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Tardy Flow Scheduling in Data Center Networks

Gyuyeong KIM†, Nonmember and Wonjun LEE†a), Member

SUMMARY Query response times are critical for cluster computing
applications in data centers. In this letter, we argue that to optimize the
network performance, we should consider the latency of the flows suffered
loss, which are called tardy flows. We propose two tardy flow scheduling
algorithms and show that our work offers significant performance gains
through performance analysis and simulations.
key words: compute clusters, data center networks, flow completion time,
flow scheduling

1. Introduction

Data centers are burgeoned owing to the migration of inter-
active cluster computing applications having a penchant for
low latency (e.g. big data analytics frameworks) [1]. These
applications follow a workflow that parallelizes a requested
user query into multiple task flows. The query cannot be
completed until all flows have finished, so the flow com-
pletion time (FCT) of the slowest flow is crucial to query
response times.

For the low FCT, precursors decrease the queueing de-
lay by dispersing network traffic [2] and reducing sending
rates [3]. Although these mechanisms work well in the ab-
sence of loss, flows still experience the high FCT when
packet loss occurs. For short-lived flows, suffering loss of-
ten indicates the retransmission of entire flows. Unfortu-
nately, data centers are prone to network component failures
(e.g. links, racks, and switches). A measurement study [4]
finds that roughly 1.5 influential failures having long down-
time occur every hour. At this moment, losses are inevitable
and even a single failure can lead to multiple losses. Fur-
thermore, the shallow buffered and shared-memory nature
of data center switches [3] exacerbates the problem. Flows
easily face loss because switch buffers have no rooms to ab-
sorb packet bursts entirely. Then, how can we minimize
query response times in the presence of loss?

In this letter, we argue that the FCT of tardy flows plays
a key role to determine query response times. The tardy flow
is defined as the flow experienced loss. A tardy flow is often
the slowest flow in a query because retransmissions cause
the additional delay. Therefore, we try to minimize the FCT

Manuscript received February 5, 2016.
Manuscript revised May 11, 2016.
Manuscript publicized May 25, 2016.
†The authors are with the Network Research Lab., Graduate

School of Information Security, Korea University, Seoul, Republic
of Korea.

a) E-mail: wlee@korea.ac.kr (Corresponding author)
DOI: 10.1587/transinf.2016EDL8038

of tardy flows by designing two tardy flow scheduling algo-
rithms, Tardy Flow Scheduling (TFS) and TFS+. These al-
gorithms prioritize tardy flows over normal flows across the
data center fabric. Through performance analysis and ns-3
simulations, we demonstrate that our work provides signif-
icant performance gains by up to 2.25× and 2.01× for the
mean and the 99.9th percentile response time of queries, re-
spectively.

2. Network Model

Consider a flow-level network model where a data center
network is abstracted as a giant non-blocking switch that in-
terconnects all servers and has a single M/G/1/First-Come-
First-Serve (FCFS) queue with infinite buffer. The input
and output ports are at the network interface card of servers.
Since common data center topologies consist of multi tiers
of switches (e.g. fat-tree [5]), input and output ports can be
seen as uplinks and downlinks, respectively. We assume a
Poisson arrival process with mean arrival rate λ having size
S ∼ F(·) where F(·) is the CDF.

Let E[Q] represent the mean queueing delay for a
M/G/1/FCFS queue. We assume that each flow sees the
mean queueing delay due to lack of a closed form solution
for M/G/1 queueing delay distributions. E[Q] is easily de-
rived from the Pollaczek-Khinchine formula [6] that E[Q] =
ρ

1−ρ · E[S e] where E[S e] = E[S ](C2+1)
2 and ρ = λE[S ] ∈ [0, 1)

denotes traffic load, E[S ] means the mean flow size, and
C2 = VAR(S )/E[S ]2 indicates the squared coefficient of
variation of S , simply the flow size variability.

Now, let us consider tardy flows. We define tardy flows
as the flows experienced loss. The retransmission of tardy
flows increases the overall traffic load ρ to ρ

1−ω where ω de-
notes the loss probability and 1

(1−ω) =
∑∞

i=1 ω
i−1 represents

the additional traffic load for repetitive loss and the corre-
sponding retransmission. Then, we have the mean queueing
delay considering tardy flows for a M/G/1/FCFS queue by

rewriting E[Q] as E[Q′] =
ρ

1−ω
1− ρ

1−ω
· E[S e] = ρ

(1−ω)−ρ · E[S e].

We find that E[Q′] is sensitive to ρ, ω, and flow size distri-
butions. It is also easy to see that E[Q′] = E[Q] for ω = 0.

Define E[FCT Norm
s ] as the expected FCT of a flow hav-

ing size s without loss (i.e. a normal flow). Since our model
considers flow level scheduling with a single queue, we use
service delay and queueing delay to represent the expected
FCT. Then, we have:
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Algorithm 1 Tardy Flow Scheduling
Require: 〈Flow〉F � Active flows at a time
1: 〈Queue〉H, L← φ � Virtual queues
2: for all f ∈ F do
3: if ftardy = TRUE then
4: H.add ( f ) � Tardy flows
5: else L.add ( f ) � Normal flows
6: end if
7: end for
8: 〈Queue〉Q← H ∪ L � Set of flows to schedule at a time
9: return Q.Front()

E[FCT Norm
s ] =

s
μ
+ E[Q′] (1)

where s/μ is the service delay. We assume service rate μ = 1
for the sake of tractability.

Let E[E[FCT ]] be the mean FCT of normal flows in the
network. Simply, we use E[FCT ] to indicate E[E[FCT ]].
E[FCT ] is given by:

E[FCT ] =
∫ ∞

0

(
s
μ
+ E[Q′]

)
f (s)

F(∞)
ds (2)

where f (·) is the PDF.
The expected FCT of a tardy flow having size s is:

E[FCT Tardy
s ] =

s
μ
+ E[Q′] + nE[Q′′] (3)

where n is the number of retransmissions and E[Q′′] denotes
the retransmission delay.

In this letter, we consider an objective for optimizing
query response times in the presence of loss: minimizing
the FCT of tardy flows. In E[FCT Tardy

s ], E[Q′] is the delay
for initial transmission. Since a flow is regarded as a tardy
flow after experiencing loss, E[Q′′] is our primary concern
in flow scheduling. The optimal FCT of a tardy flow can be
achieved by making E[Q′′] = 0. Thus, our work strives to
minimize E[Q′′].

3. Tardy Flow Scheduling

We introduce TFS and TFS+, two tardy flow scheduling al-
gorithms to accomplish the objective.

TFS: TFS is a simple yet effective flow scheduling al-
gorithm having favoritism toward tardy flows (Algorithm 1).
Basically, like a general flow scheduling algorithm, TFS
schedules flows in a FCFS fashion. However, tardy flows
are prioritized over normal flows, so normal flows can be
scheduled only if there exist no competing tardy flows. We
can express the difference of delay that tardy/normal flows
see by using virtual queue H and L. The overall arrival rate
λ

1−ω is divided up between queue H and L. Tardy flows are
enqueued in queue H while the other flows go to queue
L. Therefore, queue H and L are with λTFS

H = ωλ
1−ω and

λTFS
L = λ, respectively. The mean queueing delay of the

flow with priority k can be easily derived from E[Q] and
is known as E[S k]/(1 − ∑k−1

i=1 ρi) + ( λ2
∑k

i=1 piE[S 2
i ])/(1 −∑k−1

i=1 ρi)(1−∑k
i=1 ρi) where pi is the fraction of priority k and

Fig. 1 Two data center workloads used in analysis. These workloads
have heavy-tailed flow size distributions where most of flows are short
flows.

ρk = λkE[S k] [6]. From the formula, we can derive the mean
queueing delay of queue H and L in TFS that E[QTFS

H ] =

E[S ] +
ωλ

2(1−ω)E[S 2]

1− ωρ1−ω
and E[QTFS

L ] = E[S ]
1− ωρ1−ω

+
ωλ

2(1−ω)E[S 2]

(1− ωρ1−ω )(1− ωρ1−ω−ρ)
.

We expect that E[QTFS
H ] < E[QTFS

L ] in general cases because
enqueued flows in queue L can be serviced only if queue H
is empty and can be preempted when a new flow arrives in
queue H.

Consider a toy example. Suppose that we have a num-
ber of active flows f . All flows see E[QTFS

L ]. Now let { f1, f2}
be a set of tardy flows. With TFS, f1 and f2 experience
E[Q′′] = E[QTFS

H ] for retransmissions. The other flows bear
the additional delay of the tardy flows. One potential cost of
TFS is the increase in the FCT for normal flows. Thus, we
examine the benefit and cost of TFS in the next section.

TFS+: TFS overlooks one important point of data
center traffic, heavy-tailed distributions. Figure 1 shows
the overall flow size distributions of a cache follower of
web servers [7] and a data mining application [8]. The both
workloads are heavy-tailed. For example, approximately
80% of flows are smaller than 100KB in the data mining
workload because queries generally only call for the execu-
tion of tasks. Large flows are for network update and ma-
chine configuration jobs, not of user queries. In this context,
expediting large tardy flows is redundant because of head-
of-line blocking.

TFS+ is an improvement of TFS that concerns only
short tardy flows. TFS+ works as similar to TFS in Al-
gorithm 1, but excludes large tardy flows. The condi-
tion ‘ ftardy = TRUE’ at line 3 becomes ‘ ftardy = TRUE
and fsize ≤ S L’ in TFS+ where fsize is the flow size
and S L denotes a given threshold of large flows. Thus,
flows arrive with rate λTFS+

H = ωκλ/ (1 − ω) where κ =∫ S L

0
f (s)ds is the fraction of the number of flows less than

S L. Queue L is with λTFS+
L = (1 − ωκ) λ/ (1 − ω). Us-

ing the arrival rates, we obatin the mean queueing delay
for queue H and L in TFS+. For queue H, E[QTFS+

H ] =

E[S ]≤S L +
ωκλ

2(1−ω)E[S 2]≤S L

1−ρTFS+
H

where E[S ]≤S L denotes the mean size

of flows less than S L and E[S 2]≤S L = VAR(S ) + E[S ]2
≤S L

is the second moment of S . Similarly, for queue L, we

have that E[QTFS+
L ] =

E[S ]>S L

1−ρTFS+
H
+

ωλ
2(1−ω)E[S 2]

(1−ρTFS+
H )(1−ρTFS+

H −ρTFS+
L ) where

E[S ]>S L is the mean flow size larger than S L and ρTFS+
H =

ωκλE[S ]≤S L
1−ω , ρTFS+

L =
(1−ωκ)λE[S ]TFS+,L

1−ω where E[S ]TFS+,L =
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(1−ω)E[S ]TFS++ω(1−κ)E[S ]>S L
(1−ω)+ω(1−κ) and E[S ]TFS+ = ωκE[S ]≤S L +(

(1 − ω)E[S ] + ω (1 − κ)E[S ]>S L

)
. Note that E[S ]TFS+ =∑n

i piE[S i].
In the aforementioned example, suppose that f1 is a

large tardy flow and f2 is a short tardy flow. Then, f2 sees
E[QTFS+

H ] for E[Q′′], but E[Q′′] = E[QTFS+
L ] for f1.

4. Performance Analysis

We analyze the performance of TFS and TFS+. As we men-
tioned, flows consisting of queries are short flows. There-
fore, we focus on short flows in analysis.

We obtain the mean FCT of short normal flows for TFS
using (2) as that:

E[FCT Norm
TFS ] =

∫ S L

0

(
s
μ
+ E[QTFS

L ]

)
f (s)

F(S L)
ds (4)

Similarly, the mean FCT of short tardy flows in TFS is:

E[FCT Tardy
TFS ] =

∫ S L

0

(
s
μ
+ E[QTFS

T ]

) ω
1−ω f (s)

F(S L)
ds (5)

where E[QTFS
T ] = E[QTFS

L ]+nE[QTFS
H ] and ω

1−ω is the fraction
of tardy flows in the network.

For TFS+, we obtain the mean FCT of short normal
flows as following that:

E[FCT Norm
TFS+ ] =

∫ S L

0

(
s
μ
+ E[QTFS+

L ]

)
(1 − ωκ) f (s)

F(S L)
ds

(6)

where ωκ is the fraction of short tardy flows. Therefore,
(1 − ωκ) is naturally the fraction of flows that are not short
tardy flows.

The mean FCT of short tardy flows in TFS+ is given
by:

E[FCT Tardy
TFS+] =

∫ S L

0

(
s
μ
+ E[QTFS+

T ]

)
ωκ f (s)
F(S L)

ds (7)

where E[QTFS+
T ] = E[QTFS+

H ] + nE[QTFS+
L ].

We now evaluate our work using numerical results. In
the absence of alternatives in the literature, we compare our
work with the baseline having no consideration of tardy
flows. The mean FCT of short flows for the baseline is:
E[FCT Norm] =

∫ S L

0

(
s
μ
+ E[Q′]

)
f (s)

F(S L) ds and E[FCT Tardy] =∫ S L

0

(
s
μ
+ (1 + n)E[Q′]

)
f (s)

F(S L) ds. We use the workloads in
Fig. 1. We set S L = 68 (100KB) and n = 1 for all results.
Metric Our performance metric in the mean FCT improve-
ment is a normalized metric that

Factor of Improvement =
E[FCT Tardy/Norm]

E[FCT Tardy/Norm
TFS/TFS+ ]

Impact on the mean FCT of flows Fig. 2 shows that tardy
flow scheduling improves the performance of tardy flows

Fig. 2 The improvement in the mean FCT of short flows. ω = 0.1

Fig. 3 The impact of loss rate on the mean FCT of short flows.

with slight performance degradation for normal flows. We
first find that our work reduces the mean FCT of short tardy
flows significantly. We also observe that the algorithms de-
liver better performance in the data mining workload, which
is more heavy-tailed. The factor of improvement increases
as the traffic load increases in the all workloads. Especially,
TFS+ improves the performance by 1.99× when ρ = 0.9
and always offer the performance gain in all cases. The up-
per bound of the improvement is 2×, which means the re-
transmission delay of tardy flows is zero. TFS has relatively
worse yet satisfying performance where the maximum im-
provement is 1.82× when ρ = 0.9 in Fig. 2 (b). Unfortu-
nately, in the cache follower workload, TFS degrades the
performance when ρ = 0.1 (Fig. 2 (a)). The gap between
TFS+ and TFS stems from that large tardy flows block short
tardy flows in TFS.

We now turn our attention to normal flows. We find
that the proposed algorithms increase the mean FCT of short
normal flows. For example, TFS+ increases the mean FCT
by up to 1.21× and mostly zero in the data mining work-
load. The notable point is the poor performance up to 1.8×
when ρ ≤ 0.2 in Fig. 2 (a). Although this may be signifi-
cant, however, it is limited when ρ is low. Note that data
center networks are often oversubscribed. One possible so-
lution for the problem is to design a scheduling algorithm
that changes its policy dynamically with awareness of the
opportunity cost between the gain and the cost. We leave it
to our future work.
Impact of loss rate We now inspect the impact of loss rate
on the performance. The increase of loss rate indicates the
increase of mean queueing delay that a tardy flow sees. Fig-
ure 3 shows that TFS+ has almost the uniform performance
regardless of loss rate. This is because TFS+ only priori-
tizes short tardy flows whose bytes are small. Meanwhile,
the performance in TFS is exacerbated as the loss rate in-
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creases. The reason is that, unlike TFS+, TFS prioritizes
large tardy flows as well. In TFS, short tardy flows are im-
peded by large tardy flows in front. We say that TFS still
has a satisfying performance because the worst performance
improvement is 1.53× and the maximum performance dete-
rioration is only 0.82×, respectively. In addition, since the
variability of performance is moderate, we say the results in
Fig. 2 have consistency with any ω.

5. Packet-Level Simulations

In this section, we conduct a preliminary evaluation of our
work using packet-level simulations in ns-3 [9]. Unlike our
simplified flow-level network model, this simulation consid-
ers all aspects of data center networks.

We simulate a full bisection bandwidth 3-tier fat-
tree [5] topology with 54 servers having 10Gbps links and
240μs RTTs on average. Each port in switches has 22.5 KB
of shallow buffer size.

We use a realistic workload of production data cen-
ters. Queries having size {20, 80}KB are generated whose
arrival rate is set to consume about 10% of the total network
throughput. When a server requests a query, 10 randomly
chosen servers perform its partitioned tasks. In addition, we
make servers generate background traffic having size from
64KB to 32 MB to another randomly selected server repre-
senting non-query traffic. We use standard equal cost mul-
tiple path (ECMP) routing [2] and TCP NewReno that are
widely employed in enterprise data centers [3], [10]. Our
settings result in 7% of the packet loss rate and 24% of the
tardy flow ratio, respectively.

TFS and the baseline are used for the performance
comparison. Switches in TFS prioritizes retransmission
packets by using strict priority queueing, thereby reducing
the FCT of tardy flows. The baseline schedules all packets
in a FCFS manner.

Table 1 shows the mean and the 99.9th percentile query
response times. We find that TFS accelerates query response
times significantly. Especially, TFS provides the perfor-
mance gain by 2.25× for 20KB queries. Although the de-
gree is relatively low, our work improves the mean query re-
sponse times by 1.10× for 80KB queries. The benefit stems
from that, as we found in performance analysis, TFS sub-
stantially reduces the retransmission delay of tardy flows
while increasing the FCT of normal flows slightly. The dif-
ference of performance improvement between two queries
comes from the query size. As query size goes small, the
task flow size also decreases. Then, for a very small flow,

Table 1 Mean and the 99.9th percentile query response times (ms) in
ns-3 simulations. TFS significantly outperforms the baseline.

Query Size (KB) Baseline TFS Factor of Improvement
20 (Mean) 2.63 1.17 2.25×
80 (Mean) 73.90 67.27 1.10×
20 (99.9th) 165 82 2.01×
80 (99.9th) 334 300 1.11×

packet loss may result in the retransmission of entire flow.
Recall that over 50% of flows are 1KB in the data mining
workload (Fig. 1). For the 99.9th percentile query response
times, TFS provides the performance gain by 2.01× and
1.11× for 20KB and 80KB queries, respectively. The fac-
tors of improvement are similar to the result for mean query
response times.

6. Conclusion

In this letter, we argued that the FCT of tardy flows has a
significant leverage on the query response time for data cen-
ter applications in the presence of loss. We designed two
tardy flow scheduling algorithms called TFS and TFS+min-
imizing the retransmission delay of tardy flows. Using flow-
level performance analysis and packet-level simulations, we
demonstrated that our work offers the substantial perfor-
mance gain in query response times.

This work is by no means the final word. There re-
mains significant room for improvement in various aspects
including opportunity cost-awareness and synthesizing our
work with load balancing mechanisms to exploit multi paths
in data center networks.
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[9] J.L. Font, P. Iñigo, M. Domı́nguez, J.L. Sevillano, and C. Amaya,
“Architecture, design and source code comparison of ns-2 and ns-3
network simulators,” Proc. SpringSim, pp.109:1–109:8, 2010.

[10] M. Al-Fares, S. Radhakrishnan, B. Raghavan, N. Huang, and A.
Vahdat, “Hedera: dynamic flow scheduling for data center net-
works,” Proc. USENIX NSDI, 2010.

http://dx.doi.org/10.1587/transcom.e96.b.713
http://dx.doi.org/10.1145/1851182.1851192
http://dx.doi.org/10.1145/2043164.2018477
http://dx.doi.org/10.1145/1402946.1402967
http://dx.doi.org/10.1145/2829988.2787472
http://dx.doi.org/10.1145/1592568.1592576
http://dx.doi.org/10.1145/1878537.1878651

