
206
IEICE TRANS. INF. & SYST., VOL.E100–D, NO.1 JANUARY 2017

LETTER

Broadcast Network-Based Sender Based Message Logging for
Overcoming Multiple Failures

Jinho AHN†a), Member

SUMMARY All the existing sender-based message logging (SBML)
protocols share a well-known limitation that they cannot tolerate concurrent
failures. In this paper, we analyze the cause for this limitation in a unicast
network environment, and present an enhanced SBML protocol to over-
come this shortcoming while preserving the strengths of SBML. When the
processes on different nodes execute a distributed application together in a
broadcast network, this new protocol replicates the log information of each
message to volatile storages of other processes within the same broadcast
network. It may reduce the communication overhead for the log replication
by taking advantage of the broadcast nature of the network. Simulation
results show our protocol performs better than the traditional one modi-
fied to tolerate concurrent failures in terms of failure-free execution time
regardless of distributed application communication pattern.
key words: distributed system, rollback recovery, concurrent failures,
sender-based message logging, broadcast network

1. Introduction

All of the existing SBML protocols [3]–[6] have the same
limitation that they can tolerate only a single failure at a
time, called sequential failures. So, if more than one pro-
cess crash concurrently, they may not make the entire sys-
tem consistent, which is a critical shortcoming of the origi-
nal SBML. This limitation comes from its operational pro-
cedure that a copy of the receive sequence number (RSN)
of each message is kept only in the sender’s volatile mem-
ory. In this paper, we designed an effective SBML proto-
col to have the following features. First, in order to toler-
ate concurrent failures while ensuring system consistency,
the protocol enables each process to receive the log infor-
mation of each message destined to another process on the
same network and save the information into its volatile stor-
age. This feature allows the execution of the entire system
to progress without stopping and restarting it even with only
one surviving process at a certain time. However, this redun-
dancy may require a high extra communication overhead.
In general, this functionality may be implemented in one
of the following two communication modes, unicasting and
broadcasting. Unicasting is the most typically-used mode
where a sending node transmits a message only to a single
receiver. This mode has an advantage that it can be used
for non-broadcast network environments, but, if there are
many nodes on a network to deliver the message at the same

Manuscript received June 20, 2016.
Manuscript revised September 22, 2016.
Manuscript publicized October 18, 2016.
†The author is with the Department of Computer Science,

Kyonggi University, Suwon-si Gyeonggi-do, Korea.
a) E-mail: jhahn@kgu.ac.kr

DOI: 10.1587/transinf.2016EDL8127

time, is significantly inefficient because a separate copy of
the message should be sent exactly to each receiver. On the
other hand, broadcasting is the mode of sending one single
copy of the message to the network only once to be deliv-
ered by all destination nodes. Its usage may be dedicated to
broadcast-capable network environments, but it can consid-
erably improve communication performance by eliminating
traffic redundancy and reducing network traffic control and
node load compared to unicasting. However, all the previ-
ous SBML protocols have been oblivious to the underlying
network, which does not provide any advantage for ensur-
ing high scalability in a cluster system on a broadcasting
network. Our new protocol can highly reduce the commu-
nication overhead resulting from the RSN replication by ef-
fectively utilizing the nature of broadcast networks without
sacrificing the no rollback property.

2. The Proposed Novel SBML Protocol

Our SBML protocol is designed based on the following two
observations. First, in order to satisfy no rollback property
even in case of concurrent failures, replicating RSN of each
message not only to volatile storages of its sender, but also
of other processes except its receiver is essential. However,
this redundancy generally requires a high extra communica-
tion overhead. Second, all the previous protocols are obliv-
ious to the underlying network. This indifference may not
provide any advantage for ensuring high scalability required
in a cluster system composed of a large number of nodes that
is based on a broadcasting network. In a broadcast com-
munication environment, we found out the inherent limita-
tion of SBML can be removed without any sacrifice of the
no rollback property while minimizing the communication
overhead resulting from the RSN replication by utilizing the
nature of broadcast network. For this purpose, each process
maintains the following data structures in our protocol.
• S ndLgi: a set saving e(rcvr, ssn, rsn, data) of each mes-
sage sent by i. Here, e is the log information of a message
and the four fields are the identifier of the receiver, the send
sequence number, the receive sequence number, and the data
of the message, respectively.
• RsnLgi: a set which maintains e(sndr, ssn, rcvr, rsn) of
each message received by i or another process on the net-
work. Here, e is the log information of the message, where
the four fields are the sender’s id, the send sequence num-
ber, the receiver’s id, and the receive sequence number of
the message, respectively.

Copyright c© 2017 The Institute of Electronics, Information and Communication Engineers



LETTER
207

Fig. 1 Normal execution of our SBML protocol.

Now, let us observe how the RSN replication process
of our proposed protocol is performed in an effective way
using Fig. 1. This figure shows the case where three mes-
sages, m1, m2 and m3, are sent to p, q and r from senders
S 1, S 2 and S 3 in this order through a broadcast network.
First, when the first message m1 is transmitted to p from S 1

as in Fig. 1 (a), the partial log information except for m1’s
RSN is saved into S ndLgS 1. At this time, as the message
passes on the broadcast network, other nodes can receive it,
too. So, if the latter, q or r, can afford to save the partial
log information on its volatile log like S 1, the message may
be buffered in it. This proactive approach can help p replay
m1 much faster during recovery by q’s or r’s giving p m1’s
data directly. However, maintaining data of every message
destined to another process passing on a broadcast network
in volatile memory of each process may not be appropriate
even for high-end computers. When p receives and assigns
its current RSN (=a) to m1, it transmits SID, SSN, RID and
RSN of m1 through the broadcast network and blocks send-
ing all messages generated and sent from p after m1 until p
is informed that the replication process of m1’s RSN is com-
pleted by other processes on the same broadcast network.
At this point, q and r as well as S 1 can catch the full log
information of m1 except for its data and keep them in its
volatile memory like in Fig. 1 (b). Then, S 1, q and r should
acknowledge their receipt of m1’s RSN, which ensures the k
concurrent failure tolerance of SBML. Although this exam-
ple is made for the case of tolerating n simultaneous failures,
the number of concurrent failures may be parameterized ac-
cording to how many degrees of failures at once the target
system should tolerate. When p has received all acknowl-

Fig. 2 Consistency satisfaction in concurrent failures.

edgments from the others, it releases the blocking and sends
all the messages generated after m1 and before m1’s succes-
sor.

Second, let us identify how our protocol can address
the limitation of the previous SBML in case of concurrent
failures using Fig. 2 from m1’s perspective. Figure 2 (a)
shows the case where both m1’s sender S 1 and its receiver p
crash at the same time after our protocol has performed the
same steps mentioned above with m2 and m3 from Fig. 1 (b).
In this case, our protocol allows q and r to be able to offer
log information of all the three messages to p during recov-
ery, which can replay m1 like in its pre-failure state and keep
all log information for the other processes on its volatile log
for preparing their concurrent failures. Even if r also crashes
like in Fig. 2 (b), q can provide the same log information for
both p and r during recovery. In the worst case, if every
process on the same network would fail concurrently like
in Fig. 2 (c), no inconsistency issue arises because even if
m1 without its original RSN value couldn’t be replayed in
its pre-failure position, this discordancy doesn’t make any
orphan messages sent to surviving processes depending on
m1.
Lemma 1. Our proposed protocol always prevents every



208
IEICE TRANS. INF. & SYST., VOL.E100–D, NO.1 JANUARY 2017

failed process p from making any other live process on the
same network orphan.
Proof. We denote a set of all fully logged messages
that p has received before its failure by FULLY-LOGGED-
MS Gsp. The proof proceeds by induction on the number of
all the messages in FULLY-LOGGED-MS Gsp, denoted by
NUMOF(FULLY-LOGGED-MS Gsp).
[Base cases]
We assume NUMOF(FULLY-LOGGED-MS Gsp)=1, i.e.,
there is only one fully logged message m that p has received
before its failure. There are two cases we should consider.
Case 1: m’s sender s is a surviving process.
In this case, s can trivially give p all RSNs of m from
S ndLgs that p has assigned to m before. So, p can put them
into RsnLgp and then, replay m in m’s original order as in
its pre-failure state. Therefore, no surviving process that has
received any message sent from p after m’s receipt becomes
orphan.
Case 2: m’s sender s has failed.
In this case, there are two sub-cases we should consider.
Case 2.1: there is no surviving process on the network.
In this case, even although p replays m in any order unlike
in its pre-failure state, no inconsistency problem will occur
in the system because there is no orphan state on which m’s
reception before its failure has any impact.
Case 2.2: there is at least one surviving process q.
In this case, as message m has been fully logged, m’s re-
ceiver p before failure transmitted all surviving processes
all rsns of m p had assigned to m before. So, p can get the
RSNs from RsnLgq of q and put them into RsnLgp, and then
replay m in m’s original order like in its pre-failure state by
obtaining m’s data from recovering s. Therefore, p’s fail-
ure never makes any surviving process that has received any
message sent from p after m’s reception an orphan.
[Induction hypothesis]
We assume that the theorem is true for p in case that
NUMOF(FULLY-LOGGED-MS Gsp)=k.
[Inductive step]
By induction hypothesis, p can get all the log information
of k fully logged messages it has received before its fail-
ure. Therefore, if p can take the log information of (k+1)-th
message fully logged before its failure in this recovery pro-
cedure, the theorem is true for p in case NUMOF(FULLY-
LOGGED-MS Gsp)=k+1. The subsequent steps are similar
to the base case stated above.
By the induction, among the lost state intervals of every
failed process, all those that any normally operating pro-
cess’s state depends on can always be recovered by perform-
ing the proposed protocol. �

Theorem 1. Even if k (1 < k ≤ n) processes on the same
network crash concurrently, our proposed protocol allows
consistent recovery to be completed.
Proof. We prove this theorem by contradiction. Assume
that our protocol may not make consistent recovery possible
in case of k simultaneous process failures. We denote the
set of all failed processes by S ET -OF-FAILEDPROCs and

the set of all surviving processes by S ET -OF-S URPROCs.
There are two process failure cases to consider as follows.
Case 1: there is no surviving process (k = n).
In this case, there occurs no orphan state interval, meaning
every recovering process can replay each received message
in a new order without considering the current state interval
of any normally operational process.
Case 2: there are one or more surviving processes (1 < k <
n).
This case means there is at least one orphan state interval
their current states depend on directly or indirectly. This set
of orphan state intervals can be classified into two kinds:
state intervals directly created by the messages sent by any
failed processes, S ET -OF-DIROS Is, and directly created
by the messages sent by any other surviving processes,
S ET -OF-INDIROS Is. In this case, there are two sub-cases
to consider:
Case 2.1: Any state interval si ∈ S ET -OF-DIROS Is is cre-
ated by the receive event of a message m. In this case,
suppose si is created by receivep(m) at p ∈ S ET -OF-
S URPROCs and depends on the receive events of all the
messages that p has received until generating si including
receivep(m). Even though all the senders of the received
messages, denoted by DirectMsgsS enders(si), would be
a subset of S ET -OF-FAILEDPROCs, by lemma 1, si
never becomes an orphan state because the proposed pro-
tocol forces no crashed process ∈ DirectMsgsS enders(si)
to make p an orphan.
Case 2.2: Any state interval si ∈ S ET -OF-INDIROS Is is
created by the receive event of a message m. In this case, if
si depends transitively on any state interval si′ ∈ S ET -OF-
DIROS Is, it may be an orphan state if si′ could not be re-
stored even after having completed the recovery procedure.
But, this situation cannot occur according to case 2.1.
Therefore, consistent recovery is possible in all the cases.
This contradicts the hypothesis. �

3. Evaluation and Concluding Remarks

We have performed extensive simulations to evaluate per-
formance of the two protocols, TS BML-CF (Traditional
SBML for Concurrent Failures) and our protocol, OURS ,
using a discrete-event simulation language named PAR-
SEC [2]. In method TS BML-CF, when a receiver receives
an application message m from a sender, it sends a separate
message with m’s RSN to k(1 ≤ k < n) other processes
on the network including the sender. Here, k is the num-
ber of concurrent failures to attempt to tolerate. For this
evaluation, there are two performance indices to be consid-
ered as follows. The first index (ETexecution) is measured for
comparing the failure-free overhead, i.e., the elapsed time
until the same distributed execution has been completed.
The second one (Rateinc) is the increasing rate of the per-
formance overhead of the two protocols for k simultane-
ous failures against the traditional SBML (TS BML) [5] for
only tolerating a single failure at a time. A system of 10
nodes connected through a broadcast network is simulated.



LETTER
209

Fig. 3 ETexecutions for the four patterns.

Each node executes one process, and for simplicity, it is as-
sumed that the processes are initiated and completed simul-
taneously. The degree of redundancy ranges from 3 to 8
for tolerating 2 through 7 process failures occurring at the

Fig. 4 Performance overhead.

same time, and the target of each application message sent
from a process is always one process. Thus, IP multicast is
used for multicasting a control message to return the RSN
of each received message to a group of processes according
to the number of failures required to tolerate in our proto-
col. The message transmission capacity of a link in the net-
work is 100Mbps and its propagation delay is 1ms. Every
process has a 128MB buffer space for storing its message
log. The size of application messages ranges from 1KB to
1MB. Normal checkpointing is performed at each process
periodically with the interval Tnc, following an exponential
distribution with a mean value of 300 seconds. In addition, a
message to a process is sent with an interval Tms, following
an exponential distribution with a mean value of 3 seconds.
Distributed applications used for the simulation exhibit the
four communication patterns respectively [1]. The results
from the simulations are averaged over multiple trials. Fig-
ure 3 shows ETexecution for the two protocols, TS BML-CF
and OURS , for four different communication patterns re-
spectively with varying number of concurrent failures, k,
required to tolerate in case the total number of processes
is 10. As k grows, ETexecution values in both protocols in-
crease as well in all four patterns because the RSN replica-
tion overhead becomes larger. However, the figures indicate
that the ETexecution value in OURS is much lower than in
TS BML-CF regardless of the application communication
patterns. The reduction of ETexecution value in OURS over
TS BML-CF ranges from 3.2% to 11.9%. The reason is the
OURS protocol uses only one control message for returning
the RSN of each received message to a group of processes
whereas the TS BML-CF protocol uses multiple messages
directly proportional to the number of failures required to
tolerate.

Figure 4 shows the average values of Rateinc of the two
protocols, TS BML-CF and OURS , for the four communi-
cation patterns when k ranges from 2 to 7. In this case, the
average ETexecution value of TS BML is 116.5 minutes. As
k becomes bigger, their Rateinc values are also increasing.
This phenomenon arises from the reason that the increase
of the number of concurrent failures to tolerate leads to the
higher interaction overhead resulting from the RSN replica-
tion procedure. But, this simulation results illustrate the dif-
ferences in Rateinc values in both protocols grow as the value
of k increases. Especially, when k is less than 5, Rateinc of
OURS isn’t greater than 12% unlike TS BML-CF. From



210
IEICE TRANS. INF. & SYST., VOL.E100–D, NO.1 JANUARY 2017

this outcome, it may be claimed that our protocol incur the
reasonable performance overhead against TS BML in order
to tolerate simultaneous failures in this range.

From these observations, we conclude that OURS sig-
nificantly reduces the communication cost resulting from
the RSN replication compared with TS BML-CF by utiliz-
ing the nature of broadcast networks in any communication
pattern.

Acknowledgments

This work was supported by Kyonggi University Research
Grant 2014 (Project Number: 2014-012).

References

[1] G.R. Andrews, “Paradigms for process interaction in distributed pro-
grams,” ACM Computing Surveys, vol.23, no.1, pp.49–90, 1991.

[2] R. Bagrodia, R. Meyer, M. Takai, Y. Chen, X. Zeng, J. Martin, and
H.Y. Song, “Parsec: a parallel simulation environments for complex
systems,” IEEE Computer, vol.31, no.10, pp.77–85, 1998.

[3] B. Gupta, R. Nikolaev, and R. Chirra, “A recovery scheme for cluster
federations using sender-based message logging,” J. Comp. and Info.
Tech., vol.19, no.2, pp.127–139, 2011.

[4] P. Jaggi and A. Singh, “Log based recovery with low overhead for
large mobile computing systems,” J. Info. Sci. and Eng., vol.29, no.5,
pp.969–984, 2013.

[5] D. Johnson and W. Zwaenpoel, “Sender-based message logging,” In
Proc. of the 7th International Symposium on Fault-Tolerant Comput-
ing, pp.14–19, 1987.

[6] E. Meneses, C. Mendes, and L. Kalé, “Team-based message logging:
preliminary results,” In Proc. of the 10th IEEE/ACM International
Conference on Cluster, Cloud and Grid Computing, pp.697–702,
2010.

http://dx.doi.org/10.1145/103162.103164
http://dx.doi.org/10.1109/2.722293
http://dx.doi.org/10.2498/cit.1001706
http://dx.doi.org/10.1109/CCGRID.2010.110

