
IEICE TRANS. INF. & SYST., VOL.E99–D, NO.7 JULY 2016
1937

LETTER

A Conditional Dependency Based Probabilistic Model Building
Grammatical Evolution

Hyun-Tae KIM†, Hyun-Kyu KANG††, Nonmembers, and Chang Wook AHN†a), Member

SUMMARY In this paper, a new approach to grammatical evolution is
presented. The aim is to generate complete programs using probabilistic
modeling and sampling of (probability) distribution of given grammars. To
be exact, probabilistic context free grammars are employed and a modified
mapping process is developed to create new individuals from the distribu-
tion of grammars. To consider problem structures in the individual gener-
ation, conditional dependencies between production rules are incorporated
into the mapping process. Experiments confirm that the proposed algorithm
is more effective than existing methods.
key words: grammatical evolution, probabilistic modeling, context-free
grammars, automatic program generation

1. Introduction

Evolutionary algorithms (EAs) employ the Darwinian prin-
ciple of evolution for solving optimization problems. In
order to discover the optimal solutions(s), they perform a
population-based search by repetitively applying genetic op-
erators (i.e., selection and recombination) to candidate solu-
tions (i.e., population). So far, EAs have achieved much
success in diverse areas, such as automatic programming.
Of particular interest, grammatical evolution (GE) is an EA-
based alternative to automatic programming methodologies.
GE employs a population of linear genotypic integer strings,
which are transformed into functional phenotypic programs
by a genotype-to-phenotype mapping process. This process
is influenced by context-free grammars (CFGs) that can con-
tain domain knowledge to bias the form of possible pheno-
typic solutions. The grammars also implicitly provide a sort
of instruction to generate program codes that are syntacti-
cally valid [1]–[3].

In EAs, the recombination of candidate solutions is
very important since the operation is highly related to the
preservation of partial information (called building blocks)
of the optimal solution(s). In this respect, GE also applies
crossover and mutation to the genotypic strings in the evo-
lution process. However, existing methods often lose infor-
mation when propagating the building blocks due to their
random exchange of the contents of genotype. For this rea-
son, estimation of distribution algorithm (EDA) has been

Manuscript received January 7, 2016.
Manuscript revised March 30, 2016.
Manuscript publicized April 11, 2016.
†The authors are with Department of Computer Engineering,

Sungkyunkwan University, Suwon 16419, Republic of Korea.
††The author is with Department of Computer Engineering,

Konkuk University, Chungju 27478, Republic of Korea.
a) E-mail: cwan@skku.edu (Corresponding author)

DOI: 10.1587/transinf.2016EDL8004

proposed as a promising solution to realize the conserva-
tion of building blocks. EDA is a stochastic optimization
technique that implements search mechanisms by building
and sampling a probabilistic model of promising candidate
solutions. It denotes that EDA can preserve the building
blocks efficiently due to its ability to handle the distribu-
tion of population, rather than a tricky manipulation [4]. In
this sense, probabilistic model building grammar evolution
(PMBGE) has received a great attention of late, which is a
variant of GE aimed to generate program codes by means of
the distribution of given grammars [3]. In contrast with the
conventional GE, PMBGE exploits EDA mechanisms as a
search engine.

This paper presents a new approach to GE in conjunc-
tion with probabilistic models. To this end, probabilistic
context-free grammars (PCFGs) are employed and the con-
ditional dependencies between production rules are consid-
ered. Along with the distribution of production rules of the
given grammars, the proposed approach can effectively dis-
cover an appropriate probabilistic model on the target prob-
lem.

2. Proposed Approach

In general, the context-free grammar (called BNF grammar)
consists of a set of symbols: non-terminals and terminals.
The non-terminals that do not appear in the program codes
are replaced with other symbols. On the other hand, the
terminals are visible from the outcomes of the mapping pro-
cess; thus, variables or operators are represented as terminal
symbols. Figure 1 depicts an example of context-free gram-
mar and mapping process in the conventional GE. In this
example, the grammar has three production rules on how a
non-terminal is replaced with other symbols (called RHS).

Fig. 1 An example of CFG and mapping process in GE

Copyright c⃝ 2016 The Institute of Electronics, Information and Communication Engineers



1938
IEICE TRANS. INF. & SYST., VOL.E99–D, NO.7 JULY 2016

Algorithm 1 Conditional Dependency based PMBGE
Require: population size N, grammar G, probabilistic modelMG

1: Randomly generate a population of size N, P← mapping(MG)
2: while ‘Termination condition is not satisfied’ do
3: Evaluate fitness values of population P
4: Choose N/2 promising individuals (PS) by tournament selection
5: Estimate a distribution of PS considering conditional dependencies
6: Update the probabilistic model (MG) on production rules in G
7: Create N/2 offspring, PO ← mapping(MG)
8: Replace the population, P← PS ∪ PO
9: end while

Moreover, GE employs integer strings as genotypic repre-
sentation and each integer value (called codon) can have a
decimal value in the range of [0, 255]. Then GE performs
the mapping process on the given integer string by means of
the modulo operation, by which a non-terminal is replaced
with an alternative. In other words, GE takes the remainder
that a codon is dived by the number in RHS. This process
is repeated from the leftmost non-terminal symbol until the
phenotype contains no non-terminal. Furthermore, there are
two exceptions that may occur in this process. In this ex-
ample, GE makes use of six integer codons to generate the
phenotype and then the remaining part is discarded. If there
are no codons left to read, GE reuses the given genotype;
the given integer string is read again from the leftmost sym-
bol (called wrapping). Note that GE assigns the worst pos-
sible fitness value when the mapping process exceeds the
pre-defined number of wrapping.

In Fig. 1, let us assume that we have a target function
of X ∗ X. It is clear that GE has to choose promising options
in Steps 6 and 7 (i.e., operator ∗ and variable X). How-
ever, it is hard to guarantee a proper rule selection in GE
because of the nature of mapping process, which uses the
modulo function to choose an RHS. In other words, all the
symbols have an equal chance to be chosen and this charac-
teristic causes to spend more codons. In other words, it can
be beneficial to search for the optimal solution(s) if different
but proper chances are given to RHSs and their conditional
dependencies are further considered. Note that the overall
procedures of the proposed conditional dependency based
PMBGE (cdPMBGE) are described in Algorithm 1.

2.1 PCFG and Mapping Process

We employ real-coded codons to deal with PCFG since the
production rules have their own probabilities related to the
selection of RHS in the mapping process. Each codon also
has a real number in the range of [0, 1]. In the initial stage,
the probability value of each RHS is identical at every non-
terminal. The proposed algorithm then changes the proba-
bility values by means of the estimation of distribution of
the given grammars. In other words, the mapping process
is performed on the basis of the probabilities of produc-
tion rules. To be exact, the given codons are read from
the leftmost one and the values of codons (i.e., probabili-
ties of RHSs) are used to determine the selection of produc-
tion rules. Then the remaining part of genotype is discarded

Fig. 2 An example of PCFG and mapping process

when the mapping process is completed before reaching the
end of codons. Moreover, the conventional wrapping opera-
tion is modified in such a manner that necessary codons are
randomly regenerated rather than the reuse of codons; this
feature is beneficial to maintain the diversity of population.
Figure 2 shows an example of PCFG and mapping process,
which will be used for the royal tree problem in Sect. 3.

2.2 Estimation of Distribution of Grammars

The proposed algorithm generates a complete program by
means of the probabilistic modeling of the given PCFG; the
given grammar set is evolved towards a suitable distribution
on its production rules. Firstly, the algorithm starts with an
initial (probabilistic) model of PCFG; an equal probability is
assigned to all replacement symbols for each non-terminal.
Then the mapping process is performed to transform real-
coded strings into program codes. After that, the algorithm
evaluates the population (i.e., phenotypes) that is generated
by the mapping process. Each individual has its own fit-
ness value that is computed by the given fitness function
(called objective function) and the value indicates how an
individual is close to the optimal solution. After choosing
promising individuals by selection operator, the distribution
of grammars is estimated by counting the number of occur-
rences of each production rule in the selected individuals.
In addition, conditional dependencies between production
rules are considered to incorporate the knowledge of prob-
lem structure into the individual (i.e., program) generation.
As a result, the probabilistic model is utilized to properly
choose production rules in the mapping process.

In the estimation process, a tree structure (called Con-
ditional Dependency Tree: CDT) is employed, by which
mutual relationships between production rules are repre-
sented. Meanwhile, the tree structure can also deal with
production rules that have no dependency with respect to an-
other non-terminal. Figure 3 depicts an example of CDT on
the grammar set in Fig. 2. Note that the nodes (TreeA, TreeB,
and TreeC) indicate the RHSs of non-terminal <intnode>.
In addition, RHS12 and RHS23 represent the second RHS
of the first non-terminal and the third RHS of the second
non-terminal, respectively. For instance, a non-terminal
<intnode> can be replaced with three alternatives (children
nodes), as shown in Fig. 3(a). Then the algorithm assigns a
new (updated) probability value to each RHS, as follows:



LETTER
1939

Fig. 3 An example of conditional dependency tree

Prob.(RHS i j) =
f req(RHS i j)∑N

i=1 f req(RHS i)
(1)

where RHS i j is the jth RHS of the ith non-terminal,
f req(RHS i j) is the number of occurrences of RHS i j, N is
the number of production rules of the ith non-terminal, and
f req(RHS i) denotes the frequency of all instances of the ith
non-terminal in the mapping process.

Furthermore, the non-terminal <tree> has two child
RHSs and three parent nodes (see Fig. 3(b)). It denotes that
the mapping of that symbol <tree> is influenced by the par-
ent rule. In this sense, three different probabilities exist at
the second RHS (i.e., <intnode>) where the non-terminal
<tree> comes from. Thus, a different but more promising
probability can be assigned to each RHS in accordance with
its parent rule.

2.3 Program Generation from Estimated Distribution

In this work, EDA mechanisms are utilized as a search en-
gine; conventional operators such as crossover and mutation
are replaced with the sampling of the estimated distribution.
It is important to update the probabilities of production rules
(i.e., building a probabilistic model) since a set of offspring
(i.e., new individuals) is generated by sampling the distri-
bution. In the proposed approach, this process is performed
by the mapping process along with the updated probability
distribution in conjunction with the (discovered) conditional
dependency tree. Finally, the replacement operation is car-
ried out at the end of generation.

3. Experimental Results

In order to prove the effectiveness of our approach, the pro-
posed algorithm was compared with three existing meth-
ods; conventional GE (CGE) [1], multi-chromosomal GE
(MCGE) [2], and univariate (probabilistic) model building
GE (UMBGE) [3]. Moreover, three benchmark problems
and one real-world problem were considered [3], [5], [6].
For all test cases, we used the population size - 1000, the
number of codons - 20, and the maximum number of wrap-
ping - 20. Apart from these parameters, the pair-wise tour-
nament selection and the elitist replacement were employed,
and 105 evaluations were taken as the termination condition.
Only for CGE and MCGE, the probabilities of crossover and
mutation were set to 0.9 and 0.1, respectively.

The three benchmark problems include two easy prob-
lems (i.e., symbolic regression and even-5-parity) and one

Fig. 4 The grammar for intention recognition problem

hard problem (i.e., royal tree). First, the symbolic regres-
sion problem is to find a symbolic-form mathematical ex-
pression, which accurately represents the given set of in-
put and output values. On the target function of f (X) =
X4 + X3 + X2 + X, 20 points were chosen in the range of
[−1, 1] as input data, and the fitness value is computed by
the root mean square error of sum. Second, the even-5-
parity problem is to find a boolean expression for random
strings of 0’s and 1’s, which returns ‘true’ for the even num-
ber of ‘1’ in the five bits and ‘false’ for other cases. The
fitness value is obtained by the number of incorrect outputs
in 32 combinations of 5-bit string. Meanwhile, details on
the grammars defined for the above two problems can be
found in [3]. Third, the royal tree problem is to construct
a perfect tree at the given level, which consists of different
perfect trees at lower levels. For instance, the perfect tree
at level C has a symbol ‘C’ as a root node with three per-
fect trees at level B as children. As the fitness value, the
score on the obtained tree is computed recursively from the
root node. As mentioned earlier, the grammar set defined on
this problem has been given in Fig. 2. More details on the
scoring metric can be found in [5].

As a real-world application, an intention recognition
problem was tested. The task is to find an expression that
classifies the given brain signal data into an appropriate in-
tention pattern. we used the data set acquired in [6], which
contains 280 samples and 7 features that are comprised of
real numbers in the range of [0, 1]. More details can be
found in [6]. Moreover, the grammar set for this problem
is given in Fig. 4, in which RHSs of non-terminal <var> in-
dicate the features of data set. The fitness value is computed
by the difference between the expression output and the ac-
tual pattern.

Table 1 shows the experimental results on the three
benchmark problems. The results were average over 100
runs. For the first and second benchmark problems (i.e.,
symbolic regression and even-5-parity), the existing algo-
rithms except for CGE performed better than cdPMBGE. It
denotes that the knowledge on conditional dependency (of
production rules) is not so effective on the problems of sim-
ple structure. It is nothing to worry about because the three
algorithms (i.e., cdPMBGE, UMBGE, and MCGE) seem to
be statistically comparable with each other (when consid-
ering the standard deviations). Meanwhile, our cdPMBGE
significantly outperformed all the existing algorithms on the
royal tree problem (i.e., difficult problem). It implies that
the mutual relationship between production rules plays an
important role in discovering the optimal solutions in the
problems of complex structure. In other words, the pro-
posed algorithm is able to handle the correlation in the form



1940
IEICE TRANS. INF. & SYST., VOL.E99–D, NO.7 JULY 2016

Table 1 Experimental results for three benchmark problems: mean best
fitness, cumulative frequency of success, and standard deviation.

Symbolic regression
cdPMBGE UMBGE MCGE CGE

Mean best fit. 0.12 0.08 0.40 0.37
Cum. frequency 88 97 17 11
Std. deviation 0.09 0.07 0.12 0.14

Even-5-parity
cdPMBGE UMBGE MCGE CGE

Mean best fit. 6.30 5.03 14.54 14.07
Cum. frequency 39 81 4 11
Std. deviation 3.72 4.32 2.51 5.05

Royal Tree (Level C)
cdPMBGE UMBGE MCGE CGE

Mean best fit. 28.93 301.60 294.33 321.00
Cum. frequency 86 - - -
Std. deviation 1.86 21.95 19.92 5.13

Fig. 5 Trace of selection probabilities of non-terminal <tree> on the
royal tree problem: (a) UMBGE, (b)–(d) cdPMBGE

of conditional dependency tree by involving a specific non-
terminal in the mapping process of another non-terminal.

Figure 5 depicts the trend of selection probabilities of
the non-terminal <tree> on the royal tree problem. It is seen
that cdPMBGE dealt with each symbol individually in ac-
cordance with its parent rule, while UMBGE handles all
of the symbols by the same distribution. Meanwhile, it is
known that the conventional algorithms (i.e., MCGE and
CGE) employ the modulo operation to select an RHS; all
RHSs are handled with the same probability values. It de-
notes that our approach is beneficial to search for the perfect
tree since the selection probability of each RHS of <tree> is
adjusted in the course of evolution.

For the intention recognition problem, the experimen-
tal results are shown in Table 2. The results were averaged
over 50 runs and the Welch t-test (two-tailed) was performed
to determine statistical significance. It is observed that our
cdPMBGE outperformed CGE with regard to classification

Table 2 Experimental results for intention recognition problem: mean
average fitness, standard deviation, and classification accuracy.

cdPMBGE UMBGE MCGE CGE

Mean average fit. 6.94 7.35 7.74 8.04
Std. deviation 3.26 3.50 3.28 3.61

Classification (%) 75 74 72 71
t-test case Our vs. UMBGE Our vs. MCGE Our vs. CGE

p-value 0.051 0.044 0.004†
† It stands for statistical difference (p < 0.005).

accuracy; this was supported by the statistical test. Despite
the difference not being statistically significant, it appears
that cdPMBGE achieved a bit better performance than UM-
BGE and MCGE. This denotes that the proposed approach
can generate a more complete program (i.e., accurate classi-
fier) for the brain signal classification problem.

4. Conclusion

In this paper, a new approach to probabilistic model based
grammatical evolution that considers conditional depen-
dency of given grammars to evolve candidate solutions was
proposed. To achieve this goal, the strengths of GE and the
concept of EDA were combined together. Instead of conven-
tional genetic operators, probabilistic context-free grammar
was employed in the probabilistic modeling and sampling
process. Furthermore, the mapping process was modified
to generate a complete program on the basis of the distribu-
tion of production rules in the given grammars. Experiments
were carried out on several benchmark problems, and the in-
tention recognition from brain signal data was tackled as a
real-world problem. The experimental results demonstrated
the effectiveness of our approach on difficult and complex
problems.

Acknowledgments

This research was supported by X-Project funded by
the Ministry of Science, ICT & Future Planning (NRF-
2015R1A2A1A16074929).

References

[1] M. O’Neill and C. Ryan, “Grammatical evolution,” IEEE Trans. Evol.
Comput., vol.5, no.4, pp.349–358, 2001.

[2] A. Hara, T. Yamaguchi, T. Ichimura, and T. Takahama, “Multi-
chromosomal grammatical evolution,” Intl. Workshop on Computa-
tional Intelligence & Applications, pp.37–42, 2008.

[3] H.T. Kim and C.W. Ahn, “A new grammatical evolution based on
probabilistic context-free grammar,” Symposium on Intelligent and
Evolutionary Systems, pp.1–12, Springer, 2015.

[4] M. Hauschild and M. Pelikan, “An introduction and survey of esti-
mation of distribution algorithms,” Swarm Evol Comput, vol.1, no.3,
pp.111–128, 2011.

[5] W.F. Punch, “How effective are multiple populations in genetic pro-
gramming,” Genetic Programming, vol.98, pp.308–313, 1998.

[6] J.H. Lee, J.R. Anaraki, C.W. Ahn, and J. An, “Efficient classifica-
tion system based on fuzzy–rough feature selection and multitree ge-
netic programming for intension pattern recognition using brain sig-
nal,” Expert Syst. Appl., vol.42, no.3, pp.1644–1651, 2015.

http://dx.doi.org/10.1109/4235.942529
http://dx.doi.org/10.1109/4235.942529
http://dx.doi.org/10.1007/978-3-319-13356-0_1
http://dx.doi.org/10.1007/978-3-319-13356-0_1
http://dx.doi.org/10.1007/978-3-319-13356-0_1
http://dx.doi.org/10.1016/j.swevo.2011.08.003
http://dx.doi.org/10.1016/j.swevo.2011.08.003
http://dx.doi.org/10.1016/j.swevo.2011.08.003
http://dx.doi.org/10.1016/j.eswa.2014.09.048
http://dx.doi.org/10.1016/j.eswa.2014.09.048
http://dx.doi.org/10.1016/j.eswa.2014.09.048
http://dx.doi.org/10.1016/j.eswa.2014.09.048

