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A Visibility-Based Upper Bound for Android Unlock Patterns∗

Jinwoo LEE†, Jae Woo SEO††, Kookrae CHO†††, Pil Joong LEE†, Juneyeun KIM††††,
Seung Hoon CHOI††††a), Nonmembers, and Dae Hyun YUM††††b), Member

SUMMARY The Android pattern unlock is a popular graphical pass-
word scheme, where a user is presented a 3 × 3 grid and required to draw
a pattern on the onscreen grid. Each pattern is a sequence of at least four
contact points with some restrictions. Theoretically, the security level of
unlock patterns is determined by the size of the pattern space. However,
the number of possible patterns is only known for 3 × 3 and 4 × 4 grids,
which was computed by brute-force enumeration. The only mathematical
formula for the number of possible patterns is a permutation-based upper
bound. In this article, we present an improved upper bound by counting the
number of “visible” points that can be directly reached by a point.
key words: user authentication, graphical password, Android unlock pat-
terns, upper bound

1. Introduction

To keep strangers from checking out personal information,
people often lock their smartphone screens with text-based
or graphical passwords. The Android pattern password has
been widely used for screen lock technology in Android de-
vices since its first introduction on Android version 1.0. To
unlock a locked screen, a user needs to draw a secret pat-
tern that connects a sequence of four or more contact points.
For a 3 × 3 grid, there are 389,112 patterns, which can
provide more choices than 5-digit PINs [1]. However, hu-
mans do not choose a pattern uniformly at random and have
some bias in the pattern selection process, e.g., the upper
left corner and three-point long straight lines are very typi-
cal selection strategies [2]. Hence, the entropy of patterns is
rather low and to increase the security of patterns, schemes
with larger grids have been proposed. For example, Cyan-
LockScreen [3] allows users to select from grid sizes rang-
ing from 3 × 3 to 6 × 6. The largest grid that we can find
in the real life is perhaps the 25 × 25 grid by Security Lock
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Screen [4].
Whereas the practical security of unlock patterns

should be evaluated by an extensive user study, the theoreti-
cal security of unlock patterns can be measured by counting
the total number of possible patterns. Currently, it is known
that there are 389,112 (� 219) patterns in a 3 × 3 grid and
4,350,069,823,024 (� 242) patterns in a 4×4 grids [5]. Note
that these values were computed by brute-force enumeration
because a mathematical formula for the number of patterns
is not known even for the simplest case of the 3 × 3 grid [6].
Can we compute the number of patterns in a large grid (e.g.,
10 × 10) by brute-force enumeration? Even a 5 × 5 grid is
expected to have more than 260 patterns and thus the brute-
force enumeration does not seem to be a feasible method for
calculating the size of pattern space in a large grid.

The only mathematical formula that can be applied to
a large grid is a permutation-based upper bound, which sim-
plifies the counting by ignoring an important restriction on
a valid pattern; unvisited points in a valid pattern cannot
be jumped over but the permutation-based upper bound al-
lows all kinds of jumps. In this article, we present an im-
proved upper bound by reducing the number of jumps. To
refrain from jumping over unvisited points, we use the con-
cept of visibility, i.e., the maximum number of points that
are directly reachable from a point. Our numerical data
show that the visibility-based upper bound outperforms the
permutation-based upper bound.

2. Permutation-Based Upper Bound

In the Android pattern unlock scheme, a user can select a
pattern according to the following rules [2]:

(i) At least four points must be chosen,
(ii) No point can be used twice,

(iii) Only straight lines are allowed, and
(iv) One cannot jump over points not visited before.

If we use the Cartesian coordinate system where the ori-
gin is the point at the lower left corner, a pattern p can be
denoted by a sequence of points as 〈(x1, y1), (x2, y2), . . .〉.
For example, the Z-shaped pattern in Fig. 1 is the sequence
〈(0, 2), (1, 2), (2, 2), (1, 1), (0, 0), (1, 0), (2, 0)〉.

Suppose the first point of a pattern p in a 3 × 3 grid is
(0, 0). Which point can be the second point of the pattern p?
If (0, 2) becomes the second point, the unvisited point (0, 1)
must be jumped over and thus, by rule (iv), (0, 2) cannot
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Fig. 1 The Cartesian coordinates and an example pattern for 3 × 3 grid.

be the second point. Similarly by rule (iv), (2, 0) and (2, 2)
cannot be the second point of p. The remaining five points
(1, 0), (0, 1), (1, 1), (2, 1), (1, 2) can be the second point of p.

The permutation-based upper bound does not consider
rule (iv) and allows jumping over unvisited points; in a 3×3
grid, all eight points except for the first point of a pattern can
be the second point and the seven points except for the first
and second points can be the third point. Let G be a grid that
is a set of points in the plane with integer coordinates. For a
grid G, let |G| be the number of points (e.g., for a 3 × 3 grid
G, |G| = 9) and f (G, k) be the number of patterns of length
k without considering rule (iv). Since any point can be the
first point of a pattern, we have

f (G, k) = |G|·(|G| − 1)·(|G| − 2) · · · · · (|G| − k + 1)

=
|G|!

(|G| − k)!
. (1)

For a grid G, letN(G) be the number of patterns andNk(G)
the number of patterns of length k. By rule (i), a pattern
should be a sequence of four or more points. Therefore, the
permutation-based upper bound on the number of patterns
can be obtained as follows:

N(G) =
|G|∑

k=4

Nk(G)

≤
|G|∑

k=4

f (G, k) (by ignoring rule (iv))

=

|G|∑

k=4

|G|!
(|G| − k)!

. (by Eq. (1)) (2)

The permutation-based upper bound for a 3 × 3 grid can be
found in [6].

3. Visibility-Based Upper Bound

We saw that if (0, 0) is the first point of a pattern p in a
3× 3 grid, the number of ways to choose the second point is
five, i.e., (1, 0), (0, 1), (1, 1), (2, 1), (1, 2). If (1, 1) is the first
point of p, all eight other points can be the second point.
Generally, the number of ways to choose the ith point of p
depends on the choices of all the previous i − 1 points of
p. Consequently, the number of ways to choose a pattern of
length k grows exponentially in k.

To find an upper bound on the number of patterns in a

Fig. 2 The visible points from (0,0) in 3 × 3 and 4 × 4 grids.

grid G, we first define the number of points that are directly
reachable from a specific point (x, y) as follows:

V((x, y); G) =
∣∣∣∣
{
(x′,y′) ∈ G | (x, y)� (x′,y′)

}∣∣∣∣, (3)

where (x, y) � (x′, y′) means that (x′, y′) is visible from
(x, y), i.e., there is a direct path from (x, y) to (x′, y′). The
relation � satisfies the symmetry property that (x, y) �
(x′, y′) if and only if (x′, y′) � (x, y). If the first point of
a pattern is (x, y), then the number of ways to choose the
second point isV((x, y); G). Figure 2 depictsV((0, 0); G) =
5 for 3 × 3 grid G andV((0, 0); G) = 9 for 4 × 4 grid G.

The visibility V(G) is the maximum value of
V((x, y); G) over the choice of (x, y) ∈ G. That is,

V(G) = max
(x,y)∈G

V((x, y); G). (4)

For any choice of the first point, the number of ways to
choose the second point cannot be larger thanV(G). When
all |G| − 1 points are visible from a point (x, y), V has the
maximum value of |G| − 1. Thus, we have

V(G) ≤ |G| − 1. (5)

After a point (xi, yi) is chosen as the ith point of a pat-
tern, it can be jumped over afterwards; hence, the chosen (or
visited) point (xi, yi) can be regarded as removed from the
grid. We define the maximum number of ways to choose
the (i+2)th point of a pattern, over the choice of the (i+1)th
point, after i points have been chosen (or removed) as fol-
lows:

V(G−i) = max
D⊂G,|D|=i

V(G\D), (6)

where G\D is the grid consisting of points in G that are not
in D and we have V(G0) = V(G). Since |G\D| = |G| − i,
Eq. (5) and Eq. (6) give the relation

V(G−i) ≤ |G| − i − 1, (7)

for 0 ≤ i ≤ |G| − 2. Suppose the number of visible points
from (x, y) is α, i.e., V((x, y); G) = α. If an invisible point
(x′, y′) is removed from G, the number of visible points from
(x, y) does not change, i.e., V ((x, y); G\{(x′, y′)}) = α for
(x, y) �� (x′, y′). If a visible point (x′, y′) is removed from
G, the number of visible points from (x, y) either remains the
same or decreases by one, i.e., V ((x, y); G\{(x′, y′)}) = α
or α − 1 for (x, y) � (x′, y′). For example, Fig. 2 shows
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V((0, 0); G) = 9 in the 4 × 4 grid G. For the invisible
point (3, 3) and the visible points (1, 0), (3, 1) in Fig. 2, we
have V((0, 0); G\{(3, 3)}) = 9, V((0, 0); G\{(1, 0)}) = 9,
and V((0, 0); G\{(3, 1)}) = 8. Because removing a (visited)
point from a grid does not increase the visibility, we have

V(G−i) ≤ V(G−(i−1)) ≤ · · · ≤ V(G). (8)

From Eq. (7) and Eq. (8),V(G−i) satisfies

V(G−i) ≤ min(V(G), |G| − i − 1), (9)

where 0 ≤ i ≤ |G| − 2 andV(G0) = V(G).
Since any point can be the first point of a pattern, there

are |G| ways to choose the first point. The number of ways
to choose the second point is bounded by V(G) = V(G0)
and the number of ways to choose the third point is bounded
by V(G−1). In general, the number of ways to choose the
ith point is bounded by V(G−(i−2)). Now, we can derive the
visibility-based upper bound as follows:

N(G) =
|G|∑

k=4

Nk(G)

≤
|G|∑

k=4

|G| · V(G) · V(G−1) · · · · · V(G−(k−2))

= |G|
|G|∑

k=4

V(G) · V(G−1) · · · · · V(G−(k−2))

= |G|
|G|∑

k=4

k−2∏

i=0

V(G−i)

≤ |G|
|G|∑

k=4

k−2∏

i=0

min(V(G), |G| − i − 1), (10)

where the last inequality is by Eq. (9).
The computation ofV(G) is the most time-consuming

part in Eq. (10). SinceV(G) = max(x,y)∈GV((x, y); G) is the
maximum value V((x, y); G) over the choice of (x, y) ∈ G,
we first computeV((x, y); G) as follows.

(a) Compute the multiset of slopes S = { y′−yx′−x | (x′, y′) ∈
G and (x′, y′) � (x, y)} where the slope of any upward
(or downward) vertical line is defined by +∞ (or −∞)

(b) Sort the elements of the multiset S and leave only one
instance for each slope by removing repeated instances.

(c) Count the (distinct) elements of S in (b).

In step (a), we compute the slopes from (x, y). If multi-
ple points have the same slope, only one point is visible.
Therefore, we remove invisible points by removing repeated
slopes in (b) and then count the number of visible points in
(c). Step (a) and (c) can be done in linear time. Step (b) can
be done in O(|G| log |G|) time by using merge sort or heap-
sort. V(G) can be obtained by computing V((x, y); G) for
each (x, y) ∈ G and finding the maximum value. Therefore,
V(G) can be computed in O(|G|2 log |G|) time. In practice,
V(G) for the largest grid of the real life (e.g., 25×25) can be

Table 1 Upper bound on the number of patterns: visibility-based vs.
permutation-based.

Grid Visibility-based Permutation-based

3 × 3 9.86E+05 9.86E+05
4 × 4 3.60E+13 5.69E+13
5 × 5 1.48E+25 4.22E+25
6 × 6 9.24E+40 1.01E+42
7 × 7 1.08E+62 1.65E+63
8 × 8 2.99E+87 3.45E+89
9 × 9 5.60E+118 1.58E+121

10 × 10 5.68E+154 2.54E+158
11 × 11 3.13E+197 2.20E+201
12 × 12 2.18E+244 1.51E+250
13 × 13 1.84E+299 1.16E+305
14 × 14 3.45E+358 1.38E+366
15 × 15 4.74E+425 3.42E+433
16 × 16 2.61E+497 2.33E+507
17 × 17 1.86E+577 5.65E+587
18 × 18 2.50E+661 6.22E+674
19 × 19 2.47E+755 3.91E+768
20 × 20 6.90E+852 1.74E+869
21 × 21 2.20E+960 6.75E+976
22 × 22 9.17E+1071 2.77E+1091
23 × 23 6.37E+1192 1.45E+1213
24 × 24 7.52E+1317 1.16E+1342
25 × 25 2.55E+1454 1.67E+1478

computed less than one second with a desktop PC. Table 1
presents numerical data of upper bounds for up to 25 × 25
grids. Except for 3×3 grid, the visibility-based upper bound
is always lower than the permutation-based upper bound.

4. Conclusion

The Android pattern unlock has been widely adopted but
very little is known about the mathematical analysis of its
security. Except for the “unfinished” work in [6], our upper
bound is the first rigorous analysis of the theoretical security
of patterns. We invite readers to the research on an exact
formula or a tighter bound for the security of patterns.

References

[1] A.J. Aviv, K.L. Gibson, E. Mossop, M. Blaze, and J.M. Smith,
“Smudge Attacks on Smartphone Touch Screens,” WOOT’10, Pro-
ceedings of the 4th USENIX Conference on Offensive Technologies,
pp.1–7, USENIX Association, 2010.
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