
see that the results are somewhat sensitive to these param-
eters, and fine tuning may improve the performance. How-
ever, these are better than CCA-ITQ for wide range of the
parameter values. As for η, we examine the wide range of
its value {1, 3, 5, 10, 50}. The precision value increases up
to η = 5 and then slowly decreases as it becomes much
larger. This indicates that multimodal learning is effective
for improving semantic retrieval performance as long as it is
well-balanced with the other two geometric loss terms, i.e.,
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Fig. 4 Parameter sensitivities of mGLP. Results on COCO. Precision of top 10 retrieved images vs.
number of bits.

Fig. 5 Impact of the number of training data. Precision of top 10 re-
trieved images vs. number of bits on (a) a-Pascal and (b) COCO.

setting too large values for η may corrupt the meaningful
geometric distributions of features, resulting in undesirable
performance. Although the optimal value is around η = 5 in
this setup, generally it may depend on how much the origi-
nal image and text features are correlated with their semantic
labels; hence, fine-tuning may improve performance.

Impact of the number of training data. The impact of
the number of training data on the retrieval performance is
analyzed by reducing the data (1/1) to 1/2 and 1/4 of its
original size. CCA-ITQ is evaluated in the same setting for
comparison. The results, shown in Fig. 5, indicate that the
performance improved as the training data increases, which
is natural behavior. mGLP performs better than CCA-ITQ,
even with fewer number of the training data. For example,
the results of mGLP with only 1/4 the training data are com-
parable to or better than those of CCA-ITQ with the full
datasets.

Processing time. We recorded the empirical time taken for
training and binary coding of the methods. All the results are
obtained using MATLAB codes on a workstation equipped
with a 2.6 GHz Intel Xeon CPU. The results for COCO are
reported in Table 1. mGLP and uGLP take slightly longer
to train than the other methods. However, the training takes
only a few minutes, not much of a big problem in practice.
Comparing mGLP with uGLP, one sees that mGLP is slower
than uGLP because of the sparse coding used to train W.
This process can be accelerated by using parallel computing
on multiple CPUs or cores. As for the binary coding time,
except for SH, which uses non-linear functions for coding,
all of the compared methods are fast, as they are based on
linear projections.

Table 1 Processing time on COCO dataset. Training time (sec) and bi-
nary coding time (msec).

Training (sec) Binary coding (msec)

ITQ 0.41 0.01
SH 0.20 0.05
CCA 0.53 0.01
CCA-ITQ 1.02 0.01
CVH 21.22 0.01
uGLP 33.66 0.01
mGLP 76.49 0.01

5. Conclusions

We presented an unsupervised learning method for fea-
ture binary coding which we call Multimodal learning of
Geometry-preserving Projections (mGLP). We introduced a
geometric loss function that can preserve the intrinsic struc-
tures of the data captured by sparse coding in binary codes.
We considered a multimodal loss function that measures the
distances between multimodal data pairs in the Hamming
space and formulated a unified joint minimization problem
of the geometric loss and multimodal loss in order to learn
the binary codes. We showed that this problem can readily
be transformed into a simple generalized eigenproblem and
solved efficiently. By conducting an extensive set of exper-
iments on two public datasets, we experimentally clarified
the key properties of mGLP and demonstrated its superior-
ity over several existing methods.
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