
IEICE TRANS. INF. & SYST., VOL.E99–D, NO.10 OCTOBER 2016
2633

LETTER

LAB-LRU: A Life-Aware Buffer Management Algorithm for NAND
Flash Memory∗

Liyu WANG†a), Member, Lan CHEN†b), and Xiaoran HAO†, Nonmembers

SUMMARY NAND flash memory has been widely used in storage sys-
tems. Aiming to design an efficient buffer policy for NAND flash memory,
a life-aware buffer management algorithm named LAB-LRU is proposed,
which manages the buffer by three LRU lists. A life value is defined for
every page and the active pages with higher life value can stay longer in the
buffer. The definition of life value considers the effect of access frequency,
recency and the cost of flash read and write operations. A series of trace-
driven simulations are carried out and the experimental results show that
the proposed LAB-LRU algorithm outperforms the previous best-known
algorithms significantly in terms of the buffer hit ratio, the numbers of flash
write and read operations and overall runtime.
key words: NAND flash memory, storage system, buffer management algo-
rithm, life value

1. Introduction

NAND flash memory possesses the advantages of high
speed, low power consumption and shock resistance [1].
Therefore, it has been widely applied in storage systems [2].
Whereas, flash memory also has some inherent defects, such
as asymmetric I/O latencies of read and write operations,
erase-before-write and limited erase cycles [3], which are
different from disk. Thus, it is necessary to redesign the
buffer management algorithm for flash memory.

Although existing buffer management algorithms for
flash memory are capable of distinguishing between write
and read operations, they still have their own drawbacks.
The main ideas along with the drawbacks of them will be
given in next section. Besides these, the common draw-
back is that they seldom consider different access frequency
and recency in hot region, where they treat pages equally no
matter how many times and how recently pages have been
accessed.

In this paper, we propose a life-aware buffer manage-
ment algorithm named LAB-LRU. It combines the access
frequency, recency and the cost of flash operation to define
a life value for every page, which decides how long the page
can stay in the buffer. The experimental results show that
LAB-LRU can clearly improve hit ratio, reduce flash write

Manuscript received March 15, 2016.
Manuscript revised May 26, 2016.
Manuscript publicized June 21, 2016.
†The authors are with the Institute of Microelectronics, Chi-

nese Academy of Sciences, Beijing, China.
∗This work was supported in part by the National Sci-

ence and Technology Major Project of China under grant
2013ZX03001008-003.

a) E-mail: wangliyu@ime.ac.cn
b) E-mail: chenlan@ime.ac.cn

DOI: 10.1587/transinf.2016EDL8062

and read operations, and shorten runtime.

2. Related Work

LRU (Least Recently Used) is the basic buffer algorithm
which gives priority to evict the least recently used pages.
Actually, it is very difficult to record and judge the least re-
cently used pages in practical scenarios. Traditional LRU
algorithm links all buffer pages into one list depending on
their recency. The newly accessed pages will be linked to
the tail of the list, and the eviction begins from the head of
the list. However, it does not consider the access frequency
and distinguish between the write and read operations for
flash memory.

CFLRU [4] is the first buffer management algorithm
designed for flash memory, which considers the asymmet-
ric I/O latencies of flash read and write operations. The
buffer is divided into the working region and clean-first re-
gion. CFLRU always evicts clean pages preferentially, then
evicts dirty pages when there are no pages in the clean-first
region. Therefore, it can reduce flash write and erase oper-
ations. Nevertheless, CFLRU has some obvious shortcom-
ings: (1) The preferential eviction of clean pages leads to
evict newly accessed clean pages too early and let cold dirty
pages stay too long in the buffer. (2) It has to scan the region
to find clean pages, which increases system time.

LRU-WSR [5] considers the access frequency of dirty
pages compared to CFLRU. It prefers to evict clean pages
and cold dirty pages to prevent cold dirty pages from stay-
ing too long in the buffer. Hot dirty pages get the second
chance by setting to cold. LRU-WSR performs better than
CFLRU, but it does not consider the access frequency of
clean pages, this also causes hot clean pages to be evicted
too early lowering the hit ratio.

CCF-LRU [6] differentiates cold and hot pages among
clean pages based on the above algorithms. It splits the
buffer into Cold Clean LRU List (CCL) and Mixed LRU List
(ML). CCL stores cold clean pages which will be evicted
preferentially. Then hot clean and dirty pages in ML will
be selected as victims when CCL is empty. However, CCF-
LRU cannot control the size of CCL. With the eviction of
cold clean pages, CCL will shrink and even become empty.
Then when a newly read page is added to CCL, it will be
evicted very early. Which in turns lowers the hit ratio and
system performance.

AD-LRU [7] tries to solve the problem of CCF-LRU by
adjusting the size of cold list. It divides the buffer into cold

Copyright c⃝ 2016 The Institute of Electronics, Information and Communication Engineers



2634
IEICE TRANS. INF. & SYST., VOL.E99–D, NO.10 OCTOBER 2016

LRU list and hot LRU list. Cold list holds the clean and
dirty pages which have been accessed only once, and hot
list stores the pages which have been accessed more than
once. AD-LRU sets a minimal size threshold min lc for the
cold list. Cold clean pages in the cold list are evicted firstly.
When there are no cold clean pages, if the size of cold list is
more than min lc, the cold dirty pages from the cold list will
be selected as victims. Otherwise, the pages in the hot list
will be evicted. Unfortunately, giving priority to evict cold
clean pages will gradually let cold dirty pages occupy the
cold list, which causes the same problem like CCF-LRU.

APB-LRU [8] splits the cold list into cold clean list and
cold dirty list. It adopts a fixed probability based on the cost
of flash write and read operations to choose from cold clean
list or cold dirty list. It has two disadvantages: (1) The fixed
eviction probability is not flexible for various applications
with different read/write ratios. A dirty page may be evicted
even if there are still many cold clean pages. (2) Pages mov-
ing from the hot list to cold list all get the same treatment
without considering the access frequency and recency.

PT-LRU [9] has three LRU lists like APB-LRU. It first
evicts cold clean pages. When the cold clean pages are
not enough, the eviction will choose between the cold dirty
pages and hot clean pages according to a certain probability.
PT-LRU also has some problems: (1) It does not solve the
second problem of APB-LRU; (2) The best probability is
obtained only through four synthesized traces which cannot
represent all application scenarios.

3. The LAB-LRU Algorithm

3.1 The Structure of LAB-LRU Algorithm

In order to index pages quickly, a hashtable which supports
the insert, query and delete operations is used to manage
the buffer. Unlike CFLRU and LRU-WSR, LAB-LRU con-
siders the access frequency, and differentiates cold pages
and hot pages. Furthermore, to reduce the time overhead
of scanning the cold region to get a cold clean page, the
cold region is divided into two parts depending on clean and
dirty pages. Therefore, LAB-LRU splits the buffer into three
LRU lists: an inactive clean list, an inactive dirty list and an
active mixed list. As an example in Fig. 1, data A is first
written by an application and added to the inactive dirty list.
Data B is newly read from flash and stored in the inactive
clean list. When A or B is accessed again, it will be relived
to the active mixed list (like A’ or B’). By contrast, the pages
with low life value in active mixed list will be dispatched to
inactive lists.

3.2 The Eviction Strategy

When the usage of buffer size exceeds the threshold TV
which is estimated as seven eighths of buffer size, the
dead pages will be evicted in the background. The evic-
tion process is controlled by double thresholds INV MAX
and INV MIN which are estimated as three fourths and one

Fig. 1 The flow diagram of data in three lists.

fourth of inactive list sizes. The reason using two thresh-
olds for each inactive list is to balance the eviction of cold
clean and cold dirty pages. This can prevent the newly read
clean pages from being evicted too soon, and avoid cold
dirty pages staying too long. The eviction process is de-
scribed as follows:
(1) If the size of inactive clean list is beyond INV MAX, the
inactive clean pages from the head of inactive clean list will
be evicted and discarded directly.
(2) If the size of inactive clean list is less than INV MAX and
the buffer size is still more than TV. If the size of inactive
dirty list is beyond INV MAX, the inactive dirty pages will
be evicted and written back to flash memory.
(3) If the size of inactive dirty list is less than INV MAX
and the buffer size is still more than TV. If the size of in-
active clean list is beyond INV MIN, the clean pages in the
inactive clean list will be evicted again until its size meets
INV MIN. Otherwise, if the size of inactive dirty list is more
than INV MIN, the inactive dirty pages will be evicted in the
same way.
(4) If both of the inactive lists are less than INV MIN and the
buffer size is still more than TV, the eviction strategy will
evict directly from the head of the active mixed list. It picks
out the pages with low life value like the dispatch strategy.
When buffer size is down below TV, the eviction process
will be stopped and the dispatch process will be started to
supply the inactive region.

3.3 The Adjustment of the Sizes of Different Lists

(1) Adjusting the sizes of the inactive clean and dirty lists.
During the eviction process, the evicted pages from in-
active clean and dirty lists are respectively counted as
evict clean cnt and evict dirty cnt. Assuming that flash
read and write latencies are Cr and Cw. When the ratio
evict clean cnt/evict dirty cnt exceeds (Cr + Cw)/Cr, this
means too many clean pages have been evicted. Thus, the
inactive clean list should be extended. On the contrary, if the
eviction ratio is less than (Cr + Cw)/Cr, the inactive dirty
list will be extended.
(2) Adjusting the sizes of the active and inactive lists.
When both of the sizes of inactive clean and dirty lists are
less than INV MAX, or when the size of active mixed list is
beyond its upper limit ACTV, the dead pages in active list
will be dispatched to the inactive lists.



LETTER
2635

3.4 The Dispatch and Relive Strategy

When one of the above situations is met, the dispatch pro-
cess will be activated to calculate the life value of the page
pointed by dispatch hand. The definition of life value fol-
lows the principle of LRU considering the effect of different
access frequency, recency and even the cost of flash write
and read operations.
(1) The frequency F: It is defined as the average access
counts between the first access time of the page and the sys-
tem current access time which are recorded as first t and
current t. The access counts of the page is counted as ac-
cess count. Therefore, F is computed as follows:

F =
access count

current t − first t + 1
(1)

(2) The recency R: The more recently the page is accessed,
the more likely it is to be accessed again. So the recent
access time recent t and the first access time first t of the
page decides the recency R:

R = recent t − first t + 1 (2)

(3) The weight of flash operation θ: it depends on the costs
of flash write and read operations. Assuming that the cost of
flash write operation wr is Cw and read operation rd is Cr.
Hence, the weight θ is given as:

θ =

 Cr +Cw
Cr

, wr

1, rd
(3)

(4) The life value Life: the definition of life value combines
the effect of access frequency, recency and the weight of
flash operation. Therefore, the life value is defined as fol-
lows:

Life = F × R × θ = access count
current t − first t + 1

× (recent t − first t + 1) × θ (4)

(5) The dispatch process: If the life value of one page in
the active mixed list is less than 1 or the access count is
1, the page will be dispatched depending on its dirty flag.
Clean pages will be moved to the inactive clean list, and
dirty pages will be linked to the inactive dirty list. Other-
wise, if the life value of the page is beyond 1, the page will
be skipped and its access count will be decreased by 1.
(6) The relive strategy: when one page located in the inac-
tive lists is accessed again, it will be relived and added to the
tail of the active mixed list.

3.5 The Adoption of Multithreading

The existing algorithms begin to evict when buffer pages
are used up, which leads to block users’ requests. In order
to avoid this situation, LAB LRU adopts the multithreading
technology pthread to monitor the usage of buffer size and

execute above processes in parallel.

4. Performance Evaluation

This section first introduces the flash memory simulator.
Then, LAB-LRU is evaluated and compared with some al-
ready existing algorithms such as LRU, CFLRU, CCF-LRU,
APB-LRU and PT-LRU in aspects of buffer hit ratio, flash
write and read counts, and overall runtime.

4.1 Experiment Setup

To compare with other algorithms accurately, the same sim-
ulation system Flash-DBSim [10] is adopted, which is an
efficient, reusable and configurable flash memory simulator.
The specific parameters are given in Table 1.

The performance of the compared algorithms is related
to their parameter settings. The window size w of CFLRU
is set to 0.5. The lower bound of hot region of APB-LRU
is 0.8, and its probability to choose cold clean or cold dirty
pages is equal to the cost ratio of flash operations (write +
erase)/read. The parameter pro of evicting between cold
dirty and hot clean pages in PT-LRU is set to 0.8 depending
on its optimal performance.

The experiment is evaluated by four synthetic traces
which are in accordance with the Zipf distribution. The
information of test cases is listed in Table 2. The locality
“x%/y%” means that x% of total requests are located in the
y% of pages.

4.2 Experiment Results and Analysis

Hit ratio is one of the most important evaluation standards
for buffer algorithms. Figure 2 shows the hit ratios of above
algorithms with different test cases and buffer sizes. Ac-
cording to the results, the hit ratio of LAB-LRU is higher
than other algorithms in most cases. Because LAB-LRU
adopts double thresholds to control the eviction process.
This avoids pages which are newly read into the buffer be-
ing evicted immediately, and prevents cold dirty pages from
staying too long in the buffer. Moreover, LAB-LRU consid-
ers access frequency and recency when calculating the life

Table 1 Parameter configurations of the flash memory.

Table 2 Four synthesized test traces.



2636
IEICE TRANS. INF. & SYST., VOL.E99–D, NO.10 OCTOBER 2016

Fig. 2 Hit ratios of four traces under various buffer sizes.

value of pages in active mixed list. As a result, active pages
with higher frequency and recency can stay longer in the
buffer.

The counts of flash read and write operations determine
the I/O latency and system performance. Figure 3 gives the
physical read counts of flash of above algorithms. It can
be seen that LAB-LRU reduces read counts of flash obvi-
ously. CF-LRU evicts clean pages preferentially and CCF-
LRU gives priority to cold clean pages. APB-LRU uses a
fixed probability to evict cold clean or cold dirty pages, and
PT-LRU chooses cold dirty or hot clean pages by a param-
eter pro. To some extent, above algorithms all lead to early
eviction of clean pages even if there are still many cold dirty
pages, which increase the read counts of flash. Instead of
fixed ways, LAB-LRU evicts clean and dirty pages depend-
ing on their access frequency and recency, which is closer to
the principle of LRU.

Since the flash write latency is much longer than the
read latency, and long erase operations are needed before
write operations, it’s very significant to reduce write counts
of flash. Figure 4 shows the physical write counts of flash
of above algorithms. Under the same conditions, the write
counts of LAB-LRU are fewer than other algorithms in most
cases. Because the calculation of life value not only consid-
ers the effect of frequency and recency, but also the different
costs of flash write and read operations. It gives a greater
weight to the hot dirty pages to enable them stay longer in
the buffer.

Figure 5 shows the runtime of different algorithms un-
der various buffer sizes and traces. The runtime is mainly
decided by the costs of write, read and erase operations
of flash. Although the calculation of life value is bound
to bring additional time overhead, LAB-LRU decreases the
runtime significantly. This should be attributed to the adop-
tion of multithreading technology, which enables to monitor

Fig. 3 Physical read counts of four traces under various buffer sizes.

Fig. 4 Physical write counts of four traces under various buffer sizes.

Fig. 5 Runtime of four traces under various buffer sizes.



LETTER
2637

the use of buffer size in parallel and evict dead pages in ad-
vance. So the runtime is shortened along with improving the
system efficiency.

5. Conclusion

The efficiency of a buffer management algorithm for flash
memory plays an important role in improving system per-
formance. To overcome the drawbacks of the existing algo-
rithms, we proposed a life-aware buffer management algo-
rithm named LAB-LRU which defined a life value for every
page to decide how long the page can stay in the buffer. The
definition of life value considered the effect of access fre-
quency, recency and the cost of flash operations. Therefore,
active pages with higher access frequency or recency can
stay longer in the buffer. Additionally, the adoption of mul-
tithreading technology shortened system execution time and
improved system efficiency. Four synthesized traces have
been carried out, and the experimental results showed that
the proposed LAB-LRU algorithm achieves better perfor-
mance than other existing algorithms in terms of the buffer
hit ratio, counts of flash operations and overall runtime.

References

[1] G. Lawton, “Improved flash memory grows in popularity,” Com-
puter, vol.39, no.1, pp.16–18, Jan. 2006.

[2] H. Kim, K.Y. Lee, J. Jung, and K. Bahng, “A new transactional flash
translation layer for embedded database systems based on MLC
NAND flash memory,” Proc. International Conference on Consumer
Electronics, pp.1–2, Las Vegas, NV, 2008.

[3] M. Lin, S. Chen, and Z. Zhou, “An Efficient Page Replacement Al-
gorithm for NAND Flash Memory,” IEEE Trans. Consum. Electron.,
vol.59, no.4, pp.779–785, 2013.

[4] S.-Y. Park, J. Dawoon, and J.-U. Kang, “CFLRU: A replacement
algorithm for flash memory,” Proc. CASES’06, pp.234–241, Seoul,
Korea, 2006.

[5] H. Jung, H. Shim, S. Park, S. Kang, and J. Cha, “LRU-WSR: Inte-
gration for LRU and writes sequence reordering for flash memory,”
IEEE Trans. Consum. Electron., vol.54, no.3, pp.1215–1223, Aug.
2008.

[6] Z. Li, P.Q. Jin, X. Su, K. Cui, and L.H. Yue, “CCF-LRU: A new
buffer replacement algorithm for flash memory,” IEEE Trans. Con-
sum. Electron., vol.55, no.3, pp.1351–1359, Aug. 2009.

[7] P.Q. Jin, Y. Ou, T. Härder, and Z. Li, “AD-LRU: An efficient buffer
replacement algorithm for flash-based databases,” Data & Knowl-
edge Engineering, vol.72, pp.83–102, Feb. 2012.

[8] Z.Y. Lin, M.X. Lai, Q. Zou, Y.S. Xue, and S.Y. Yang, “Probability-
Based Buffer Replacement Algorithm for Flash-Based Database,”
Chinese Journal of Computers, vol.36, no.8, pp.1568–1581, Aug.
2013.

[9] J. Cui, W. Wu, Y. Wang, and Z. Duan, “PT-LRU: A Probabilis-
tic Page Replacement Algorithm for NAND Flash-based Consumer
Electronics,” IEEE Trans. Consum. Electron., vol.60, no.4, Nov.
2014.

[10] P.Q. Jin, X. Su, Z. Li, and L.H. Yue, “A flexible simulation envi-
ronment for flash-aware algorithms,” in Proc. 18th ACM conference
on Information and knowledge management, pp.2093–2094, Hong
Kong, China, Nov. 2009.

http://dx.doi.org/10.1109/mc.2006.22
http://dx.doi.org/10.1109/mc.2006.22
http://dx.doi.org/10.1109/icce.2008.4587896
http://dx.doi.org/10.1109/icce.2008.4587896
http://dx.doi.org/10.1109/icce.2008.4587896
http://dx.doi.org/10.1109/icce.2008.4587896
http://dx.doi.org/10.1109/tce.2013.6689689
http://dx.doi.org/10.1109/tce.2013.6689689
http://dx.doi.org/10.1109/tce.2013.6689689
http://dx.doi.org/10.1145/1176760.1176789
http://dx.doi.org/10.1145/1176760.1176789
http://dx.doi.org/10.1145/1176760.1176789
http://dx.doi.org/10.1109/tce.2008.4637609
http://dx.doi.org/10.1109/tce.2008.4637609
http://dx.doi.org/10.1109/tce.2008.4637609
http://dx.doi.org/10.1109/tce.2008.4637609
http://dx.doi.org/10.1109/tce.2009.5277999
http://dx.doi.org/10.1109/tce.2009.5277999
http://dx.doi.org/10.1109/tce.2009.5277999
http://dx.doi.org/10.1016/j.datak.2011.09.007
http://dx.doi.org/10.1016/j.datak.2011.09.007
http://dx.doi.org/10.1016/j.datak.2011.09.007
http://dx.doi.org/10.3724/sp.j.1016.2013.01568
http://dx.doi.org/10.3724/sp.j.1016.2013.01568
http://dx.doi.org/10.3724/sp.j.1016.2013.01568
http://dx.doi.org/10.3724/sp.j.1016.2013.01568
http://dx.doi.org/10.1109/tce.2014.7027334
http://dx.doi.org/10.1109/tce.2014.7027334
http://dx.doi.org/10.1109/tce.2014.7027334
http://dx.doi.org/10.1109/tce.2014.7027334
http://dx.doi.org/10.1145/1645953.1646319
http://dx.doi.org/10.1145/1645953.1646319
http://dx.doi.org/10.1145/1645953.1646319
http://dx.doi.org/10.1145/1645953.1646319

