
IEICE TRANS. INF. & SYST., VOL.E100–D, NO.2 FEBRUARY 2017
379

LETTER

A Probabilistic Adaptation Method for HTTP Low-Delay Live
Streaming over Mobile Networks

Hung T. LE†, Nam PHAM NGOC††, Nonmembers, Anh T. PHAM†, and Truong Cong THANG†a), Members

SUMMARY The study focuses on the adaptation problem for HTTP
low-delay live streaming over mobile networks. In this context, the client’s
small buffer could be easily underflown due to throughput variations. To
maintain seamless streaming, we present a probabilistic approach to adap-
tively decide the bitrate for each video segment by taking into account
the instant buffer level. The experimental results show that the proposed
method can significantly reduce buffer underflows while providing high
video bitrates.
key words: HTTP streaming, adaptivity, low-delay, DASH

1. Introduction

HTTP adaptive streaming (HAS) has become a new trend
of multimedia delivery over mobile IP networks [1], [2].
Recently, the Moving Picture Experts Group (MPEG) has
developed the Dynamic Adaptive Streaming over HTTP
(DASH) standard to enable interoperability in the indus-
try [1], [3]. In HAS, a video at a server is encoded at mul-
tiple video versions (with different bitrates), each of which
is further divided into short segments. In practice, segment
durations are typically from 2s to 10s. During a streaming
session, an adaptation method deployed at a client selects
an appropriate bitrate version for each segment based on the
status of the network/client. Then, each segment is delivered
by an HTTP request-response transaction. To cope with net-
work variations, many adaptation methods have been pro-
posed, which can be divided into a throughput-based group
and a buffer-based group [2], [4]. It should be noted that due
to bitrate adaptation, buffer size and buffer level in adaptive
streaming are measured in time units [1], [2], [4].

For on-demand streaming, adaptation methods can
leverage a large client buffer size to cope with throughput
fluctuations. However, for live streaming, the buffer size
is limited. For example, suppose at the start time of a live
video service, the client will load L segments into the buffer
before playing out. Because the client can download only
the segments that have already been generated in real time,
the client has to spend L segment durations for initial buffer-
ing. In live streaming, the total duration of segments down-
loaded in initial buffering is equal to the buffer size [4]. Af-
ter initial buffering, if the download rate and the playout rate

Manuscript received August 19, 2016.
Manuscript publicized November 9, 2016.
†The authors are with University of Aizu, Aizuwakamatsu-shi,

965–8580 Japan.
††The author is with Hanoi University of Science and Technol-

ogy, Hanoi, Vietnam.
a) E-mail: thang@u-aizu.ac.jp

DOI: 10.1587/transinf.2016EDL8172

are equal, the buffer level will be stable at the value of buffer
size; this value is also referred to as the target buffer level in
this letter. More detailed explanation about the buffer size
and the buffer level in live streaming can be found in [4].

Because low delay is a crucial requirement for live
streaming [5], the buffer size should be reduced in this con-
text. As analysed in [6], the smallest buffer size for live
streaming is expected to be 2 segments. In [2], the buffer
size for live streaming scenario is set to 8s (or 4 segments),
which is much lower than the typical buffer size of 30s (or
15 segments) for on-demand scenario. In [7], a heuristic
adaptation method for live streaming is proposed, but this
method is only designed for buffers of three or more seg-
ments. Moreover, the method has some thresholds which
are not easy to set. A learning-based adaptation method for
low-delay streaming is proposed in [8]; however, the low-
est supported buffer size is still 3 segments. In [4], through
an extensive evaluation, it is found that throughput-based
methods are more effective to support small buffer sizes than
buffer-based methods. However, when the buffer size is re-
duced to 2 segments, no adaptation methods evaluated in
[4] could guarantee a continuous session under strong varia-
tions of a mobile connection. Note that, besides the average
video bitrate, interruptions strongly affect the quality of ex-
perience [9].

In this study, we propose a probabilistic adaptation
method for HTTP low-delay live streaming, where the buffer
size could be just two segments. We first formulate the adap-
tation problem for HTTP live streaming, taking into account
the instant buffer level. Then, a solution to that problem for-
mulation is presented that decides the bitrate for each seg-
ment. Through experiments, we show that the proposed
method can effectively cope with throughput fluctuations
and significantly reduce the chance of interruptions.

2. Adaptation Problem Formulation

Suppose that, at the server, a video is provided at a num-
ber of bitrate versions, each is chopped into segments of τ
seconds. For each segment n (n = 1, 2, . . .) during a stream-
ing session, the client selects bitrate Bn from the available
bitrate options.

In the initial buffering stage, the client requests the low-
est bitrate for L segments to reach the target buffer level βtar

= L × τ seconds [1]. After that, the client switches to the
steady stage, where it receives and plays video segments si-
multaneously. In this study, our focus is on the adaptation in

Copyright c© 2017 The Institute of Electronics, Information and Communication Engineers



380
IEICE TRANS. INF. & SYST., VOL.E100–D, NO.2 FEBRUARY 2017

the steady stage. During this period, if an interruption hap-
pens, the client switches back to the initial buffering state.

Denote Tn−1 the measured throughput of the last seg-
ment n− 1(n > L), which is used as the throughput estimate
for the next segment n. In this study, the client uses a safety
margin γn ∈ [0, 1) to compute bitrate Bn:

Bn = Tn−1 × (1 − γn). (1)

We denote βr
n the buffer level measured at tr

n, which is
right after segment n is fully received. Because the buffer
size in live streaming is small, the client should select the
highest possible bitrate while the buffer is still not affected.
For that purpose, we need to find the minimum margin γn so
that the probability that the resulting buffer level βr

n is lower
than the target buffer level βtar is smaller than a desired con-
straint.

Denote Pr
(
βr

n < β
tar |γn

)
the probability that βr

n is
smaller than βtar given γn. The adaptation problem is de-
fined as:

minimize γn (2)

subject to Pr
(
βr

n < β
tar |γn

)
< ε, (3)

where ε is a desired probability constraint. Intuitively, the
smaller ε is, the lower the risk of buffer instability will be-
come, and also the lower the bitrate will be.

3. Adaptation Solution

In this section, we present our proposed method in detail.
Figure 1 shows an illustration of the request times and buffer
behavior of the client at segments n − 1, n, and n + 1. Let ts

n
and βs

n be the time and the buffer level when the client sends
the request of segment n, respectively. In live streaming, the
client should periodically send requests with a distance of τ
seconds. So, in an ideal condition, segment n is requested at
time t′n (i.e., ts

n = t′n), which is computed by

t′n = θ + (n − 1) × τ, (4)

where θ is the request time of the first segment. The time
t′n is considered as the earliest time, at which the client can
send the request of segment n.

At time t′L+1 (i.e. when the play-out is started), βs
L+1 is

βtar. Therefore, in the steady stage, if the last segment n − 1
has been fully received before t′n, the buffer level βs

n at time
ts
n = t′n is also βtar (Fig. 1).

Denote tr
n−1 the time right after the client has fully re-

ceived the last segment n − 1. If tr
n−1 < t′n, the client has to

wait for an interval, which is Δtr
n−1 = t′n − tr

n−1, before send-
ing the next request at t′n (as illustrated in Fig. 1). However,
because of throughput variations, the client may complete
receiving the last segment n − 1 after time t′n (i.e., tr

n−1 ≥ t′n).
In the case where t′n ≤ tr

n−1 ≤ t′n + βtar, the buffer level is
reduced bellow the target level βtar and so, the client should
send the request immediately at time tr

n−1 to quickly increase
the buffer level. Finally, if tr

n−1 > t′n+βtar (i.e., the buffer has

Fig. 1 Illustration of the request times and buffer behavior of the client
at segments n − 1, n, and n + 1.

been depleted and the recently received segment n − 1 has
missed its deadline), the client ignores segment n − 1 and
switches back to the initial buffering stage.

So, if no buffer underflow is observed, the actual re-
quest time for segment n is

ts
n = max{t′n, tr

n−1}, (5)

and the buffer level at that time is

βs
n =

⎧⎪⎪⎨⎪⎪⎩
βtar if tr

n−1 < t′n,
βr

n−1 if t′n ≤ tr
n−1 ≤ t′n + βtar.

(6)

The next segment n, which contains τ seconds of me-
dia, will be requested with video bitrate Bn. Therefore, the
delivery duration of this segment, denoted by dn, is

dn =
τ × Bn

Tn
= τ × (1 − γn) × Tn−1

Tn
, (7)

where Tn is the throughput of segment n. Obviously, the
contribution of a new segment to the buffer is τ seconds. So,
the resulting buffer level βr

n right after receiving segment n
is given by

βr
n = β

s
n − dn + τ. (8)

Using (7) and (8), we can rewrite the constraint (3) as:

Pr
(
βs

n − τ × (1 − γn) × Tn−1

Tn
+ τ < βtar

)
< ε. (9)

Rearranging (9), we have

Pr
(Tn−1

Tn
> xn

)
< ε, (10)

where xn, called the throughput ratio constraint for segment
n, is calculated by

xn =
βs

n + τ − βtar

τ × (1 − γn)
. (11)

Let X be a random variable that represents the ra-
tio Tn−1

Tn
, and FX(·) be the cumulative distribution function



LETTER
381

Fig. 2 Illustration of (a) the bandwidth trace and (b) the CDF of variable
X, obtained by the observation process.

(CDF) of X. So, the condition (10) is converted into

FX(xn) > 1 − ε. (12)

In our method, the CDF of random variable X is obtained
by using the throughput history of the client. Specifically,
we use an independent process, called observation process,
in which the CDF of random variable X is updated every
2s. Figure 2b provides an illustration of the CDF of random
variable X corresponding to a bandwidth trace (Fig. 2a).

Based on the obtained CDF, the client selects the min-
imum ratio x∗n that meets condition (12), and then decides
margin γn based on (11) as follows:

γn = 1 − β
s
n + τ − βtar

τ × x∗n
. (13)

The general procedure to select the bitrate for segment
n in the steady stage can be summarized as follows:

1) Measure the current buffer level. If the buffer is de-
pleted, switch back to the initial buffering stage; other-
wise, compute the throughput Tn−1 of the last segment
n − 1 as in [1].

2) Determine the time ts
n to send the next request using (5).

3) Given the CDF of random variable X, select the min-
imum x∗n following condition (12); then compute the
margin γn following (13).

4) Based on γn and Tn−1, decide the bitrate for the next
segment following (1). If no bitrate is found, the mini-
mum bitrate option is used.

5) Send the request to the server at time ts
n.

6) Repeat step 1 until the end of the session.

4. Experiments

Our test-bed is based on that of [4]. At the server, we em-
ploy a popular DASH dataset, where the video content is
provided in constant bitrate (CBR) mode at 17 bitrate ver-
sions, from 100kbps to 6000kbps [11]. All segments have
the same duration of τ = 2s. At the client side, we imple-
ment our proposed method (called probability based (PB)
method) with ε = 0.25. The target buffer level is set to 4s
(i.e., L = 2). For comparison, two reference methods, the
instant throughput based (ITB) method [4] and the conser-
vative throughput based (CTB) method [12], are employed.

Fig. 3 The bandwidth trace and adaptation results of (a) the CTB
method, (b) the ITB method, and (c) the PB method.

The former method uses a fixed margin of 0.2 while the lat-
ter method uses a mechanism like TCP congestion control,
rather than a fixed margin.

In our first experiment, we use two bandwidth traces.
The first trace (Fig. 2 a) is used as the bandwidth history data
of a past session to compute the initial CDF of random vari-
able X. The second trace (Fig. 3 a) that is obtained from the
same mobile network as the first one, is used to evaluate
the proposed method. It should be noted that, at time 325s,
the bandwidth drops to nearly zero, so any experiment run
will mostly have one buffer underflow at this point. Figure 3
shows the bitrate curves and buffer level curves of the three
methods. We observe that the CTB method is conservative
(aggressive) in increasing (decreasing) the bitrate. Despite
this behavior, the CTB method results in as many as five
buffer underflows (or interruptions). The bitrate curves of
the ITB and PB methods are quite similar. However, the
ITB method has three interruptions, whereas the PB method
has only one, which is unavoidable at time 325s.

For adaptation statistics, the three adaptation methods
are tested with multiple experimental runs, using a full band-
width trace in Fig. 4 (obtained in [10]). For each adaptation
method, 15 experimental runs are recorded, each of which
is 400s long and has a random starting point. In this exper-
iment, the PB method is employed with ε being 0.35, 0.25,
and 0.15; these three options are respectively referred to as
PB-35, PB-25 and PB-15. All other settings are the same
as before. Table 1 provides statistics of adaptation results,



382
IEICE TRANS. INF. & SYST., VOL.E100–D, NO.2 FEBRUARY 2017

Fig. 4 The bandwidth trace of a mobile network [10].

Table 1 Average statistics of the adaptation methods.

Statistics CBT ITB PB-35 PB-25 PB-15

Average bitrate (kbps) 1678 1865 2043 1895 1661

Number of interruptions 3.73 1.80 1.47 1.20 0.87

Total duration of
interruptions (s)

15.1 7.6 6.3 5.1 3.7

Fig. 5 Instant value of the margin for ε = 0.35, 0.25, 0.15.

where each item is the average value from the 15 experi-
mental runs. The statistics show that the CTB method has a
low average bitrate and the highest number of interruptions.
Compared to the ITB method, the PB-35 and PB-25 options
have fewer interruptions and better average bitrates. With
the PB-15 option, although providing a somewhat lower av-
erage bitrate than that of the ITB method, it significantly
reduces the number of interruptions (to 0.87) and the total
duration of interruptions (to 3.7s).

In the proposed method, parameter ε, together with the
current buffer status, actually affects the margin value. Fig-
ure 5 shows the instant value of the margin when the band-
width trace in Fig. 3a is used. It is seen that the margin value
is initially decided to be 0.18 when ε = 0.25. During the
session, the margin value varies and so the bitrate is adapted
accordingly. For example, at time 40s, when the buffer level
is drastically reduced due to a throughput drop, the margin
is increased to 0.56. When the requirement for buffer stabil-
ity is increased (i.e., ε is reduced), the margin is accordingly
increased in an automatic manner. For example, when ε =
0.15, the starting value of the margin is decided to be 0.28.
This means, parameter ε can be used to control the tradeoff
between video bitrate and buffer stability in a live streaming
session.

It can be seen that the effectiveness of the proposed
method is provided by its two aspects. First, based on the
recent throughput history and the probabilistic buffer con-
straint (ε), we can decide the starting value of the margin
and then adjust it during a session. In the ITB method, there

is no way to decide the (fixed) margin value in advance. That
means we cannot know, given some bandwidth trace, which
margin will be a good one. Second, our method also consid-
ers the current buffer level. When the buffer level is dropped,
the margin will be increased to avoid buffer underflows. As
we try to keep the buffer level as stable as possible, there are
not many times the buffer level is dropped (by unexpected
throughput fluctuations). This is the reason why the margin
value is mostly stable and is increased only at times of buffer
level drop.

5. Conclusions

In this letter, we have considered the adaptation problem of
HTTP live streaming over mobile networks. A probabil-
ity based method was proposed that adaptively changes the
bitrate to avoid buffer underflows. The experimental results
with a buffer size of only two segment durations showed that
the proposed method can significantly reduce the chance of
buffer underflows while providing high video bitrate.

Acknowledgements

This work was partially supported by JSPS KAKENHI
Grant Number 15K00134 and the competitive funds of the
University of Aizu.

References

[1] T.C. Thang, Q.-D. Ho, J.W. Kang, and A.T. Pham, “Adaptive stream-
ing of audiovisual content using MPEG DASH,” IEEE Trans. Con-
sum. Electron., vol.58, no.1, pp.78–85, Feb. 2012.

[2] S. Akhshabi, S. Narayanaswamy, A.C. Begen, and C. Dovrolis,
“An experimental evaluation of rate-adaptive video players over
HTTP,” Signal Processing: Image Communication, vol.27, no.4,
pp.271–287, Apr. 2012.

[3] ISO/IEC IS 23009-1, “Information technology - dynamic adaptive
streaming over HTTP (DASH) – part 1: Media presentation descrip-
tion and segment formats,” 2012.

[4] T.C. Thang, H.T. Le, A.T. Pham, and Y.M. Ro, “An evaluation of
bitrate adaptation methods for HTTP live streaming,” IEEE J. Sel.
Areas Commun., vol.32, no.4, pp.693–705, Apr. 2014.

[5] R. Kooji, K. Ahmed, and K. Brunnstrom, “Perceived quality of
channel zapping,” Proc. 5th Int. Conf. Commun. Syst. and Netw.
(CSN’06), pp.155–158, Aug. 2006.

[6] T. Lohmar, T. Einarsson, P. Frojdh, F. Gabin, and M. Kampmann,
“Dynamic adaptive http streaming of live content,” Proc. IEEE Int.
Symp. on a World of Wireless, Mobile and Multimedia Netw.,
pp.1–8, Jun. 2011.

[7] S. Benno, A. Beck, J.O. Esteban, L. Wu, and R. Miller, “Wilo: A
rate determination algorithm for has video in wireless networks and
low-delay applications,” Proc. IEEE Globecom Workshop, Atlanta,
GA, pp.512–518, Dec. 2013.

[8] J.V. Hooft, S. Petrangeli, M. Claeys, J. Famaey, and F. De Turck,
“A learning-based algorithm for improved bandwidth-awareness of
adaptive streaming clients,” Proc. Int. Symp. on Integrated Netw.
Man. (IM’15), pp.131–138, May 2015.

[9] M. Seufert, S. Egger, M. Slanina, T. Zinner, T. Hoßfeld, and
P. Tran-Gia, “A survey on quality of experience of HTTP adap-
tive streaming,” IEEE Commun. Surveys Tuts., vol.17, no.1,
pp.469–492, 2015.

[10] C. Müller, S. Lederer, and C. Timmerer, “An evaluation of dynamic

http://dx.doi.org/10.1109/tce.2012.6170058
http://dx.doi.org/10.1016/j.image.2011.10.003
http://dx.doi.org/10.1109/jsac.2014.140403
http://dx.doi.org/10.1109/wowmom.2011.5986186
http://dx.doi.org/10.1109/glocomw.2013.6825039
http://dx.doi.org/10.1109/inm.2015.7140285
http://dx.doi.org/10.1109/comst.2014.2360940
http://dx.doi.org/10.1145/2151677.2151686


LETTER
383

adaptive streaming over HTTP in vehicular environments,” Proc. 4th
Workshop on Mobile Video (MoVid ’12), pp.37–42, 2012.

[11] S. Lederer, C. Müller, and C. Timmerer, “Dynamic adaptive stream-
ing over HTTP dataset,” Proc. 3rd ACM Conf. on Multimedia Syst.
(MMSys ’12), pp.89–94, Feb. 2012.

[12] C. Liu, I. Bouazizi, and M. Gabbouj, “Rate adaptation for adap-
tive HTTP streaming,” Proc. 2nd ACM Conf. on Multimedia Syst.
(MMSys’11), pp.169–174, Feb. 2011.

http://dx.doi.org/10.1145/2151677.2151686
http://dx.doi.org/10.1145/2155555.2155570
http://dx.doi.org/10.1145/1943552.1943575

