
1384
IEICE TRANS. INF. & SYST., VOL.E99–D, NO.5 MAY 2016

LETTER

Parity Data De-Duplication in All Flash Array-Based OpenStack
Cloud Block Storage∗

Huiseong HEO†a), Member, Cheongjin AHN†b), and Deok-Hwan KIM†c), Nonmembers

SUMMARY In recent years, the need to build solid state drive (SSD)-
based cloud storage systems has been increasing in order to process the
big data generated by lots of Internet of Things devices and Internet users.
Because these kinds of cloud systems require high performance and reli-
able storage, the use of flash-based Redundant Array of Independent Disks
(RAID) will increase. But in flash-based RAID storage, parity data must
be updated with every data write operation, which can more quickly over-
whelm SSD’s lifespan. To solve this problem, this letter proposes parity
data deduplication for OpenStack cloud storage systems using an all flash
array. Unlike the traditional data deduplication method, it only removes
parity data, which will be stored in the parity disks of the all flash array.
Experiments show that the proposed parity data deduplication method can
efficiently reduce the number of parity data write operations, compared to
the traditional data deduplication method.
key words: parity data deduplication, RAID, OpenStack, cloud storage,
solid state drives

1. Introduction

Recently, in order to store and process big data generated
from lots of Internet of Things devices and Internet users,
the need to build cloud storage with high-performance com-
puting power has been increasing [1]. One way to enhance
I/O performance and reliability of the storage system is
with Redundant Array of Independent Disks (RAID) [2].
To build high-performance cloud storage, NAND flash
memory-based solid state drives (SSDs) are mainly used [3].
An SSD can handle data much faster than a hard disk drive
(HDD), although it incurs greater cost per unit of capacity
than an HDD and can not be used when it reaches its pro-
gram/erase (P/E) cycle limit [4]. These problems may de-
teriorate both I/O performance and the reliability of SSD
RAID-based cloud storage systems, and if there are many
small write operations in SSD-based RAID, data and par-
ity must be updated continuously, the SSDs will wear out
more quickly. To solve this problem and so increase SSD
lipespan, we can employ data deduplication, which reduces
the number of write operations by eliminating duplicated
data. But when we apply data deduplication to the entire
RAID disk, we must make fingerprints of all input data. This

Manuscript received January 8, 2016.
Manuscript publicized February 2, 2016.
†The authors are with the Department of Electronic Engineer-

ing, Inha University, Korea.
∗This study was supported in part by Inha University Research

Grant.
a) E-mail: hhs89@iesl.inha.ac.kr
b) E-mail: acj88@iesl.inha.ac.kr
c) E-mail: deokhwan@inha.ac.kr (Corresponding author)

DOI: 10.1587/transinf.2016EDL8006

causes high CPU overhead and requires greater DRAM ca-
pacity for hash tables.

In this letter, we propose a new parity data dedupli-
cation process for OpenStack cloud block storage, Cinder,
which is composed of an all flash array. We show that the
proposed method can efficiently reduce the number of par-
ity data write operations and DRAM usage for hash tables
better than the existing alternative.

2. Background Knowledge

2.1 OpenStack Cloud Block Storage

OpenStack is composed of Nova, Glance, Swift, Cinder and
some other components [5]. To provide cloud services, these
components interact with each other through the manage-
ment network. Figure 1 shows OpenStack framework. In
this figure, Nova can determine which host will launch the
virtual machine, and then the selected host creates a virtual
machine. After that, Nova processes computing tasks for
virtualized resources like a CPU, DRAM and storage.

Cinder, which provides block storage services, com-
bines many disks into a volume group by means of logical
volume manager (LVM) and then uses it as a large block
disk. If a virtual machine needs additional block storage, a
cloud manager can assign it to the virtual machine by using
Cinder.

2.2 Data Deduplication

Data deduplication methods generate a hash value for ev-
ery input chunk and try to find the same hash value in the

Fig. 1 OpenStack framework

Copyright c© 2016 The Institute of Electronics, Information and Communication Engineers



LETTER
1385

hash table. If the same hash value is found in the table, re-
dundant copies of the chunk are replaced with a reference
to a single copy to save disk space. This data deduplica-
tion method can be classified as inline data deduplication
or post-process data deduplication according to the period
when deduplication happens [6]. For all flash array storage
systems, an inline data deduplication method can be used to
reduce wear-out by decreasing the number of write opera-
tions.

3. Parity Data Deduplication in All Flash Array Based
Cloud Storage

In this letter, we propose a new parity data deduplication
method in OpenStack cloud block storage using an all flash
array.

3.1 Parity Data Deduplication

When write operations are generated in a RAID disk, data
is saved to data disks and then parity is stored in the parity
disk. Parity data are generated as a result of read-modify-
write operations because parity data should be updated for
every small data write operation, and the parity disk can be
a bottleneck in RAID storage.

Existing RAID uses distributed parity, as shown in
Fig. 2. It prevents RAID from converging intensive write
operations into two parity disks due to continuous parity up-
dates [7]. To reduce the number of write operations into
disk, data deduplication can be applied. But in existing
RAID, each disk saves data and parity data together, so
data deduplication should be applied to all RAID disks. In
this case, the data deduplication technique needs to process
a number of CPU operations for hashing and also needs
greater DRAM space to keep the hash table. Furthermore,
it requires CPU and DRAM resources in proportion to the
number of disk. So, these problems especially stand out in
a cloud system because a cloud system should have a large
storage cluster to provide the storage users might request.

So, to efficiently reduce the number of write operations
to RAID storage, we suggest a new parity data deduplication
method.

Table 1 and Fig. 3 show the pseudo-code of the parity
data deduplication algorithm and the parity data deduplica-
tion scheme, respectively. In Table 1, Generate parity() is
the function that generates parity data using Reed Solomon

Fig. 2 RAID-6 Storage using distributed parity

code, even-odd code, etc. And Generate hash value() is the
function that generates a hash value using SHA-1, MD5, etc.

Because intensive parity data writing can cause a bot-
tleneck for an all flash array disk, we need to remove the
duplicated parity data by using inline deduplication. When
we apply the proposed parity data deduplication to an all
flash array, it can efficiently reduce hashing overhead and
DRAM usage, in comparison with the existing data dedu-
plication because it only calculates a hashkey for parity data
that may cause a bottleneck, not for the overall RAID stor-
age. In addition, by minimizing the size of the parity chunk
for hashing, rather than the RAID chunk size, it is possible
to minimize parity data that is actually stored in the par-

Table 1 Pseudo-code of the parity data deduplication algorithm

Fig. 3 Parity data deduplication scheme



1386
IEICE TRANS. INF. & SYST., VOL.E99–D, NO.5 MAY 2016

Fig. 4 Parity data deduplication in cloud block storage

ity disk in cases where it is rarely changed. And the pro-
posed method does not decrease reliability of all flash array
disk. Although our proposed deduplication scheme removes
duplicated parity chunks, it creates small reference pointers
pointing original chunks (e.g., P1, P2, . . . , P7 in Fig. 3) and
in case of one or two disk failure, these pointers help the
storage system recover data by referring the original chunks.

3.2 Parity Data Deduplication in Cloud Block Storage

OpenStack Cinder provides virtualized block storage to the
virtual machine generated by OpenStack Nova. When we
apply the proposed parity data deduplication to the Open-
Stack block storage system, we can reduce the number of
write operations for the parity disk, and this may help to
increase the lifespan of an all flash array.

Figure 4 illustrates an OpenStack cloud block stor-
age system applying the proposed parity data deduplication.
When there are write operations to an all flash array, only
parity data will be removed by deduplication.

4. Experimental Result

4.1 Experimental Environment

In this letter, we assigned a total of six virtualized SSDs
from a block storage node to the virtual machine and sim-
ulated a RAID-6 disk using Jerasure code software [8]. For
detailed experiments, we used Samsung 840 PRO 128GB
SSDs, and the OpenStack Juno version to build the cloud
storage service, and the hypervisor kernel-based virtual ma-
chine (KVM) to virtualize servers, networks and storage.
Table 2 shows the specifications for two nodes of nova and
cinder, the virtual machine generated in Nova. We repeated
five times for measurement, but only show the average of
the results.

We compared write performance, the number of write
operations, decoding time and DRAM usage results of the
proposed method with those of the traditional RAID-6 and
of traditional RAID-6 using data deduplication. In all cases,
Reed Solomon code and SPC were used for RAID-6 par-
ity computation. As a workload for the experiment, a com-
pressed 2.19GB tar file comprising of Linux kernel version
2.6.0∼2.6.39 files was downloaded from a web site [9] and
executed. The chunk size for the hashkey was set to 4KB.

Table 2 Experimental environment

Fig. 5 Write performance

Fig. 6 The number of write operations to the parity disk

4.2 Experimental Result and Discussion

Figure 5 shows the write performance of the traditional
RAID-6, traditional RAID-6 using data deduplication and
the proposed parity data deduplication. For each experi-
ment, the RAID chunk size is set to 32KB and 1024KB.

Figure 6 shows the results for the number of write op-
erations for the three cases. Compared to RAID-6, RAID-6
using data deduplication shows 75% and 89% of the write
performance when the chunk size is 32KB and 1024KB, re-
spectively. But the proposed parity deduplication method
shows 95% and 96% of the write performance in the same
environment. This is because the traditional RAID-6 using
data deduplication must process more hash operations than
the proposed method.

In terms of the number of write operations to the parity



LETTER
1387

Fig. 7 DRAM usage for hash table

Fig. 8 Data recovery time

disk, for the same chunk sizes, RAID-6 using data dedupli-
cation shows 8% and 13% fewer write operations, respec-
tively, than RAID-6, whereas the proposed method shows
22% and 19% fewer write operations than RAID-6. That is
because the proposed method only removes duplicated par-
ity chunks that are frequently updated, whereas traditional
RAID-6 using data deduplication saves data and parity data
over many disks, which decreases the efficiency of dedupli-
cation per disk.

Figure 7 shows DRAM usage for hash tables and Fig. 8
shows decoding time for restoring data.

In the proposed method, DRAM usage for hash tables
are 72% and 69% less than RAID-6 using data deduplica-
tion. This is because the proposed method only keeps hash
values for parity chunks in the hash table, but the traditional
method keeps hash values of all input data chunks and par-
ity chunks. We found that RAID-6 using data deduplication
uses DRAM capacity as much as 3.5% of the workload size,
whereas the proposed method uses 1% of the workload size.

In Fig. 8, traditional RAID-6 consumes the smallest de-
coding time in all cases. The result shows that in case of

1 disk failure, RAID-6 using data deduplication spent 10%
and 8% more time than RAID-6, respectively. While the
proposed method spent 13%, 16% more time than existing
RAID-6. And in case of two disks failure, RAID-6 using
data deduplication spent 4% and 5% more time than RAID-
6, respectively. Whereas the proposed method spent 7%,
11% more time than traditional RAID-6.

The reason for the gap between RAID-6 and the pro-
posed method is because the number of chunks that should
be referred in the case of parity deduplication is increased.
Because the proposed parity data deduplication removes
more chunks than RAID-6 using data deduplication, it needs
more time to refer the original chunks. But surely, we could
recover all original data without any loss.

5. Conclusion

In this letter, we proposed a novel parity data deduplica-
tion method for cloud block storage systems. The pro-
posed method can efficiently reduce the number of write
operations, requiring less DRAM usage than the traditional
method, and also minimizes deterioration of write perfor-
mance by reducing the number of hash operations. Our
experiments showed that the proposed method reduces the
number of parity data write operations by 22% and 19%
than RAID-6, in case for 32KB and 1024KB chunk sizes,
respectively.

References

[1] J. Wu, L. Ping, X. Ge, Y. Wang, and J. Fu, “Cloud Storage as the In-
frastructure of Cloud Computing,” 2010 International Conference on
Intelligent Computing and Cognitive Informatics, pp.380–383, 2010.

[2] P.M. Chen, E.K. Lee, G.A. Gibson, R.H. Katz, and D.A. Patterson,
“RAID: High-performance, reliable secondary storage,” ACM Com-
puting Surveys(CSUR), vol.26, no.2, pp.145–185, June 1994.

[3] M. Pirahandeh and D.-H. Kim, “Energy-aware erasure codes using
XOR Reference Matrix for SSD based RAID systems,” 2014 Interna-
tional Conference on Big Data and Smart Computing (BIGCOMP),
pp.121–122, Bangkok, 2014.

[4] N. Agrawal et al., “Design tradeoffs for SSD performance,” USENIX
Annual Technical Conference, pp.57–70, 2008.

[5] “OpenStack,” http://www.openstack.org/
[6] Q. He, Z. Li, and X. Zhang, “Data deduplication techniques,” 2010 In-

ternational Conference on Future Information Technology and Man-
agement Engineering, pp.430–433, Oct. 2010.

[7] A. Merchant and P.S. Yu, “Analytic modeling of clustered RAID with
mapping based on nearly random permutation,” IEEE Trans. Comput.,
vol.45, no.3, pp.367–373, March 1996.

[8] J.S. Plank, S. Simmerman, and C.D. Schuman, “Jerasure: A library
in C/C++ facilitating erasure coding for storage applications-Version
1.2,” Technical Report CS-08-627, University of Tennessee,
Knoxville, USA, Aug. 2008.

[9] “The Linux Kernel Archives,” https://www.kernel.org/


