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Deep Nonlinear Metric Learning for Speaker Verification in the
I-Vector Space∗

Yong FENG†a), Member, Qingyu XIONG†, and Weiren SHI†, Nonmembers

SUMMARY Speaker verification is the task of determining whether
two utterances represent the same person. After representing the utter-
ances in the i-vector space, the crucial problem is only how to compute
the similarity of two i-vectors. Metric learning has provided a viable so-
lution to this problem. Until now, many metric learning algorithms have
been proposed, but they are usually limited to learning a linear transforma-
tion. In this paper, we propose a nonlinear metric learning method, which
learns an explicit mapping from the original space to an optimal subspace
using deep Restricted Boltzmann Machine network. The proposed method
is evaluated on the NIST SRE 2008 dataset. Since the proposed method
has a deep learning architecture, the evaluation results show superior per-
formance than some state-of-the-art methods.
key words: speaker verification, restricted Boltzmann machine, nonlinear
metric, deep learning

1. Introduction

Speaker recognition is a form of biometric personal recog-
nition. Usually there are two modes of recognition: ver-
ification and identification. Speaker identification aims at
identifying who is the speaker while speaker verification fo-
cuses on whether the claimed speaker is the true speaker, a
yes or no problem. In this paper, only speaker verification is
discussed.

Generally, speaker verification consists of three stages:
front-end feature extraction, modeling, and back-end scor-
ing of classification. In the front-end feature extraction,
MFCC or PLP are usually used. Then some approaches are
adopted to model the speaker, such as VQ [1], GMM [2],
SVM [3], JFA [4], i-vector [5] et al. In the back-end scor-
ing or classification method, likelihood ratios or SVMs are
usually used.

Over the past decades, i-vector model has been the
dominant approach for modeling speakers. Since the
speaker related information is buried under others, raw
i-vectors are not sufficiently discriminative. In order to
improve the discriminative capability of i-vectors, vari-
ous discriminative models have been proposed, including
WCCN [6], NAP [7], LDA [8] and PLDA [9]. Among these
models, PLDA is regarded as the most effective approach
and delivers state-of-art performance. As for the objective
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function, although PLDA encourages discrimination among
speakers, the task of speaker verification is to discriminate
true speakers and imposters, which is a binary decision, in-
stead of the multiclass discrimination in PLDA training. As
for the Gaussian assumption, it is often over strong and
cannot be held in practice, leading to a less representative
model.

Metric learning has provided a viable solution for
speaker verification by comparing the speech pairs based
on the learned metric [10]. The most commonly used met-
ric is Mahalanobis metric. It is equivalent to first apply-
ing a linear transformation, then computing Euclidean dis-
tance in the new subspace. But in many situations, a linear
transformation often fails to give good performance in high-
dimensional space, and it is not powerful enough to capture
the underlying data manifold. Therefore, we resort to more
powerful non-linear transformation. The kernel-based ap-
proaches can achieve this goal implicitly.

Recently, deep neural network (DNN) based ap-
proaches have been used in many speech processing
fields [11]–[14]. Conventionally, bottleneck features are
generated by a multi-layer neural network, in which one of
the internal layers has a small number of hidden units, rel-
ative to the size of other layers [11]. This small layer cre-
ates a constriction in the network that forces the information
pertinent to classification into a low dimensional represen-
tation. Thus, the bottleneck features can be considered as a
nonlinear feature transformation and dimensionality reduc-
tion technique. Yamada et al. proposed a method using the
bottleneck features extracted from DNNs for distant-talking
speaker identification [12]. They considered that the bottle-
neck features can reduce the influence of reverberation and
can transform the reverberant speech feature to a new fea-
ture space closed to clean speech feature. In [13], a method,
which combined the bottleneck feature and a cepstral do-
main de-noising auto-encoder based de-reverberation, was
proposed to improve the speaker identification performance.
In [14], an impressive method for i-vector extractor was pro-
posed. It combines the bottleneck feature and DNN poste-
riors to accumulate multi-model statistics and train the i-
vector extractor. All the above methods try to extract frame-
level features or middle-level feature (i-vector) from the
original acoustics feature by a DNN with a special bottle-
neck layer and can be regarded as DNN based feature trans-
formation approaches.

With the idea of DNN based feature transformation,
we propose a nonlinear metric learning method for speaker
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verification in the i-vector space by using deep Restricted
Boltzmann Machine (RBM) [15]. Different from the meth-
ods proposed in [11]–[14], the proposed method tries to ex-
tract some high level features from the i-vector space and
can be seemed as a classifier for the intended speaker verifi-
cation task directly.

Specifically, we regard the RBM network as a nonlin-
ear function, which transforms the features from the orig-
inal space (the i-vector space) to another subspace. And
in order to identify good discriminative features, we com-
bine the side information constraints of metric learning with
RBM, and stack the RBM networks in deep architecture.
We formulate the proposed method as an appropriate opti-
mization problem, and employ discriminative pre-training
and fine-tuning methods to get the optimal solution. The
proposed method is evaluated on the SRE08 core test set.
Results demonstrate superior performance over some state-
of-art methods.

This paper is organized as follows. Section 2 intro-
duces the traditional metric learning briefly. Section 3 ex-
plains the details of our deep nonlinear metric learning
method. Section 4 gives the experiments and result analysis.
And the last section has the conclusion.

2. Traditional Supervised Metric Learning

Distance metrics are fundamental concepts in machine
learning. The label information in distance metric learn-
ing is usually specified in the form of pairwise constraints
on the data: (1) equivalence constraints, which state that the
given pairs are semantically-similar and should be close in
the learned metric; and (2) inequivalence constrains, which
indicate that the given pairs are semantically-dissimilar and
should not be near in the learned metric [3]. The objective
of metric learning is to find a distance metric that keep all
the data pairs in the equivalence constraints close while sep-
arating those in the in-equivalence constraints. The most
representative work is [16], which formulates distance met-
ric learning as a constrained convex programming problem.

Let C = {x1, x2, . . . , xT } be a collection of data points,
where T is the number of samples in the collection. Each
xi ∈ Rn is a data vector where n is the dimension of features.
Let the set of equivalence constraints denoted by:

S = {(xi, x j) | xi and x j belong to the same class} (1)

and the set of in-equivalence constraints denoted by:

D = {(xi, x j) | xi and x j belong to different class} (2)

Let the distance metric denoted by matrix A ∈ Rn×n, and the
distance between any two data points x and y expressed by:

d2
A(x, y) =‖ x − y ‖2= (x − y)T A(x − y) (3)

Given the constraints in S and D, [12] formulates the prob-
lem of metric learning into the following convex program-
ming problem:

minA∈Rn×n

∑
(xi,x j)∈s

d2
A(xi, x j)

s.t. A ≥ 0,
∑

(xi,x j)∈D
d2

A(xi, x j) ≥ 1
(4)

The objective term is to make the distance between similar
pairs as small as possible. The positive semi-definite con-
straint A � 0 is needed to ensure the nonnegative distance
between any two data points and the triangle inequality. The
third term is to make the distance between dissimilar pairs
at least larger than 1. A is symmetric positive semi-definite,
so it can be decomposed as A = WT W, and in the learned
metric, the distance between any two points can be written
as:

d2
A(x, y)= (x−y)T A(x−y)= (Wx−Wy)T (Wx−Wy) (5)

So the traditional metric learning is equivalent to learn a lin-
ear transformation matrix W, and then compute Euclidean
distance in the transformed subspace.

3. Deep Nonlinear Metric Learning with Restricted
Boltzmann Machine

Because of the powerful approximate ability of the deep
learning architecture to learn functions or distributions, and
the virtues brought by the deep architecture, deep learning
methods theoretically exhibit powerful learning ability to
discover the nature of the dataset. In this work, we use RBM
as the basic network, then describe the discriminative train-
ing algorithm – Deep Nonlinear Metric Learning with RBM
(DNML RBM), and finally stack the pre-trained RBM for
deep metric learning.

3.1 Restricted Boltzmann Machine

RBM is an undirected model, one being visible layer and
the other hidden layer (Fig. 1). In graph theory, it can be
regarded as a bipartite graph, each edge being attached with
a weight, noted as a matrix W [15].

Suppose RBM system has n vertexes in visible layer
and m vertexes in hidden layer. Vector h and v stand for the
state in hidden layer and visible layer respectively, among
which hi and v j stand for the state of the ith vertex in hidden
layer and the state of the jth vertex in visible layer. Then the
energy of the RBM is defined as follows:

E(v, h|θ) = −
n∑

i=1

aivi −
m∑

j=1

b jh j −
n∑

i=1

m∑

j=1

viWi jh j (6)

Fig. 1 Restricted Boltzmann Machine (RBM).
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The probability that a RBM assigns to a visible vector
v is:

p(v|θ) = 1∑

v,h

e−E(v,h|θ)
∑

h

e−E(v,h|θ) (7)

Since there are no hidden-hidden connections, the acti-
vation state of the hidden vertex only depends on the vertex
in the visible layer

p(h j = 1|v, θ) = sigmoid(bj +

n∑

i=1

viWi j) (8)

And vice versa for symmetry:

p(vi = 1|v, θ) = sigmoid(ai +

n∑

j=1

h jWji) (9)

It can be seen that each layer is related only with the
previous layer and the whole procedure can be regarded as
layer-wise train. Since the training does not require any la-
bel information, the derived feature is considered as unsu-
pervised features.

3.2 Nonlinear Metric Learning with RBM

We regard the RBM network as an explicit nonlinear trans-
formation function: f (x,W) : Rn → Rm, and we use the side
information constraints to get the optimal parameters of the
RBM network. In the transformed subspace, we compute
distance d(xi, x j) between data points, and we assume a lo-
gistic regression model when estimating the probability for
any two data points (i-vectors) xi and x j to share the same
class (belong to the same person) or be semantically dissim-
ilar, i.e.

P(li j|xi, x j) = 1/(1 + exp(−li j(d(xi, x j) − μ))) (10)

Where li j = 1 if (xi, x j) ∈ S , li j = −1 if xi, x j) ∈ D, xi =

f (xi), x j = f (x j). The parameter µ is the threshold. Two i-
vectors xi and x j will belong to the same person only when
their distance is less than the threshold µ. Then the overall
log likelihood for all the equivalence constraints S and the
in equivalence constraints D can be written as:

L(W, μ) = −
∑

(xi,x j)∈S
log(1 + exp(−d(xi, x j) + μ))

−
∑

(xi,x j)∈D
log(1 + exp(d(xi, x j) − μ)) (11)

Using the maximum likelihood estimation, we will cast
the problem of distance metric learning into the following
optimization problem:

minW,μ E = − L(W, μ) + λ
∑T

t=1

∑m

i=1
fi(xt,W)

s.t. WWT = I
(12)

The first term L (W, µ) is the log likelihood of the side

Fig. 2 The deep architecture of stacked RBM.

information constraints, which encourage the margin be-
tween positive and negative samples to be large. The second
term is the mapping function of RBM, which encourages
the sparsity of the transformed features. The hard orthonor-
mality constraints is used to prevent degenerate solution of
W.

We adopt gradient descend method for objective opti-
mization, in which the gradient can be computed as:

∂E/∂Wjq = −
∑

(x,y)∈S (PS (x, y) − 1)
∂d(x, y)
∂Wjq

−
∑

(x,y)∈D(PD(x, y) − 1)
∂d(x, y)
∂Wjq

(13)

+ λ

T∑

t=1

m∑

i=1

∂ fi(xt,W)
∂Wjq

∂E/∂μ

= −(
∑

(x,y)∈S (1 − PS (x, y)) +
∑

(x,y)∈D(0 − PD(x, y)))

(14)

After obtaining the gradient, the parameter W and µ
can be updated by following until convergence:

W = W − α ∂E
∂W

(15)

μ = μ − α∂E
∂μ

(16)

3.3 Stacked RBM Network for Deep Metric Learning

In the last section, we describe the RBM network and com-
bine the side information to discriminatively train the RBM
network. But the single layer RBM network has limited
ability to map the gap between i-vector and class label. So
we stack multiple RBM networks to form a deep architec-
ture network. Specifically, the i-vectors are input to the first
RBM network, and then the responses of the first RBM net-
work are treated as inputs to the next RBM network, and
the output of the last RBM network is regarded as the trans-
formed feature of the original i-vector.

The whole model can be seemed as a stacked RBM
network. Similar to other algorithms proposed in the deep
learning literature, our stacked RBM model is trained greed-
ily layerwise in the pretraining phase, but we use the dis-
criminative pretraining algorithm. In the fine-tuning phase,
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the objective function is similar to (12), but the mapping
function is a stacked RBM network. We adopt the conju-
gate gradients method for objective optimization, and the
gradient-computing steps are similar to those steps in last
section.

4. Experiments

4.1 Experimental Setup

To evaluate the effectiveness of the proposed method, we
perform experiments on the core condition of the telephone
speech NIST 2008 speaker recognition evaluation (SRE)
list [17]. We use the speaker data from Fisher, Switch-
Board, NIST 2004, 2005 and 2006 datasets to train the
UBM, i-vector model and LDA model. The same data
are also used to conduct the proposed deep metric learn-
ing. We select 1997 female utterances from the core evalu-
ation dataset of NIST 2008 as the test set. And based on the
constructed 59343 trials, it includes 12159 target trials and
47184 imposter trials.

We use a UBM containing 2048 Gaussians, oper-
ated on a 60-dimensional feature which is formed by 20-
dimensional MFCC appended with the first and second
order derivatives. The classical Total Variability Model
(TVM) based i-vector extractor is referred to as the base-
line system. The dimension of i-vector it produces is 800 in
our experiments. We apply the channel compensation on i-
vector by LDA projection with speaker factor of dimension
256. For metric learning, utterance in the Fisher database
are sampled randomly to build the equivalence and inequiv-
alence pairs. And in this study, 800-dimensional ivector fea-
ture is used as the input of the proposed Deep Nonlinear
Metric Learning with RBM (DNML RBM). There are 500
hidden units in each hidden layer, and 256 units in the output
layer.

4.2 Effectiveness of the Proposed DNML RBM

In this experiment, we evaluate the effectiveness of our pro-
posed DNML RBM. The test is based on the NIST SRE
2008 core task, which is divided into 8 test conditions ac-
cording to the channel, language and accent [17]. Table 1
shows the EER results of our method in the pre-training and
fine-tuning phase.

From these results, we can see that the performance
improves significantly as the number of layers increase, and
the fine-tuning can further improve the performance over the
second layer. In addition, the improvement of fine-tuning is
near 2% over single layer (first layer). Thus, it proves the
effectiveness of the deep learning architecture.

4.3 Performance Comparison between Different Methods

Table 2 gives the fair comparison between the pro-
posed DNML RBM with Raw i-vectors (Original i-vector),
Raw RBM (stacked RBMs without metric learning), LDA,

Table 1 Performance of the proposed method in different phase.

Table 2 Performance comparisons between the proposed method and
other State-of-the-art methods.

PLDA and Cosine Similarity Metric Learning (CSML) [18],
which is a typical linear metric learning method. It can
be observed that the proposed method significantly im-
proves the discriminative capability than Raw i-vectors and
Raw RBM. And it also outperforms LDA, PLDA in condi-
tion 1-4 (which takes the major proportion of the test data).
However, in condition 5-8, PLDA wins the competition. We
attribute this discrepancy to the data imbalance in the de-
velopment set: condition 5-8 involves complex pattern (e.g.
multilingual speakers, different accents) that were not in-
volved in the Fisher database that was used to train the mod-
els. This leads to performance degradation on these condi-
tions with our proposed method that we found heavily relies
on large training data. For LDA and PLDA, the Gaussian
assumption improves generalizability on unseen conditions,
thus resulting in superior performance than DNML RBM, a
purely discriminative approach. Nevertheless, since condi-
tion 1-4 takes a large proportion of the data, the proposed
DNML RBM gets the best overall performance. We also
compared the performance of CSML, a typical linear metric
learning method, with DNML RBM, the proposed nonlin-
ear metric learning method. The evaluation results are in
the last two columns of Table 2. And we can see that the
proposed method DNML RBM produces about 3.7% rela-
tive improvement in EER over CSML.

5. Conclusions

In this paper, a Deep Nonlinear Metric Learning approach
for speaker recognition is proposed. Unlike tradition lin-
ear or kernel based metric learning methods, the proposed
approach learns an explicit nonlinear transformation. More
specifically, we use the RBM as the basic network and stack
multiple RBMs in a deep architecture. With the stacked
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RBM networks, every instance can be transformed nonlin-
early to a compact vector for effective verification. The pro-
posed method is evaluated on the NIST SRE 2008 core test
dataset and achieve better results than some state-of-the-art
methods.
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