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Adaptive Local Thresholding for Co-Localization Detection in
Multi-Channel Fluorescence Microscopic Images
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SUMMARY Automatic detection of immunoreactive areas in fluores-
cence microscopic images is becoming a key technique in the field of
biology including neuroscience, although it is still challenging because
of several reasons such as low signal-to-noise ratio and contrast variation
within an image. In this study, we developed a new algorithm that ex-
haustively detects co-localized areas in multi-channel fluorescence images,
where shapes of target objects may differ among channels. Different
adaptive binarization thresholds for different local regions in different
channels are introduced and the condition of each segment is assessed to
recognize the target objects. The proposed method was applied to detect
immunoreactive spots that labeled membrane receptors on dendritic spines
of mouse cerebellar Purkinje cells. Our method achieved the best detection
performance over five pre-existing methods.
key words: co-localized spot detection, co-localization analysis, fluores-
cence microscopy, image processing

1. Introduction

In the field of biology, fluorescence microscopy is widely
employed to investigate the functional and morphological
features of samples [1]. In the fluorescent microscopic
analysis, samples are immunolabeled with antibodies bound
to fluorophores, and the laser is irradiated, then the fluo-
rescence is acquired as an image. In the co-localization
analysis [2], multiple proteins in tissue samples are labeled
with specific antibodies bound to different fluorophores,
yielding a multi-channel image representing distribution
and density of target proteins. In a multi-channel image,
when a fluorescent spot in one channel overlaps on a spot
in a different channel, it is judged that two proteins are
co-localized in the same area. For quantitative analysis,
co-localized regions are detected, where values, such as
numbers and areas, are statistically examined. Detection
of the co-localized targets in multi-channel images is often
performed manually: such approaches are tedious and
exhausting, and more importantly, the analysis tends to
become subjective. Thus, it is required to develop unbiased
analyses without heavy manual expenses. However, auto-
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mated computational analysis of detection of co-localized
areas in a multi-channel fluorescence image is challenging,
because of several reasons such as low resolution restricted
by optical properties, low signal-to-noise ratio, and contrast
variation within an image [3].

Existing computational methods to detect co-localized
areas can be classified into two groups: the pixel-based
approach and the object-based approach [4]. Several criteria
such as the Pearson’s correlation coefficient (e.g. [2]) and
Manders’ overlap coefficient [5] have been used in the pixel-
based detection of co-localization. However, these methods
provide only strengths of co-localization for each pixel,
which does not suffice for the subsequent quantitative analy-
sis. Lachmanovich et al. [6] proposed a method that applies
the top-hat transformation and watershed segmentation to
each channel of the image, in order to detect the objects in
each channel image. A critical shortcoming of their method
would be difficulty in detecting targets in different channel
images when the segments of target objects have different
shapes.

Meanwhile, object-based spot detection methods ex-
ploit the prior information about the target objects to im-
prove the detection performances. Ruusuvuori et al. [7]
adopted the band-pass filtering (BPF) to enhance the spots
and suppress shot noises generated at the image acqui-
sition phase. The feature point detection (FPD) method
proposed by Sbalzarini and Koumouysakos [8] removes the
background noise with a boxcar average and enhances the
spots by a convolution with a Gaussian kernel. Smal et
al. [1] applied the h-dome transform method to detect a
spot, which subtracts a constant intensity from the edge-
enhanced image of the input image, and generates locally
high-intensity regions. For spot detection, Olivo-Marin et
al. [9] used multi-scale wavelets (MW) that take the product
image of multiple torus wavelet transforms with different
scales. The sub-pixel location (SPL) method [10] finds
areas with locally maximal intensities by comparing the
neighborhood intensities with the standard deviation of the
background intensities. However, detection of co-localized
spots by these object-based methods was primarily aimed to
find spots in a single channel image.

Our goal is to develop an algorithm for co-localized
object detection in multi-channel fluorescence microscopic
images, where shapes of target objects are not identical in
different channels. As a main application of the present
method, we tried to identify membrane receptor spots im-
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munolabeled with a fluorophore (detected in one channel),
which were present in dendritic spines of mouse cerebellar
Purkinje cells, and thus, should co-localize with the den-
dritic spines immunolabeled with a different fluorophore
(and, therefore, spines were detected in another channel). In
one of the two channels, named Channel 1 here, membrane
receptors in dendritic spines are visualized, although some
irrelevant noises are also contained in the channel. In
another channel image, Channel 2, spines (and shafts of
Purkinje cell dendrites) are visualized. High-intensity spots
in Channel 1 without positive signals in Channel 2 can be
judged as noise. Thus, in this application, the goal is to
detect positive spots in Channel 1 overlapping on Channel 2
signal.

Characters of our target objects in multi-channel im-
ages are different from those of pre-existing research for
co-localization analysis and spot detection for fluorescence
microscopic images. Because of the aforementioned rea-
sons, neither existing pixel-based methods nor object-based
methods work well in our problem setting, and thus, we
decided to develop a new algorithm suitable for our target
application.

In this study, we developed a new algorithm that ex-
haustively detects co-localized spot regions in multi-channel
fluorescence images. We tackled to properly detect different
shapes in different channel images. Namely, different
adaptive binarization thresholds for different local regions
in different channels are introduced, and the condition of
each segment is assessed to recognize the target objects.
This strategy enables the proposed method to effectively
handle nonhomogenous contrast images. This method was
applied to detect membrane receptors in dendritic spines of
mouse cerebellar Purkinje cells. The detection performance
of this method was assessed by comparing with the five
above mentioned, pre-existing methods for spot detection:
BPF [7], FPD [8], HD [11], MW [9], SPL [10].

2. Method

We developed a new computational method for spot detec-
tion from multi-channel fluorescence microscopic images.
Our method was designed to effectively detect co-localized
spots even if the shape of the fluorescence in one channel is
dissimilar to the one in another channel.

In the proposed method, each channel image is bina-
rized with some threshold, and the logical product of them
is taken. For each connected component in the logical
product image, the proposed method examines whether
the connecting component in the local region satisfies the
condition as a target object. A prominent feature of the
proposed method is to adjust the threshold for binarization
in each local region. Figure 1 shows a typical example
of how the proposed method determines the binarization
thresholds adaptively. In this figure, we consider a single
channel image for simplicity. If the value ta is used as the
binarization threshold, the segment obtained is too large as
a target spot in the local region. When the threshold is

Fig. 1 Adaptive selection of a threshold value for each segment.

increased to tb, two segments appear. The shape and the size
of the right segment are acceptable as a target object, and
thus, the threshold of the right segment is determined to tb.
The size and shape of the left segment are satisfied as a target
object when the threshold is increased to tc. Accordingly,
the threshold of the left segment is determined to tc. Thus,
the local binarization thresholds are determined adaptively
by examining whether the size and shape obtained with a
certain threshold match a category of a target object. In
the next subsection, detection algorithm designed from these
ideas is presented.

2.1 Algorithm

The flowchart of the algorithm in two channels is shown in
Fig. 2. Suppose that an N-channel fluorescence microscopic
image and N different initial binarization thresholds are
given, then, each process is as follows:
(S1) Binarization step: Each channel image is binarized
with the respective threshold, and then the logical product
of N different binarized images is taken.
(S2) Segment extraction step: Noise of the logical product
image is removed by morphological dilation followed by
erosion, and all connected components (referred to as seg-
ments hereinafter) are enumerated.
(S3) Judgement step: The contour of the segment is ex-
tracted to judge whether the extracted segment fall within
the criteria for a target object, which is defined in Sect. 2.2.
If the segment fits the criteria, the contour is recognized as
a target object.
(S4) Threshold update step: The binarization threshold is
increased by adding a pre-defined small value. Then, using
a new threshold, repeat the three steps (S1)–(S3) for the
segments rejected in the previous step.

Note that this algorithm is recursive. At the first
attempt, the binarization at (S1) is global; it is applied to
the entire image. After returning from (S4), subsequent
binarization is local; it is applied to the restricted image
within the segment rejected at (S3) in the previous trial.

Our proposed method does not detect or correct the sig-
nal crosstalk or bleed-through. Therefore, the combination
of fluorophores and filter sets should be selected carefully,
or a preprocessing method such as signal unmixing should
be applied to prevent those problems [12]. Our method as-
sumes that the signals among the channels are independent.
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Fig. 2 Outline of the proposed method. (S1) First, an input multi-channel image (an overlayed image
immunoreactive to different proteins) and the pre-defined area are provided. Then, the input multi-
channel image is separated into each channel and binarized using respective thresholds, and the logical
product is obtained within the selected area. (S2) The logical product image is de-noised, and all
connected components are extracted. (S3) Each component is discriminated by using the condition
consisting of the area and the ellipticity. (S4) If a connected component does not meet the condition, go
back to and repeat the step S1 using a new threshold to which a pre-defined gain is added.

2.2 Target Object Criteria

Step (S3) judges whether the segments that fall within the
criteria contains only a single target object. An example
used for verification of the present method is detection of
membrane receptors in dendritic spines of Purkinje cells,
which have a round shape with almost a similar size. There-
fore, the area and the ellipticity are used for the judgement.
Namely, a segment is recognized as a target object if the
following two conditions are satisfied, where the area and
the ellipticity are denoted by S j and c j, respectively:

• S min ≤ S j ≤ S max, and
• c j ≤ cmax.

Therein, S min, S max, and cmax are constant. If S j <
S min, the segment is judged as a noise, and discarded. If
S max < S j, the segment may contain multiple target objects,
as explained in Fig. 3. The ellipticity c j is the ratio of major
radius to minor radius of the ellipse that approximates the
segment. If cmax < c j, the segment is not likely to be a right
target object because it contradiiects the assumption that the
shape of the target is round.

2.3 Example

An example of the two-channel microscopic image is shown
in Fig. 3 (a), where two channels are assigned to red and
green colors for visualization. Here we focus on the small
square region in Fig. 3 (a), which is enlarged to Fig. 3 (b).
First, each channel image is binarized using respective
initial thresholds. After de-noising from the resultant
logical products, all connected components (segments) are
extracted, followed by evaluation whether the extracted
segments fit the criteria for target images. In the condition
described in Sect. 2.2, the segment in a magenta rectangle in
Fig. 3 (e) is too large as a target object, and therefore, the

Fig. 3 Examples of the co-localization detection. (a) An input two-
channel image. (b) Enlarged image of a small rectangle region in (a). (c)–
(j) Panels showing the process of the co-localization detection through the
recursive binarization steps. Panels (c) and (d) are color channels corre-
sponding to different fluorophores. Panels (f) and (i) are the selected areas
that were rejected segments in a previous round of recursive processing.

Table 1 Performances of the proposed method (Ours) as well as pre-
existing methods. Two-channel fluorescent microscope images (total
18 images) were analyzed. The averages and standard deviations are
presented.

Detection Score
Precision Recall F-score

BPF [7] 0.708 ± 0.13 0.811 ± 0.07 0.750 ± 0.09
FPD [8] 0.742 ± 0.11 0.788 ± 0.04 0.762 ± 0.08
HD [11] 0.611 ± 0.12 0.718 ± 0.07 0.655 ± 0.09
MW [9] 0.726 ± 0.11 0.747 ± 0.10 0.732 ± 0.10
SPL [10] 0.775 ± 0.14 0.651 ± 0.08 0.696 ± 0.07
Ours 0.789 ± 0.06 0.814 ± 0.09 0.796 ± 0.05

threshold for binarization is increased for re-binarization.
Then, as shown in Fig. 3 (g), the large segment is divided
into two segments. The green segment in Fig. 3 (h) satis-
fies the object criteria, whereas another segment does not.
This recursive binarization process is repeated for another
segment. Eventually, four target objects are obtained from
the region initially recognized as one object, as shown in
Fig. 3 (j).
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Fig. 4 Box plots showing Precisions (a), Recalls (b), and F-scores (c) for spot detection, which
were obtained using 18 two-channel fluorescent images. The results were obtained by five pre-existing
methods (BPF [7], FPD [8], HD [11], MW [9], SPL [10]) and the proposed method (Ours).

3. Experiments

To verify the performance of the present method, we con-
ducted simulations that detect membrane receptors on den-
dritic spines of Purkinje cells. In this section, we compared
our new method with five pre-existing methods, BPF [7],
FPD [8], HD [11], MW [9], and SPL [10]. The dataset used
for the comparison was obtained using a protocol previously
reported by Iizuka et al. [13]. Briefly, parasagittal sections
of mouse cerebellar vermis were double immunolabeled for
the calcium binding protein (Calbindin D-28K, a marker for
Purkinje cell) and the delta2 glutamate receptor (GluD2).
Immunoreactive fluorescent images of Calbindin D-28K
and GluD2 were acquired by using a confocal laser micro-
scope (LSM 5 PASCAL; Zeiss). Here, one signal was from
Alexa Fluor 488, and the other was from Alexa Fluor 568.
Filter sets were selected properly to prevent bleed-through
of the signals. This dataset was obtained from 18 fluorescent
images from six mice (three images/mouse). Our targets
of detection are spot-like regions immunoreactive to GluD2
overlapped on immunoreactivity of Calbindin D-28K. As a
ground truth, experts in this field manually annotated the
correct GluD2 spots.

In the present trial, for the channel-wise binarization
step, we set an initial threshold to 30 for GluD2, and to
10 for Calbindin, respectively. For the judgement step, we
selected the maximum ellipticity (cmax) to 2.0, the minimum
area (S min) to 3, and the maximum area (S max) to 400.
For each pre-existing method, optimal parameters for this
dataset were experimentally decided.

For quantitative assessment of detection performance
of target objects, we employed Precision, Recall, and F-
score. Those scores depend on the numbers of true positives
(TP), false positives (FP), and false negatives (FN): TP is
a correctly detected object, whereas FP is an incorrectly
detected object without a ground truth on its position, and
FN is an undetected object in spite of a presence of a ground
truth. We determined the Precision, Recall, and F-score
in all 18 two-channel images. Table 1 shows the averages
and standard deviations of those scores. As the results
indicate, our method was superior to all five pre-existing
methods in every evaluation index. Figure 4 shows the box
plots of the Precision, Recall, and F-scores, which were
obtained by our and pre-existing methods using 18 two-
channel images of GluD2 and Calbindin. In contrast to

the large variances in the pre-existing methods, the results
obtained using our method showed much less variances,
suggesting that the proposed method is most stable and
resistant to the variations during image acquisition.

4. Conclusion

In this paper, we presented a new computational method
for high-throughput detection of co-localized spots in multi-
channel fluorescence microscopic images. The proposed
method is superior to the existing methods in terms of
the ability to detect objects whose shapes are different
among the multiple channels. We verified the performance
of this method by detecting membrane receptors (GluD2)
expressed in dendritic spines of mouse cerebellar Purkinje
cells. The results obtained using the real experimental
data revealed that the proposed method achieved the best
performance over all five pre-existing methods. Further ver-
ification using different types of experimental data is needed
to warrant the reliable quality and possible application of the
proposed method.
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Guérin, “Colocalization analysis in fluorescence micrographs: Ver-
ification of a more accurate calculation of Pearson’s correlation co-
efficient,” Microscopy and Microanalysis, vol.16, no.6, pp.710–724,
Dec. 2010.

[3] J.C. Waters, “Accuracy and precision in quantitative fluorescence
microscopy,” The Journal of Cell Biology, vol.185, no.7, pp.1135–
1148, 2009.

[4] T. Lagache, N. Sauvonnet, L. Danglot, and J.-C. Olivo-Marin,
“Statistical analysis of molecule colocalization in bioimaging,” Cy-
tometry Part A, vol.87, no.6, pp.568–579, 2015.

[5] E.M.M. Manders, F.J. Verbeek, and J.A. Aten, “Measurement of
co-localization of objects in dual-colour confocal images,” Journal
of Microscopy, vol.169, no.3, pp.375–382, 1993.

[6] E. Lachmanovich, D.E. Shvartsman, Y. Malka, C. Botvin, Y.I.
Henis, and A.M. Weiss, “Co-localization analysis of complex for-
mation among membrane proteins by computerized fluorescence mi-
croscopy: Application to immunofluorescence co-patching studies,”
Journal of Microscopy, vol.212, no.2, pp.122–131, 2003.
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