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An Improved PSO Algorithm for Interval Multi-Objective

Optimization Systems

Yong ZHANG ™, Wanqiu ZHANG', Dunwei GONG', Yinan GUO", Nonmembers, and Leida LI, Member

SUMMARY  Considering an uncertain multi-objective optimization
system with interval coefficients, this letter proposes an interval multi-
objective particle swarm optimization algorithm. In order to improve its
performance, a crowding distance measure based on the distance and the
overlap degree of intervals, and a method of updating the archive based on
the acceptance coefficient of decision-maker, are employed. Finally, results
show that our algorithm is capable of generating excellent approximation
of the true Pareto front.
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1. Introduction

In many real systems, it is often necessary to optimize
multiple objectives that are generally conflicting with each
other. This kind of problem is called a multi-objective opti-
mization problem (MOP). MOPs still are a challenge to re-
searchers due to the inherent conflicting nature among opti-
mization objectives [1]. In those MOPs, part models usually
include various uncertain parameters, such as fuzzy number,
random number, interval number. Compared to random and
fuzzy parameters, it is easier to get the range (i.e., interval)
of an uncertain parameter [2]. Therefore, studying MOPs
with interval parameters is of theoretical significance and
practical application value.

Generally, an interval multi-objective optimization
problem (IMOP) can be described as follows: to find a vec-

tor ¥* =[x}, x3,-- -, x;] satisfying

F(X) = (i(X0), A(R.0), ..., fu(X.©) (D
where ¥ = (x1, x2,---,x,) € Q is called the decision vari-
able, the set Q is called the feasible region. ¢ = (¢,
¢y, ++,Cr) 1s a vector comgosed of interval parameters, ¢; =
le;.efl 1= 1,2,---L; f; = [f].‘,f].*] is the j-th interval
objective function, j =1,2,---,J.

To solve interval single-objective optimization prob-
lems, researchers have proposed many approaches [3]-[5].
However, there are few articles for solving IMOP. Limbourg
et al. introduced an imprecision-propagating multi-objective
evolutionary algorithm (MOEA), by extending partial or-
der relation into multiple-objective case [2]. Based on the
strength Pareto evolutionary algorithm (SPEA) proposed
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in [14], Teich proposed an improved SPEA algorithm us-
ing a probabilistic dominance relationship, called estimate
strength Pareto evolutionary algorithm [6]. Sun et al. studied
the theory of preference polyhedron for interval optimiza-
tion problems, and presented an interactive multi-objective
evolutionary algorithm [7]. Recently, Gong et al. considered
the case that the user’s preference is interval, and proposed
a sorting scheme based on interval to guide the population
evolving toward preferred regions [8].

Particle swarm optimization (PSO) is a heuristic search
technique that is inspired by the behavior of bird flocks [9].
In previous work, we applied multi-objective PSO algorithm
(MOPSO) in interval multi-objective optimization prob-
lems [10], [11]. Although simulation results show the effec-
tiveness of the proposed algorithm, this algorithm still has
the following disadvantages: (1) Using Sigma interval value
to select the global best position easily leads to an excessive
number of particles for exploiting the same regions; (2) like
most of other PSO algorithms, it requires users to tune such
control parameter as inertia weight and acceleration coef-
ficients, in order to achieve desirable solutions of the op-
timized problem. Focused on the above disadvantages, in
this paper we propose an improved multi-objective particle
swarm optimizer.

2. The Proposed Algorithm

In this section, we propose an improved multi-objective
PSO for interval fitness, by modifying related operators in
PSO.

2.1 Selection of the Global Best Position

The global best position of a particle, Gbest, is the global
best position found so far by neighbors of this particle. Since
the neighbourhood of a particle is likely to include many
non-dominated optimal solutions, selecting a suitable Gbest
for each particle becomes very difficult.

In this paper we use an external archive to save non-
dominated optimal solutions found by the swarm so far.
Based on the distribution density of elements in the exter-
nal archive, each particle selects its Gbest from the archive.
Since the objective values of particles become interval vec-
tor, we propose a novel crowding distance measure to mea-
sure the distribution density of elements in the external
archive.

First, we consider one dimensional objective space, for
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example, the m-th objective space. In order to calculate the
crowding degree of an element in this objective space, all
elements in the external archive are ranked firstly based on
the midpoints of their corresponding interval objective val-
ues, denoted those ranked elements as a;, i = 1,2,---,|Ar],
where |Ar| is the number of elements in the external archive.
Ifi = 1 ori = |Ar|, the crowding distance of q; in this ob-
jective space is oo; otherwise, the crowding distance of g; in
this objective space is calculated as follows:

CD,.(a;) = D(fn(ai-1), fu(ai)) + D(fn(ai), fu(ai1))

)
D@,b) = e @ x \J(a* —b* )2 +(a - b )2 3)
_ - 2max{0, min{a* — b~,b" —a”,w@), wd)})
cla,b) = — —
w(a) + w(b)
“4)

Where w(a) = _(cfr — a”)/2 reflects the uncertain degree of
interval a; c(a, b) represents the overlap degree between in-

terval @ and interval b, \/ (a* —b*) +(a - b)) represents
the distance between interval @ and interval b. It is easy to
observe that the smaller the distance between @ and b is, the
smaller the value of D(@, b) is; accordingly, the smaller the
value of CD,,(a;) is. Similarly, the bigger the overlap de-
gree between @ and b is, the smaller the value of D(a, b) is;
accordingly, the smaller the value of CD,,(q;) is.

Then, by running the above method repeatedly in ev-
ery objective space, we should get the crowding distances
of all the elements in the external archive in the whole ob-
jective space. Denoting those crowding distance values as
CDy(aj), m = 1,---,M, j = 1,2,---,|Ar|, the crowding
distance of element a; in the whole objective spaces can be
described as:

1 M
CD(a)) = + > CDyaj) (5)
m=1

Assuming that S, and Ar, are the swarm and the exter-
nal archive at the 7-th generation, the selection method of
Gbest is described as follows:

Step1: Calculate the crowding distance of every ele-
ment in Ar, by the proposed crowding distance measure, and
seti=1;

Step2: Determine the global best position of the parti-
cle X().

Step2.1: Select two elements from Ar; at random;

Step2.2: Compare the crowding distance values of the
two elements, and select that with higher crowding distance
as the global best position of (7).

Step3: i < i + 1, and go to Step 2, until i > |S|.

2.2 Update of the Personal Best Position

The personal best position, Pbest, is the best position
achieved by a particle itself so far, which is regarded as the
memory of the particle. Assuming that the Pbest of the par-
ticle Xi(¢) is p;(¢), new position of the particle at the (¢ + 1)-th
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generation is X;(++1). If %;(#+1) dominates j;(), then X;(z+1)
becomes new pi(t + 1); if pi(¢) and X;(z + 1) do not dominate
each other, p;(r + 1) will take %(¢ + 1) with the probability
0.5.

2.3 Update of the External Archive

It is worth noting that, in order to prevent losing optimal so-
lutions acquired, all the non-dominated solutions should be
saved into the external archive. However, it is unrealistic for
many real problems to save all the non-dominated solutions
because of high computational complexity. In order to over-
come the above disadvantage, a method based on decision-
maker tolerate coefficient is introduced to prune the archive
in this paper. In this method, only optimal solutions that
are dominated with less than ¢ (0 < p < 1) probability
have an opportunity to be stored in the archive. Herein, the
probability-based dominance relationship proposed in [2] is
used to compare two solutions with interval objective val-
ues. When the number of saved solutions exceeds the fixed
capacity N, of the archive, only N, elements with higher
crowding distance are saved in the external archive.

Assuming that S, is the swarm at the (¢ + 1)-th gen-
eration, and Ar, is the external archive at the #-th generation,
the improved update method of the external archive cab be
described as follows:

Stepl: Initialize the external archive at the (¢ + 1)-th
generation, Ar.1, as a null set;

Step2: Save both S,.; and Ar; to Ar;,; simultaneously,
namely Aryy «— S U Arg;

Step3: Delete such elements that are dominated by
other elements with more than y probability from Ar.;

Step4: Judge whether the number of elements in Ar
is smaller than the fixed capacity N, or not. If yes, stop the
update process, and output result;

Step5: Calculate the crowding distance of each ele-
ment in Ar,,| based on the proposed crowding distance mea-
sure, and delete |Ar;,1|— N, elements from Ar;,;, which have
smaller crowding distance.

2.4 Steps of the Proposed Algorithm

Based on the above work, detailed steps of the proposed al-
gorithm are described as follows:

Stepl: Set relative parameters, including the swarm
size Ny, the archive size N,, and the terminal condition of
our algorithm.

Step2: Initialize the positions of N, particles in the
search space, and set the personal best position of each par-
ticle as itself.

Step3: Calculate the interval objective values of all the
particles;

Step4: Compare the dominance probability between
elements both in the swarm and the archive, and update the
external archive by the method proposed in Sect. 2.3.

Step5: Judge whether the algorithm meet the termina-
tion criterion. If yes, stop the algorithm;
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Step6: Update the personal best position and the global
best position by the method proposed in Sects. 2.1 and 2.2,
respectively;

Step7: Update the particle positions. In order to reduce
the influence of control coefficients, such as inertia weight
and acceleration coefficients, on the performance of the pro-
posed algorithm, a Gaussian sampling based on the global
best position g; = (91,92, -, ¢in) and the personal best
position p; = (pi1,Pia2s-**»Pin)> Proposed in [12], is used
to generate new particles, as follows:

Y= N(rp,-,j+(1—r)gi,j,lp,-,j—g,',jl), if ¥ <0.5
e Jijs otherwise
(6)

Where r and r’ are two random numbers within [0, 1].
Step8: Run the uniform mutation [12] to improve the
global search capability of swarm, and go to Step3.

3. Experiment and Analysis

To construct an imprecise test function, it seems feasible to
choose some popular precise test functions. In this paper, an
uncertainty factor £ is used to transform five popular precise
functions, KUR, ZDT1, ZDT3, ZDT4 [2] and DTLZ1 [15],
into interval multi-objective functions. Without loss of gen-
erality, this paper considers minimal optimization problems.

| Isin(107 2L, x) )

€=\ |sin20n 2y XDl @

Two multi-objective interval evolutionary algorithms,
i.e., PD-MOPSO [11] and IP-MOEA [2], are selected for
performance comparison. In PD-MOPSO, the inertia
weight = 0.6, two learning factor ¢; = ¢; = 0.2. In
IP-MOEA, the crossover probability = 0.1, the muta-
tion probability = 0.9, and the tournament selection is
adopted. In the proposed algorithm, the tolerate coefficient
of decision-maker y = 0.2. For all the three algorithms, the
swarm size = 50, the archive size = 20, and the maximal
evaluation times = 15000.

3.1 Results and Analysis

This subsection compares the average performance of the
three algorithms based on the experimental results of 30 in-
dependent runs. Two metrics, the interval set coverage (ISC)
and the interval spacing metric (ISP) [11], [13] are employed
to evaluate the convergence and the distribution of solutions
obtained by an algorithm, respectively. Here, the value of
ISC(A, B) being 1 means that each solution of the algorithm
B is dominated by at least one solution of the algorithm A.
A value of zero for the ISP metric indicates all members of
the Pareto front are equidistantly spaced.

Tables 1 to 5 show results of the three algorithms on
the test functions in terms of ISC metric. We can see that
for all the five test functions, the proposed algorithm has the
best convergence among the three algorithms. Taking the
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Table 1  ISC values of the three algorithms for KUR
(Average/Variance).
ISC(A,B) Proposed algorithm IP-MOEA PD-MOPSO
(Proposed algorithm, *) - 0.6368/0.0557 0.5995 /0.0470
(IP-MOEA,*) 0.0557 /0.0097 - 0.2221/0.0366
(PD-MOPSO,*) 0.0594 /0.0221 0.3234/0.0423 -

Table 2  ISC values of the three algorithms for ZDT1.
ISC(A,B) Proposed algorithm IP-MOEA PD-MOPSO
(Proposed algorithm, *) - 0.6028/0.1090 | 0.2920/0.1021
(IP-MOEA*) 0.0979/0.0604 - 0.0767/0.0408
(PD-MOPSO,*) 0.2481/0.0833 0.5721/0.1106 -
Table 3  ISC values of the three algorithms for ZDT3.
ISC(A,B) Proposed algorithm IP-MOEA PD-MOPSO
(Proposed algorithm,*) - 0.6734/0.0906 0.2739/0.0218
(IP-MOEA,*) 0.0486/0.0253 - 0.0654/0.0203
(PD-MOPSO,*) 0.2327/0.0208 0.6099/0.1834 -
Table4  ISC values of the three algorithms for ZDT4.
ISC(A,B) Proposed algorithm IP-MOEA PD-MOPSO
(Proposed algorithm,*) - 1/0 1/0
(IP-MOEA,*) 0/0 - 0.3512/0.4660
(PD-MOPSO,*) 0/0 0.4312/0.4698 -
Table 5  ISC values of the three algorithms for DTLZI.
ISC(A,B) Proposed algorithm IP-MOEA PD-MOPSO
(Proposed algorithm,*) - 0.5425/0.0787 0.3458/0.0952
(IP-MOEA,*) 0.1050/0.0525 - 0.0685/0.0409
(PD-MOPSO,*) 0.3129/0.1004 0.5013/0.1421 -

Table 6 ISP values of the three algorithms for the three functions.
Function Proposed algorithm IP-MOEA PD-MOPSO
KUR 0.7318 /0.0677 0.9221/0.1791 1.1228/0.1553
ZDT1 0.0353/0.0119 0.0542/0.0099 0.0501/0.0142
ZDT3 0.1064/0.0262 0.0614/0.0189 0.1537/0.0508
ZDT4 0.0492/0.0184 0.0772/0.0120 0.0929/0.0149
DTLZ1 0.1131/0.0217 0.1490/0.0193 0.1581/0.0298

function KUR as an example, the proposed algorithm domi-
nates IP-MOEA and PD-MOPSO with more than 0.59 prob-
ability, while both IP-MOEA and PD-MOPSO dominate the
proposed algorithm with less than 0.06 probability, as their
ISC values show.

In terms of the distribution of solutions, Table 6 shows
results of the three algorithms in terms of ISP metric. We
can see that for the functions KUR, ZDT1, ZDT4 and
DTLZ1, the average performance of the proposed algorithm
is better than IP-MOEA and PD-MOPSO in terms of ISP.
For the function ZDT3, the proposed algorithm has the sec-
ond best value in terms of ISP.

Furthermore,taking KUR, ZDT3 and ZDT4 as exam-
ples, Fig. 1 shows graphical results of these functions pro-
duced by the proposed algorithm and other two algorithms.
It can be observed from Fig. 1 (a) that for KUR, IP-MOEA
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Fig.1  Pareto fronts produced by the three algorithms on the three
uncertain functions.

finds more overlap solutions than PD-MOPSO and the pro-
posed algorithm, and the distribution of solutions of PD-
MOPSO is not as good as that of the proposed algo-
rithm. For ZDT3, as Fig. 1 (b) shows, most solutions of PD-
MOPSO congregate on the lower left corner, compared with
other two algorithms. The main reason is that PD-MOPSO
does not consider the distribution of elements in the archive
when the particles select their Gbests. Obviously, when
overmany particles select the same Gbests, these particles
will converge to the same regions.

To be fair in judgment of the performance, we also
compare the CPU time of the three algorithms. It can be
seen from experimental results that the proposed algorithm
and PD-MOPSO consume similar CPU time. However, IP-
MOEA consumes more CPU time than PD-MOPSO and the
proposed algorithm for all the five functions, as a result of
using non-dominated sorting technology.

4. Conclusion

In this paper, a new almost parameter-free MOPSO was pro-
posed to handle interval multi-objective optimization prob-
lems. The proposed algorithm does not make use of those
control parameters of PSO (i.e., inertia weight, acceleration
coeflicients, and velocity clamping) to update the particles.
This makes it unnecessary for PSO to perform a fine tun-
ing on these control parameters in order to pursue good
performance. By comparing with two multi-objective in-
terval evolutionary algorithms, IP-MOEA and PD-MOPSO,
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experimental results show that the proposed algorithm can
get a high competitive Pareto optimal set on optimizing the
selected uncertain test functions.
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