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Feature Adaptive Correlation Tracking

Yulong XU", Yang LI', Jiabao WANG', Zhuang MIAO'®, Nonmembers, Hang L1', Member,

SUMMARY  Feature extractor plays an important role in visual track-
ing, but most state-of-the-art methods employ the same feature represen-
tation in all scenes. Taking into account the diverseness, a tracker should
choose different features according to the videos. In this work, we propose
anovel feature adaptive correlation tracker, which decomposes the tracking
task into translation and scale estimation. According to the luminance of
the target, our approach automatically selects either hierarchical convolu-
tional features or histogram of oriented gradient features in translation for
varied scenarios. Furthermore, we employ a discriminative correlation fil-
ter to handle scale variations. Extensive experiments are performed on a
large-scale benchmark challenging dataset. And the results show that the
proposed algorithm outperforms state-of-the-art trackers in accuracy and
robustness.

key words: visual tracking, correlation filter, feature selection, convolu-
tional neural networks, scale estimation

1. Introduction

Visual object tracking is one of the active research topics
in the field of computer vision, which plays an important
role in many applications ranging from surveillance and
robotics to human-computer interactions and driverless ve-
hicle [1], [2]. In visual tracking, the task is to estimate the
locations of a target in an image sequence by giving only its
initial position. This is especially challenging due to sev-
eral factors such as occlusion, scale changes, illumination
variations, fast motion, rotation and background clutter [3].

In recent years, the correlation filter-based ap-
proaches [4]-[7] have been widely used and highly devel-
oped because of their outstanding efficiency in tracking.
And in order to improve the tracking performance, many
features are applied to the field of object tracking in correla-
tion filter framework. Heriques et al. proposed the circulant
structure with kernels (CSK) by using correlation filters in a
kernel space [4]. The CSK tracker built only on illumination
intensity features and was further improved by using his-
togram of oriented gradients (HOG) features [8], [9] in the
kernelized correlation filter (KCF) tracking algorithm [5].
On the basis of KCF and HOG features, a series of track-
ers are proposed. Danelljan et al. presented the discrim-
inative scale space tracker (DSST)[6] to cope with scale
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changes. The spatially regularized discriminative correla-
tion filter (SRDCF) tracker [7] employed a spatial regular-
ization component which allows the correlation filters to be
learned on a significantly larger set of negative training sam-
ples, without corrupting the positive samples.

Although these approaches are satisfactory in con-
strained environments, there is a limitation that they resort to
hand-crafted features, which play an important role in visual
tracking [10]. With the development of deep learning tech-
nology, convolutional neural networks (CNNs) have demon-
strated their outstanding representation power in a wide
range of computer vision applications [11]. And some track-
ing algorithms using the representations from CNNs have
been proposed [12], [13], [22]. In addition, Ma et al.[14]
utilized convolutional features and learned correlation filters
on each CNN layer without re-training. Li et al. [23] em-
ployed DSST [6] approach to cope with scale changes and
proposed a scale adaptive tracker with hierarchical convolu-
tional features.

This study proposes a novel feature adaptive correla-
tion tracking algorithm, which decomposes the tracking task
into translation and scale estimation. First, according to the
luminance of the tracking target, the proposed approach au-
tomatically selects either hierarchical convolutional features
or HOG features for varied scenarios. And we infer the tar-
get location based on multi-level correlation response maps.
Second, we use a discriminative correlation filter with HOG
features to handle scale variations. Third, extensive experi-
ments are performed on a large-scale benchmark challeng-
ing dataset with 50 challenging image sequences [3]. And
the results show that the proposed algorithm outperforms
state-of-the-art tracking methods in accuracy and robust-
ness.

2. Feature Adaptive Tracking with Scale Estimation

2.1 Problem of Convolutional Features Based Correlation
Trackers

KCF[5] is a typical correlation tracker, which models the
appearance of a target using a filter w trained on an im-
age patch x with size M X N pixels. M X N is set to
Bw X Bh, where w X h is the size of the target and S is the
expansion coefficient. KCF considers all cyclic shifts X,, ,,
(m,n) € {0,---,M — 1} x{0,---,N — 1}, as the training ex-
amples. They are labeled with a Gaussian function Y(m, n).
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Fig.1 Comparisons of KCF [5] with state-of-the-art convolutional fea-
tures based correlation trackers on Singer2 sequence. KCF [5] works well
while HCFT [14] and SAKCF [23] drift after the 20th frame.

The objective function is

w=argmin » [(@(%y,). W) = Yom, )| + AWl (1)

m,n

where ¢ represents the mapping to the Hilbert space in-
duced by the kernel x. The constant 4 > O is a regular-
ization parameter. The objective function is minimized as
W = 3 a(m, n)p(X,,.,), and the coefficient « is defined by
A=) = ﬁ, where % denotes the Fourier transform;
Y = y(y)’ K = egf(kxx) Kxx(m,n) = K(Xm,mx) is the
output of the kernel function «.

A patch z with the same size of X is cropped out in the

next frame. The confidence score is computed as
§=7"(Aokx). ©)

Here .% ! denotes the inverse Fourier transform; A denotes
the learned classifier coefficients; X denotes the learned tar-
get appearance; O is the element-wise product. The target
location in the new frame is then detected by searching the
position with the highest score.

The feature extractor is an important component of a
robust tracking system. Using proper features can signif-
icantly improve the tracking performance. The convolu-
tional features have been employed in correlation tracking
and achieve very good performance[14], [23]. However,
when the luminance is low, the convolutional features X in
(1) will be close to zero, which will cause tracking drift. As
shown in Fig. 1, the convolutional features based correlation
trackers cannot perform low illumination images well, while
the KCF tracker accomplishes the mission better. The rea-
son is that the convolutional features are close to zero under
low illumination conditions (In fact, the average gray value
V of the object in first frame is less than 40, V € [0, 255])
and the KCF tracker utilizes HOG features which contain a
lot of gradient information. Taking into account the diverse-
ness, a tracker should choose different features in different
scenes.

2.2 Feature Adaptive Correlation Tracker

According to the average gray value of the object in the first
frame, our approach automatically selects either hierarchi-
cal convolutional features or HOG features in translation, as
shown in Fig. 2. When the average gray value is larger than
a threshold v € [0,255] (e.g. v = 40 in this work), our ap-
proach will choose hierarchical convolutional features, oth-
erwise, select HOG.

As shown in Fig.2, if V < 40, we choose HOG fea-
tures and employ the correlation filters to estimate the target
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Fig.2  Flowchart of the proposed tracking algorithm.

position, which is the same as KCF tracker.

If V > 40, we first adopt the VGG-19[15] trained on
ImageNet for feature extraction. For example, given an im-
age patch with size M X N, we first resize the image patch
to 224 x 224 which is the requirement input of the VGG-19.
Then, the outputs of the relu3_4, relu4_4, and relu5_4 layer
feature maps are used as multi-channel features. In order to
further remove the boundary discontinuities of the response
map, the extracted CNN feature channels are weighted by
a cosine window. Due to the pooling operators used in the
CNNs model, the spatial resolutions of the relu3_4, relu4 4,
and relu5_4 layer are different. Therefore, we resize each
feature map to a fixed larger size M/4 X N/4 with bilinear
interpolation.

For each resized feature map I/, we can learn a corre-
lation filter using (1) and get a response map ¥; using (2).
So we can give different layers with different weights to
combine these response maps for robust object tracking, as
shown in Fig.2. Therefore, the final correlation response
map ¥ is the linear combination of the three correlation re-
sponse maps,

3
§=> 7% 3)

=1

where 7, is the weight of the different response map §;. And
the target location can be estimated by searching the position
with the maximum value of the correlation response map §.

2.3  HOG Features for Scale Estimation

We employ a scale pyramid [6] and learn a discriminative
correlation filter to cope with scale variations as shown in
Fig.2. After finding the target location p, in current frame
t, S image patches centered around p, are cropped from the
frame, and each with size a*w,_; X a*h,_;, where w;_1 X h;_;
is the target scale in the previous frame ¢ — 1, a is the scale
factor, and s € {[—%J , L—%J o, [S—;J} Then all the S
image patches are operated for feature extraction after resiz-
ing to the template size, and the features are set to feature
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vectors for a scale filter. The highest scale response will be
find to estimate the current scale w; X h; as

/
{ wy; = a® w_q

h[ = aéjht_] ’ (4)

where s’ is the scale number with the highest response.
Finally, the total model parameters are updated frame
by frame as

%z =1- 77)7?1—1 +nz; (5)
A= =-mA_ 1 +74,°

where 7 is the learning rate.
3. Experiments
3.1 Experimental Setup

The approach is implemented in Matlab 2013a and a large-
scale benchmark dataset [3] are employed, which contains
50 challenging videos. Our implementation runs at 9 frames
per second on a computer with an Intel i5-4690 CPU (3.50
GHz) and 16 GB RAM. The main computing time of our
tracker is the forward propagation process to extract multi-
channel convolutional features. The expansion coefficient
B for translation estimation is set to 2.8. The regulariza-
tion parameter A is set to 107, We use a linear kernel
k(x,x") = x'x’ in translation estimation, and the weight
value [y1,7y2,7v3] is set to [0.01, 0.65, 1] for the relu3 4,
relu4_4, and relu5_4 layer correlation response maps. The
scale space number S is set to 27 and the scale factor a is set
to 1.035. The learning rate 7 is set to 0.01. We use the same
parameter values for all the sequences.

The results are evaluated by using center location error
(CLE), distance precision (DP) and overlap precision (OP).
CLE is the average Euclidean distance between the center
of tracked target and the ground-truth. DP is the percentage
of frames where the CLE is smaller than 20 pixels. OP is
the percentage of frames where the bounding box overlap is
greater than 0.5.
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value of the object in the first frame is less than 40. For
these videos, our method will choose HOG features. The
comparison of our approaches (FACT and SAT) and con-
volutional features based correlation trackers (HCFT [14]
and SAKCF [23]) on the four sequences is shown in Tablel.
FACT denotes our feature adaptive correlation tracker and
SAT denotes the scale adaptive tracker without feature se-
lection, which uses only convolutional features in tracking.

Compared with SAT method, the performance is im-
proved further by using feature selection scheme in FACT.
Compared with SAKCF [23] method, our FACT approach
improves the average DP from 58.3% to 60%, outperforms
it by 4.7% in average OP. These demonstrate the effective-
ness of our feature selection scheme in tracking.

3.3 Comparison with State-of-the-Art Trackers

We compare our approach with 12 state-of-the-art
trackers: CN|[16], CSK|[4], DSST[6], HCFT[14],
KCF[5], PCOM[17], RPT[18], SAMF[19], SRDCF[7],
Struck [20], TGPR [21] and SAKCF [23]. The comparison
on the 50 challenging benchmark image sequences is shown
in Table2. We present the results using average CLE, aver-
age DP and average OP over all sequences. The best three
results are highlighted by bold, italics and underline, re-
spectively.

Among the trackers in our evaluation, our SAT method
achieves better performance and the performance is im-
proved further by using our proposed feature selection
method. our FACT method significantly provides the best
results with an average CLE of 12.6 pixels, an average DP
of 90.4% and an average OP of 85.3%. These results clearly
demonstrate the robustness of our method. Figure 3 contains
the precision and success plots illustrating the average DP
and OP over all the 50 benchmark sequences. In both pre-
cision and success plots, the proposed method outperforms
the best existing method SAKCF. In summary, the precision
plot shows that our method is more robust than state-of-the-

Precision plot Success plot
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. QOurs State-of-the-art trackers Yo Lgcationmerror €f1reshoﬁi * %0 o2 Overnlgp thrgghold o
Evaluation FACT | SAT | SAKCF | HCFT . .
_ Fig.3  Precision and success plots over all of the 50 sequences. The
Average CLE (pixels) 63.9 73.3 63.1 634 legend of the precision plot reports the average DP score at 20 pixels for
Average DP (%) 60 571.8 58.3 578 each method and the legend of the success plot contains the area under the
Average OP (%) 571 | 46.7 52.4 47 curve (AUC) score for each tracker.
Table2  Comparison with 12 state-of-the-art trackers on the 50 benchmark sequences.
Evaluation FACT | SAT | SAKCF | SRDCF | HCFT | SAMF | RPT | DSST | TGPR | KCF | Struck | CN | CSK | PCOM
Average CLE (pixels) | 12.6 | 13.3 15.6 35.1 15.7 284 | 36.5 | 409 458 | 354 | 543 | 64.1 | 88.8 78.0
Average DP (%) 904 | 90.3 89.5 83.8 89.1 79.0 | 814 | 743 743 | 743 64.1 | 63.7 | 549 50.0
Average OP (%) 853 | 84.5 83.8 78.4 74.0 733 | 712 | 674 66.6 | 624 | 543 | 51.7 | 444 42.5
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Fig.4
state-of-the-art visual trackers on 8 benchmark sequences.

A visualization of the tracking results of our approach and the

art trackers, and the success plot demonstrates that our ap-
proach computes scale more accurately on the benchmark
sequences.

Figure 4 illustrates a qualitative comparison with se-
lected trackers on 8 benchmark videos. These videos pose
challenging problems such as scale changes (Fig. 4 (a), (e),
(g) and (h)), illumination variations (Fig. 4 (b), (c) and (f)),
occlusion (Fig. 4 (a), (d), (g) and (h)), rotation (Fig. 4 (b), (e)
and (g)), fast motion (Fig. 4 (a), (e) and (g)) and background
clutter (Fig. 4 (e), (f) and (g)). Despite these challenges, our
approach obtains the both positions and scale of the target
accurately.

4. Conclusion

In this research, we propose a novel a novel feature adaptive
correlation tracking algorithm, which decomposes the track-
ing task into translation and scale estimation. Our approach
automatically selects either hierarchical convolutional fea-
tures or HOG features in translation for varied scenarios.
Then, we employ a discriminative correlation filter to han-
dle scale variations. Extensive experiments are performed
on 50 challenging benchmark sequences. And the results
show that the proposed algorithm outperforms state-of-the-
art trackers in accuracy and robustness.
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