
IEICE TRANS. INF. & SYST., VOL.E100–D, NO.2 FEBRUARY 2017
401

LETTER

Geometry Clipmaps Terrain Rendering Using Hardware
Tessellation∗

Ge SONG†a), Member, Hongyu YANG†, and Yulong JI††, Nonmembers

SUMMARY Due to heavy rendering load and unstable frame rate when
rendering large terrain, this paper proposes a geometry clipmaps based al-
gorithm. Triangle meshes are generated by few tessellation control points
in GPU tessellation shader. ‘Cracks’ caused by different resolution between
adjacent levels are eliminated by modifying outer tessellation level factor
of shared edges between levels. Experimental results show the algorithm
is able to improve rendering efficiency and frame rate stability in terrain
navigation.
key words: terrain rendering, GPU, tessellation shader, geometry
clipmaps

1. Introduction

Real-time high quality rendering large scale terrain in stable
frame rate is still a challenge problem in many applications
such as flight simulation, virtual reality and so on. Classical
methods with CPU can not be adapted to modern graphics
hardware [1]. One of the common used GPU-based terrain
rendering algorithm is called geometry clipmaps [2]. Its ba-
sic idea is to store terrain elevation data in form of image,
which changes the issue of terrain grid dispatch into image
reading. 3D structures of terrain is represented efficiently
by view-dependent multi-resolution regular triangle meshes
called pyramids. It avoids instability of frame rate caused
by different local complexities terrain in details. With use of
hight-performance GPU, [3] proposed an optimized method
based on geometry clipmaps. Vertex buffer and index buffer
are built in CPU and transferred into GPU, from which trian-
gle meshes can be generated. However, due to large volume
of information transferred from CPU to GPU, load unbal-
ance between CPU and GPU is inevitable. Many other al-
gorithms based on geometry clipmaps have been proposed,
but none of them can solve the problem fundamentally [4]–
[6].

[7] proposed a terrain rendering algorithm using hard-
ware tessellation. In this algorithm, tessellation shader can
generate triangles adaptively with only a few controlling
vertices from CPU. However, this method suffers from the

Manuscript received July 13, 2016.
Manuscript revised October 21, 2016.
Manuscript publicized November 9, 2016.
†The authors are with the National Key Lab. of Fundamental

Sci. on Synthetic Vision, Sichuan University, Chengdu, China.
††The author is with the School of Aeronautics & Astronautics,

Sichuan University, Chengdu, China.
∗This work was done when Song was a doctoral candidate at

Sichuan University, China.
a) E-mail: songge86@yeah.net

DOI: 10.1587/transinf.2016EDL8160

problem of sudden changing of frame rate during the pro-
cess of high speed navigation because it generated meshes
from local terrains with different geometry complexities.

This paper proposes a novel method to render terrain
of ultra-high resolution in real-time with smooth frame rate.
It takes advantage of both geometry clipmaps and hardware
tessellation. In contrast to the previous methods, our rep-
resentation of terrain is simple and efficient. Moreover,
with use of hardware-supported tessellation, elimination of
cracks is very easy to realize.

2. Algorithm Overview

For each level of geometry clipmaps, we create only a few
tessellation control points which stored in vertex buffer to
represent basic mesh framework.

Index buffer is filled with tessellation control points and
adaptive triangle meshes are generated. In update stage, we
need only replace a few indices in index buffer to change
status of geometry clipmaps.

We eliminate cracks by increasing the value of outer
tessellation level factor of the shared edges between levels
in use of tessellation shader.

3. Algorithm Implementation

3.1 Creation of Tessellation Control Points

For each level in geometry clipmaps, a square ring is built
(shown in Fig. 1), which is divided into several blocks for
clipping of FOV. These blocks include 3 types: twelve m*m
squares (grey part shown in Fig. 1, called M-block), four
m*2 rectangles (green part called R-block) and one L-shape
block (blue part called L-block). L-block may be positioned
at left-up, left-bottom, right-up or right-bottom around M-
Block.

Different from [2] and [3], our method needs only to
create points as many as enough to represent basic structure
of geometry clipmaps, instead of creating whole vertices of
primitives. Tessellation control points will be transferred to
GPU by being written into vertex buffer from CPU. Patches
are generated by tessellation shader and compose every tri-
angle.

The distribution of tessellation control points is shown
in Fig. 1, where {n0, n1, . . . , n31} cover both M-blocks and
R-blocks; {n32, n33, . . . , n43} are created to cover L-block

Copyright c© 2017 The Institute of Electronics, Information and Communication Engineers



402
IEICE TRANS. INF. & SYST., VOL.E100–D, NO.2 FEBRUARY 2017

Fig. 1 Distribution of tessellation control points.

which may exist at 4 different position. After stored in ver-
tex buffer, tessellation control points would be quoted by
index buffer of each level of geometry clipmaps to generate
triangle patches.

3.2 Generation and Update of Adaptive Triangle Patches

In geometry clipmaps, terrain data is treated as a 2D eleva-
tion image, which is prefiltering into a mipmap pyramid of
L levels [2]. Without sampling height value for every vetex
from mipmaps in vertex shader, we postpone it into tessel-
lation evaluation shader stage until which patches have been
generated. Therefore, there is no detail loss of sampling pre-
cision.

There is an index buffer in which indices of vertices
are stored for each level of geometry clipmaps. Adaptive
triangle patches are generated by these indices and updated
in real time.

Three types of tessellation domain are supported by
OpenGL: quads, triangles and contour sets. We use quads
to generate patches because all blocks of geometry clipmaps
are rectangles. Therefore, points in index buffers would be
transferred in fours to tessellation control shader. M-blocks
and R-blocks are built with 1 group of indices (four points),
while L-blocks are built with 3 groups, which represent hor-
izontal part, vertical part and the corner part in size of 1
respectively. L-blocks are going to be built in four ways
(shown in Fig. 2) according to their different positions while
real-time navigation.

Assume geometry clipmaps is built by an n*n matrix
of dots, the size of M-blocks is:

m = (n + 1)/4 − 1 (1)

Accordingly, the length of long side of R-blocks is m
and the length of short side is n − 4m − 1 = 2.

The width of L-blocks is 1, and the length of horizontal
and vertical parts is 2m + 1.

Thus tessellation levels of 3 types of blocks can be ob-
tained:
{ T inner

M [i] = m, i = 0, 1

T outer
M [i] = m, i = 0, 1, 2, 3

(2)

{ T inner
R [0] = T outer

R [0] = T outer
R [3] = 2

T inner
R [1] = T outer

R [1] = T outer
R [2] = m

(3)

Fig. 2 4 types of structures of L-blocks.

Fig. 3 Example of adaptive triangle patches.

{ T inner
L [0] = T outer

L [0] = T outer
L [3] = 1

T inner
L [1] = T outer

L [1] = T outer
R [2] = 2m + 1

(4)

Assume n = 15, adaptive triangle patches is generated
like what is shown in Fig. 3, in which the black dots repre-
sent tessellation control points.

From the foregoing discussion, M-blocks or R-blocks
can be built within 4 control points and L-blocks can be built
within 8 control points regardless of any value of n.

While real-time navigation, only L-block of each level
needs to be updated every time because movement of view-
point is continuous.

Further, the required step for update of each level in-
creases exponentially from inner to outer. Assume the re-
quired step for update at innermost level (i.e., the finest
level) is s, the required step for update of level lk is:

sk = s × 2k (5)

Therefore, updates of adaptive triangle patches occur
rarely. Even if an update occurs, only 8 control points of
L-blocks need to be updated instead of replacing the whole
vertices of L-blocks in classical method.

3.3 Elimination of Cracks between Adjacent Levels

Classical geometry clipmaps algorithm renders a string of
degenerate triangles to avoid cracks. This method would
not only cause distortion in visual effect, but also bring ad-
ditional rendering burden. However, we can solve this prob-
lem easily and efficiently by increasing the value of outer
tessellation level factor of the shared edges between levels



LETTER
403

Fig. 4 Principle of cracks elimination.

Fig. 5 Shared edges between adjacent levels.

in use of tessellation shader.
The inter tessellation level factor set in Eqs. (2) (3) (4)

is consistent with the outer one, which means generated
patches are average. However, the vertex number of inter
level is twice that of out lever because of different resolu-
tions of adjacent levels, which is the root cause of cracks.
We solve this problem by enlarging the outer tessellation
level factor on shared edges. Figure 4 gives the principle of
cracks elimination.

There is 2 types of shared edges between adjacent lev-
els: Type I is at L-block and Type II at M-block and R-block
on the other side (as shown in Fig. 5).

For Type I, we need only set tessellation level factor for
L-block as follow:

T outer∗
L [in] = T outer

L [in] × 2 (6)

Where in is the shared edge of L-block.
For Type II, all blocks on shared edges are also op-

erated in same way of Type I. However, there is a little
part of M-block 5 and M-block 11’s inner edges is on the
side of L-block. New cracks show up if we did as above.
For brevity, we update tessellation level factor of the cor-
responding edges of L-block by Eq. (6), that is to say, the
value of tessellation level factor set to 2.

Figure 6 give a example when n = 15, where it shows
the result of cracks elimination with the way of setting tes-
sellation level factor of shared edges between adjacent lev-
els. As shown, patches on shared edges are docked each
other between levels and no cracks come out.

4. Experimental Results and Discussion

The algorithm proposed in this paper has been implemented

Fig. 6 Example of how to eliminate cracks.

Fig. 7 Navagation path in experiments.

Table 1 Comparison of vertex number from CPU to GPU

LOD Levels = 7 LOD Levels = 9
Size of n Ours Classical Size of n Ours Classical

63*63 301 27783 63*63 387 35721
127*127 301 112903 127*127 387 145161
255*255 301 455175 255*255 387 585225
511*511 301 1827847 511*511 387 2350089

on a workstation with the following hardware configuration:
Intel Core i7-2600K @3.4, 8.0GB RAM and NVidia GTX
590. To test our algorithm, the resolution of height maps and
image maps is 16385*16385 and 16384*16384 respectively.

The first experiment is conducted to compare the num-
ber of vertices transferred from CPU to GPU between our al-
gorithm and geometry clipmaps. From Table 1, we learn that
vertex number is very large in classical geometry clipmaps.
And it will increase in squared growth rate with the increase
of size of n. However, vertex number in our algorithm is
very small and irrelevant to the size of n because we need
only to transfer several tessellation control points to GPU.

The second experiment is conducted to compare the
frame rate and its stability among many algorithms includ-
ing ours. The navagation path is as shown in Fig. 7. We
learn from Fig. 8 that our frame rate was much higher than
[3] and [4]. [7]’s average rendering performance was about
same with ours, but its frame rate is quite unstable, espe-
cially with a significant decrease around 180th sec and 350th
sec, which was corresponded to twice turn in roaming path:
sudden changing of view direction lead to split-second vari-
ation of LOD in FOV, which caused linear reduction of ren-
dering performance. However, our algorithm inherits ge-
ometry clipmaps’ strong points of stable frame rate, while



404
IEICE TRANS. INF. & SYST., VOL.E100–D, NO.2 FEBRUARY 2017

Fig. 8 Statistics of frame rate.

Fig. 9 Effect before and after eliminating cracks.

Fig. 10 Rendering results.

taking full advantage of GPU to achieve high rendering per-
formance.

Finally, we do the experiment of cracks elimination
with map data of Puget Sound whose colorful image is con-
venient for observation. Figure 9 gives the comparison of ef-
fect before and after eliminating cracks. We learn that cracks
are eliminated perfectly by our method. Figure 10 shows
some screenshots of real-time rendering by our method.

5. Conclusion and Future Work

We presented a novel real-time terrain rendering algorithm
based on geometry clipmaps using new feathers such as
hardware-supported tessellation available in modern GPUs.
Since triangles are generated and rendered entirely on GPU,
there is no need to transfer massive vertices from CPU. The
experimental results shows that our algorithm improve ren-
dering performance and stability of frame rate.

Our method can only be applied in Cartesian Coordi-
nates for now. It would require our algorithm adaptive to
spherical coordinate system (WGS84) for widely applica-
tion.

Acknowledgments

This research is supported by the National High Technol-
ogy Research and Development Program of China (863)
(2015AA016404).

References

[1] R. Pajarola and E. Gobbetti, “Survey on semi-regular multiresolu-
tion models for interactive terrain rendering,” The Visual Computer,
vol.23, no.8, pp.583–605, 2007.

[2] F. Losasso and H. Hoppe, “Geometry clipmaps: Terrain render-
ing using nested regular grids,” ACM Trans. Graph, vol.23, no.3,
pp.769–776, 2004.

[3] A. Asirvatham and H. Hoppe, “GPU Gems 2 — Programming Tech-
niques for HighPerformance Graphics and General-Purpose Compu-
tation,” pp.27–46, 2005.

[4] A.M. Dimitrijević and D.D. Rančić, “Ellipsoidal Clipmaps-A planet-
sized terrain rendering algorithm,” Computers and Graphics, vol.52,
pp.43–61, 2015.

[5] D. Feldmann, F. Steinicke, and K.H. Hinrichs, “Flexible Clipmaps for
managing growing textures,” International Conference on Computer
Graphics theory and Applications, pp.173–180, 2011.

[6] D. Feldmann and F. Hinrichs, “GPU Based single-pass ray casting of
large heightfields using clipmaps,” Proceedings of compuer graphics
international (CGI), 2012.

[7] E. Yusov and M. Shevtsov, “High-PerFormance Terrain Rendering
Using Hardware Tessellation,” Journal of WSCG, vol.19, no.3, pp.85–
92, 2011.

[8] B.-Q. Zhang, et al., “Screen-space adaptive tessellation for terrain ren-
dering,” J. Image and Graphics, vol.17, no.11, pp.1431–1438, 2012.

[9] H.Y. Kang, H. Jang, C.-S. Cho, and J.H. Han, “Multi-resolution ter-
rain rendering with GPU tessellation,” The Visual Computer, vol.31,
no.4, pp.455–469, 2015.

http://dx.doi.org/10.1007/s00371-007-0163-2
http://dx.doi.org/10.1145/1015706.1015799
http://dx.doi.org/10.1016/j.cag.2015.06.006
http://dx.doi.org/10.5220/0003363701730180
http://dx.doi.org/10.1007/s00371-014-0941-6

