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Mining Spatial Temporal Saliency Structure for Action Recognition

Yinan LIU†a), Qingbo WU†, Linfeng XU†, Nonmembers, and Bo WU†, Member

SUMMARY Traditional action recognition approaches use pre-defined
rigid areas to process the space-time information, e.g. spatial pyramids,
cuboids. However, most action categories happen in an unconstrained
manner, that is, the same action in different videos can happen at differ-
ent places. Thus we need a better video representation to deal with the
space-time variations. In this paper, we introduce the idea of mining spa-
tial temporal saliency. To better handle the uniqueness of each video, we
use a space-time over-segmentation approach, e.g. supervoxel. We choose
three different saliency measures that take not only the appearance cues,
but also the motion cues into consideration. Furthermore, we design a
category-specific mining process to find the discriminative power in each
action category. Experiments on action recognition datasets such as UCF11
and HMDB51 show that the proposed spatial temporal saliency video rep-
resentation can match or surpass some of the state-of-the-art alternatives in
the task of action recognition.
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1. Introduction

With the expansion of online video collections, action
recognition has become an important problem in computer
vision. Most researchers focus on the real-world action
recognition problem; dataset such as HMDB51 [1] are quite
challenging due to the variations in video size, viewpoints,
scale, camera motion, and the position of the action. One
of the efficient approaches in action recognition is bag-of-
visual-words (bovw) [2], [3], which first extracts local fea-
tures, then encodes them into a codebook, and uses video-
wise pooling to build the final representation. The origi-
nal bag-of-visual-words discards the useful space-time in-
formation of the video data [4]. To tackle this drawback,
[3], [5], [6] pool the local features over space-time pyramids
or pre-defined cuboids. However, since the real world video
data is unconstrained, even the same action may happen at
different spatial area and different temporal extent. Thus
we should find a better way to represent the action videos.
E.H.Taralova et al. [7] have shown the efficiency of super-
voxel, however, they treat each and every supervoxel with
equal weights. [8], [9] have shown that not all areas will
make the same contributions to the final results.

In this paper, our ultimate goal is to capture the spatial
temporal structure of the action, thus we over-segment the
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videos into supervoxels instead of using pre-defined rigid
areas. We first extract the low-level local features, and build
the bag-of-visual-word (bovw) codebook using k-means.
Then we pool these features over the extracted supervox-
els, and each supervoxel can be represented as a fixed-size
feature vector. We build a second bovw codebook based on
the supervoxel feature vectors, and we will use this as the
pre-process for our work. We propose 3 different saliency
measures to capture the appearance and motion structure,
namely frame-wise image saliency, lighting saliency and
motion saliency. To further capture the region-based super-
voxel features, we design a simple yet efficient technique to
mine the discriminative power of each visual word in the
supervoxel codebook, we will give more details in the later
section.

In the remainder of this paper, we first overview the
proposed approach, and then describe how we adapt the
saliency measures to it. We then present our discriminative
mining process. Our proposal is evaluated by two challeng-
ing datasets UCF11 [10] and HMDB51 [1].

2. Spatial Temporal Saliency Representation

Our work can be sumarized in Fig. 1 and Fig. 2, we first
build a bag-of-visual-word (bovw) from the low-level fea-
tures. For each video, a hierarchical supervoxel extraction
is adopted, our approach will automatically choose the ap-
propriate segmentation layer for each action category. We
then pool the encoded low-level features in each supervoxel
to build a supervoxel-based feature vector. To obtain the
appearance and motion structure from each video, we pro-

Fig. 1 The building of mid-level supervoxel representation. We first
build low-level bag-of-visual-word (bovw) codebook c1. Then we pool
c1 over the supervoxels and build bovw codebook c2. This is used as the
pre-process step in our work.
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Fig. 2 Illustration of the spatial Temporal saliency structure, best viewed
in colors. The first row indicates one certain video frame and the cor-
responding supervoxels. The first 3 elements in second row are image
saliency, lighting saliency and motion saliency. The last element in sec-
ond row is the proposed category-specific mining, we show the best scored
supervoxels in the frame. We will give more detail in Sect. 2.

pose 3 different saliency measurements: frame-wise image
saliency and lighting saliency will capture the appearance
structure, while the optical flow based motion saliency can
capture the motion structure. In each action category, some
supervoxels are distinct and discriminative towards it, while
other supervoxels might be discriminative for other cate-
gories. Based on this thought, we design a mining pro-
cess to find the discriminative power of each visual word
in the codebook, this can be used to further discover the S-T
saliency of the video.

2.1 Saliency Measures

Saliency is an efficient way of finding area of interest [11].
In the video domain, besides the appearance cue in each
frame, the inherent motion information has the same im-
portance. Based on this consideration, we choose 3 saliency
measures. For the static cues, we use a well-known image
saliency algorithm [12]. Besides the RGB appearance cue,
we also consider the lighting saliency which provides coarse
object segmentation. To compute the lighting saliency map,
a RGB frame is first converted to the LAB color space.
We equally divide the Lighting component of LAB color
space into 60 bins and use a center-surround sliding win-
dow saliency approach [13] to compute the lighting saliency
maps. The motion saliency map mainly captures the sud-
den changes in temporal domain. We first extract the optical
flow using [14] for consecutive frames in each video. Then
we quantize the flow magnitude into 16 uniform bins and
compute the motion saliency maps with the same approach
as the lighting saliency.

Given a video V with T frames, for the tth(T ∈ [1,T ])
frame, the image saliency and lighting saliency maps are
defined as S t

I and S t
L. The motion saliency map is defined

as S t
M where T ∈ [1,T − 1], the motion saliency is one

frame less than the video sequence, thus we let S T
M = S T−1

M .
Since all three of the saliency maps are pixel based, we take
average saliency value within a supervoxel as the saliency
value of the supervoxel. The combined saliency Cs for a

given supervoxel vi is shown in Eq. (1).

Cs(vi) = ωIS I(vi) + ωLS L(vi) + ωMS M(vi) (1)

where S I , S L, S M , and ωI , ωL and ωM are the image
saliency, lighting saliency, motion saliency ane their weights
respectively.

2.2 Category-Specific Discrimination Mining

As we mentioned before, after the pre-processing step, we
can describe each supervoxel as a fixed-size feature vector.
In our work, we design a simple yet efficient technique to
calculate the discriminative power of each bin of the super-
voxel codebook. First, for each action category, we cluster
all the supervoxels from training videos into c = 1, . . . ,C
clusters, this is different from the step in building the su-
pervoxel codebook, since the codebook is built only us-
ing one action category. The goal is to give each super-
voxel an action specificity score which will be cumulated
as the action specificity score of each visual word. We de-
fine φ(c) = Nf (c)/N(c), where Nf (c) is the number of su-
pervoxels from foreground (overlapping with ground truth
bounding box larger than 50%) in cluster c, N(c) is the total
number of supervoxels in cluster c. Given the feature vector
di

c of supervoxel vi, where di
c belongs to cluster c, the action

specificity is calculated as Eq. (2).

S v
a(vi) = φ(c) · exp(

‖di
c − dc‖

rc
) (2)

where dc is the cluster center of c and rc is the radius. Since
we can get each supervoxel’s action specificity score, we
compute the cluster’s action specificity score as S c

a(c) =
1
K

∑K
i=1 vi

c, which means we compute the average value of
top K supervoxel action specificity scores in cluster c as the
score of the cluster. After getting the score of each cluster,
we would like to find the most discriminative visual words
for each action category. We find M visual words with the
highest score for each action category. For a certain action
class a, we treat each of these visual word as positive sam-
ple, we randomly sample the least scored visual words as
negative samples. Then we train one-vs-one SVM [15] for
each visual word, this will give each action category M clas-
sifiers, e.g. {Ra

1, . . . ,R
a
M}, where Ra

p is the pth classifier for
action a. We use these classifiers to evaluate whether a su-
pervoxel is discriminative to certain action class.

We train one-vs-the-rest SVM classifiers for each ac-
tion category. Given a test video V with T frames, us-
ing the previous steps, we can extract a set of supervoxels
{v1, . . . , vN}, each one is represented by a fixed-size fea-
ture vector. We use Eq. (1) to compute each supervoxel’s
saliency, and by using the category-specific classifiers, each
supervoxel vi will get M scores, which indicates whether
this supervoxel is related to certain action. To make it clear,
the codebook used in category-specific classifiers are built
from the same action class. We can use either max-pooling
or average pooling to decide the category-specific score of
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vi, here in our work, we mix these two by dividing the M
scores into L splits. We find the max score in each spilt,
and average the sum of L scores. Specifically, we define the
scores for vi as S a(vi) = {Ra

1(vi),Ra
2(vi), . . . ,Ra

M(vi)}, then
the mix-pooling S x

a(vi) can be calculated as follows.

S x
a(vi) =

1
L

L∑

j=1

max
l∈[ ( j−1)

L M+1, j
L M]

(Ra
l (vi)) (3)

Combining Eq. (1) and Eq. (3), the final saliency of each su-
pervoxel is:

S f
a (vi) = ωCCs(vi) + ωS S x

a(vi) (4)

To make the definition clear, we rewrite Eq. (3) as:

S f
a (vi) = ω′IS I(vi) + ω′LS L(vi) + ω′MS M(vi)+

ωS S x
a(vi)

(5)

Using Eq. (5), we can compute the spatial temporal saliency
of each supervoxel vi in video V , and this will finally lead to
the S-T saliency structure of the whole video.

3. Experiments

3.1 Datasets

We evaluate our proposed approach on two challengine
datesets: UCF11 [10] and HMDB51 [1]. UCF11 con-
tains 1168 clips, and are collected in 11 action categories.
HMDB51 contains 6849 clips, in 51 action categories. Both
of the datasets have frame-wise annotations, which will be
used as the ground-truth. We use the train/test splits pro-
vided by the author for both datasets.

3.2 Experimental Setup

The proposed approach relies on the extracting of super-
voxel and low-level feature. We use the well-known dense
trajectories (DT) as our low-level feature [3]. The idea of
DT is to track the dense sampled points, each for 15 frames
(discard when less than 15 frames). Then, they align the
points in the same trajectory across each frame, to build a
space-time cuboid. HoG,HoF [16] and MBH [16] features
are then extracted from this cuboid.

For the choice of supervoxel, we use a hierarchical
manner, namely GBH [17]. Their approach can treat the
video as stream of temporal segments and reduce the mem-
ory consumption. [17] extracts multiple layers of super-
voxel, the number of supervoxels in each layer ranging from
10 to 10k. It’s infeasible to use all the layers, it’s also time
consuming if we choose it manually. Here we use a quick
selection to choose the best layer for each action category.
We choose the layer which have the maximum intersection-
over-union with the ground truth bounding box. This is cal-
culated as the average of each video in the same action cate-
gory. After this step, each video has 200 to 300 supervoxels.

Table 1 Average accuracies of different pooling approach on two
datasets.

UCF11 [10] HMDB51 [1]
Baseline 86.6 55.9

CS with MaxPooling 87.5 56.3
CS with AveragePooling 87.6 56.6

CS with MixPooling 87.9 57.1

Table 2 Average accuracies of different saliency measures on two
datasets.

UCF11 [10] HMDB51 [1]
Baseline 86.6 55.9

IS 86.9 56.3
LS 87.6 58.0
MS 87.9 58.4

LS+MS 88.5 58.6
LS+MS+IS 88.9 58.9

Saliency + CS 90.6 60.1

For computing the low-level feature codebook, we fol-
low the setup of [3]. We randomly sample 100k data points
and cluster with k-means to build the codebook of size 5k.
For building the supervoxel codebook, we count the trajec-
tories belonging to one supervoxel if over 50% of the trajec-
tory is contained in the supervoxel. The size of supervoxel
codebook is 5k as well.

We set K as 50% of the number of supervoxels in the
cluster. And for each action category, we set M = 100, L =
10. In Eq. (1), ωI = ωL = ωM =

1
3 , in Eq. (4), ωC = ωS =

1
2 . For each video, we only choose the supervoxels with a
score in the highest 50% in the video. We learn a one-vs-all
SVM [15] classifier with χ2 kernel, we find the parameters
via a 5-fold cross validation on the training set.

3.3 Evaluation of the Pooling Methods

In this section, we evaluate the 3 pooling approach we men-
tioned in Sect. 2.2. This is shown in Table 1. We use the
raw supervoxel bovw without saliency and category-specific
mining as baseline. And compare it with category-specific
(CS) mining under 3 pooling approaches.

3.4 Evaluation of the Saliency Maps

In this section, we discover the effectiveness of 3 saliency
maps, this is shown in Table 2. IS, LS and MS stand for im-
age saliency, lighting saliency and motion saliency respec-
tively. CS is the short phrase for category-specific mining.
The baseline is the same as last section. We also combine
the category-specific mining to see the final performance,
we only use mix-pooling as it achieves the best results than
the other 2 pooling approaches in our work.

3.5 Comparison with State-of-the-Art

We finally compare our proposed approach on both datasets
with the state-of-the-art action recognition approaches. We
show the classification accuracy in Table 3. [3] is the
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Table 3 Comparison of our proposed S-T Saliency to the state-of-the-art
on both datasets

Algorithms UCF11 HMDB51
HoG [3] 74.5 40.2
HoF [3] 72.8 48.9
MBH [3] 83.9 52.1
DT [3] 84.2 54.7

iDT [18], [19] 90.7 57.2
Mid-level parts [20] 84.5 37.2

CompactFV [5] 89 54.8
Our best 90.6 60.1

original dense trajectory, [18] is the improved dense tra-
jectories which compensated the camera motion by using
RANSAC [21] to compute homography and remove the
camera motion in each frame, they also use fisher vector [22]
for feature encoding, Oneata et.al. [5] extract spatial fisher
vectors based on MBH and SIFT descriptors. [20] uses a
deformable model to learn space-time parts.

4. Conclusion

In this paper, we propose a novel action recognition ap-
proach, namely spatial temporal saliency structure. Com-
pared to the traditional rigid space-time area pooling, the use
of supervoxel can better grab the space-time shape in each
action video. We use 3 different saliency measurements to
cover both the appearance and motion information of the
videos. We also design a category-specific mining approach,
which can help us find the discriminative supervoxels in
each action category. The proposed approach achieves com-
parative results on 2 well-known action recognition datasets
UCF11 and HMDB51.
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